1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
use crate::common::*;
use crate::f2s;
use crate::f2s_intrinsics::*;
use crate::parse::Error;
#[cfg(feature = "no-panic")]
use no_panic::no_panic;
const FLOAT_EXPONENT_BIAS: usize = 127;
fn floor_log2(value: u32) -> u32 {
31_u32.wrapping_sub(value.leading_zeros())
}
#[cfg_attr(feature = "no-panic", no_panic)]
pub fn s2f(buffer: &[u8]) -> Result<f32, Error> {
let len = buffer.len();
if len == 0 {
return Err(Error::InputTooShort);
}
let mut m10digits = 0;
let mut e10digits = 0;
let mut dot_index = len;
let mut e_index = len;
let mut m10 = 0u32;
let mut e10 = 0i32;
let mut signed_m = false;
let mut signed_e = false;
let mut i = 0;
if unsafe { *buffer.get_unchecked(0) } == b'-' {
signed_m = true;
i += 1;
}
while let Some(c) = buffer.get(i).copied() {
if c == b'.' {
if dot_index != len {
return Err(Error::MalformedInput);
}
dot_index = i;
i += 1;
continue;
}
if c < b'0' || c > b'9' {
break;
}
if m10digits >= 9 {
return Err(Error::InputTooLong);
}
m10 = 10 * m10 + (c - b'0') as u32;
if m10 != 0 {
m10digits += 1;
}
i += 1;
}
if let Some(b'e') | Some(b'E') = buffer.get(i) {
e_index = i;
i += 1;
match buffer.get(i) {
Some(b'-') => {
signed_e = true;
i += 1;
}
Some(b'+') => i += 1,
_ => {}
}
while let Some(c) = buffer.get(i).copied() {
if c < b'0' || c > b'9' {
return Err(Error::MalformedInput);
}
if e10digits > 3 {
// TODO: Be more lenient. Return +/-Infinity or +/-0 instead.
return Err(Error::InputTooLong);
}
e10 = 10 * e10 + (c - b'0') as i32;
if e10 != 0 {
e10digits += 1;
}
i += 1;
}
}
if i < len {
return Err(Error::MalformedInput);
}
if signed_e {
e10 = -e10;
}
e10 -= if dot_index < e_index {
(e_index - dot_index - 1) as i32
} else {
0
};
if m10 == 0 {
return Ok(if signed_m { -0.0 } else { 0.0 });
}
if m10digits + e10 <= -46 || m10 == 0 {
// Number is less than 1e-46, which should be rounded down to 0; return
// +/-0.0.
let ieee = (signed_m as u32) << (f2s::FLOAT_EXPONENT_BITS + f2s::FLOAT_MANTISSA_BITS);
return Ok(f32::from_bits(ieee));
}
if m10digits + e10 >= 40 {
// Number is larger than 1e+39, which should be rounded to +/-Infinity.
let ieee = ((signed_m as u32) << (f2s::FLOAT_EXPONENT_BITS + f2s::FLOAT_MANTISSA_BITS))
| (0xff_u32 << f2s::FLOAT_MANTISSA_BITS);
return Ok(f32::from_bits(ieee));
}
// Convert to binary float m2 * 2^e2, while retaining information about
// whether the conversion was exact (trailing_zeros).
let e2: i32;
let m2: u32;
let mut trailing_zeros: bool;
if e10 >= 0 {
// The length of m * 10^e in bits is:
// log2(m10 * 10^e10) = log2(m10) + e10 log2(10) = log2(m10) + e10 + e10 * log2(5)
//
// We want to compute the FLOAT_MANTISSA_BITS + 1 top-most bits (+1 for
// the implicit leading one in IEEE format). We therefore choose a
// binary output exponent of
// log2(m10 * 10^e10) - (FLOAT_MANTISSA_BITS + 1).
//
// We use floor(log2(5^e10)) so that we get at least this many bits; better to
// have an additional bit than to not have enough bits.
e2 = floor_log2(m10)
.wrapping_add(e10 as u32)
.wrapping_add(log2_pow5(e10) as u32)
.wrapping_sub(f2s::FLOAT_MANTISSA_BITS + 1) as i32;
// We now compute [m10 * 10^e10 / 2^e2] = [m10 * 5^e10 / 2^(e2-e10)].
// To that end, we use the FLOAT_POW5_SPLIT table.
let j = e2
.wrapping_sub(e10)
.wrapping_sub(ceil_log2_pow5(e10))
.wrapping_add(f2s::FLOAT_POW5_BITCOUNT);
debug_assert!(j >= 0);
m2 = mul_pow5_div_pow2(m10, e10 as u32, j);
// We also compute if the result is exact, i.e.,
// [m10 * 10^e10 / 2^e2] == m10 * 10^e10 / 2^e2.
