1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
|
pub(crate) mod duration;
use alloc::string::String;
use core::marker::PhantomData;
use serde::de::{Deserialize, MapAccess, SeqAccess};
/// Re-Implementation of `serde::private::de::size_hint::cautious`
#[inline]
pub(crate) fn size_hint_cautious(hint: Option<usize>) -> usize {
core::cmp::min(hint.unwrap_or(0), 4096)
}
pub(crate) const NANOS_PER_SEC: u32 = 1_000_000_000;
// pub(crate) const NANOS_PER_MILLI: u32 = 1_000_000;
// pub(crate) const NANOS_PER_MICRO: u32 = 1_000;
// pub(crate) const MILLIS_PER_SEC: u64 = 1_000;
// pub(crate) const MICROS_PER_SEC: u64 = 1_000_000;
pub(crate) struct MapIter<'de, A, K, V> {
pub(crate) access: A,
marker: PhantomData<(&'de (), K, V)>,
}
impl<'de, A, K, V> MapIter<'de, A, K, V> {
pub(crate) fn new(access: A) -> Self
where
A: MapAccess<'de>,
{
Self {
access,
marker: PhantomData,
}
}
}
impl<