// This can only be the case if 2^e2 divides m10 * 10^e10, which in turn
// requires that the largest power of 2 that divides m10 + e10 is
// greater than e2. If e2 is less than e10, then the result must be
// exact. Otherwise we use the existing multiple_of_power_of_2 function.
trailing_zeros =
e2 < e10 || e2 - e10 < 32 && multiple_of_power_of_2_32(m10, (e2 - e10) as u32);
} else {
e2 = floor_log2(m10)
.wrapping_add(e10 as u32)
.wrapping_sub(ceil_log2_pow5(-e10) as u32)
.wrapping_sub(f2s::FLOAT_MANTISSA_BITS + 1) as i32;
// We now compute [m10 * 10^e10 / 2^e2] = [m10 / (5^(-e10) 2^(e2-e10))].
let j = e2
.wrapping_sub(e10)
.wrapping_add(ceil_log2_pow5(-e10))
.wrapping_sub(1)
.wrapping_add(f2s::FLOAT_POW5_INV_BITCOUNT);
m2 = mul_pow5_inv_div_pow2(m10, -e10 as u32, j);
// We also compute if the result is exact, i.e.,
// [m10 / (5^(-e10) 2^(e2-e10))] == m10 / (5^(-e10) 2^(e2-e10))
//
// If e2-e10 >= 0, we need to check whether (5^(-e10) 2^(e2-e10))
// divides m10, which is the case iff pow5(m10) >= -e10 AND pow2(m10) >=
// e2-e10.
//
// If e2-e10 < 0, we have actually computed [m10 * 2^(e10 e2) /
// 5^(-e10)] above, and we need to check whether 5^(-e10) divides (m10 *
// 2^(e10-e2)), which is the case iff pow5(m10 * 2^(e10-e2)) = pow5(m10)
// >= -e10.
trailing_zeros = (e2 < e10
|| (e2 - e10 < 32 && multiple_of_power_of_2_32(m10, (e2 - e10) as u32)))
&& multiple_of_power_of_5_32(m10, -e10 as u32);
}
// Compute the final IEEE exponent.
let mut ieee_e2 = i32::max(0, e2 + FLOAT_EXPONENT_BIAS as i32 + floor_log2(m2) as i32) as u32;
if ieee_e2 > 0xfe {
// Final IEEE exponent is larger than the maximum representable; return
// +/-Infinity.
let ieee = ((signed_m as u32) << (f2s::FLOAT_EXPONENT_BITS + f2s::FLOAT_MANTISSA_BITS))
| (0xff_u32 << f2s::FLOAT_MANTISSA_BITS);
return Ok(f32::from_bits(ieee));
}
// We need to figure out how much we need to shift m2. The tricky part is
// that we need to take the final IEEE exponent into account, so we need to
// reverse the bias and also special-case the value 0.
let shift = if ieee_e2 == 0 { 1 } else { ieee_e2 as i32 }
.wrapping_sub(e2)
.wrapping_sub(FLOAT_EXPONENT_BIAS as i32)
.wrapping_sub(f2s::FLOAT_MANTISSA_BITS as i32);
debug_assert!(shift >= 0);
// We need to round up if the exact value is more than 0.5 above the value
// we computed. That's equivalent to checking if the last removed bit was 1
// and either the value was not just trailing zeros or the result would
// otherwise be odd.
//
// We need to update trailing_zeros given that we have the exact output
// exponent ieee_e2 now.
trailing_zeros &= (m2 & ((1_u32 << (shift - 1)) - 1)) == 0;
let last_removed_bit = (m2 >> (shift - 1)) & 1;
let round_up = last_removed_bit != 0 && (!trailing_zeros || ((m2 >> shift) & 1) != 0);
let mut ieee_m2 = (m2 >> shift).wrapping_add(round_up as u32);
debug_assert!(ieee_m2 <= 1_u32 << (f2s::FLOAT_MANTISSA_BITS + 1));
ieee_m2 &= (1_u32 << f2s::FLOAT_MANTISSA_BITS) - 1;
if ieee_m2 == 0 && round_up {
// Rounding up may overflow the mantissa.
// In this case we move a trailing zero of the mantissa into the
// exponent.
// Due to how the IEEE represents +/-Infinity, we don't need to check
// for overflow here.
ieee_e2 += 1;
}
let ieee = ((((signed_m as u32) << f2s::FLOAT_EXPONENT_BITS) | ieee_e2)
<< f2s::FLOAT_MANTISSA_BITS)
| ieee_m2;
Ok(f32::from_bits(ieee))
}
|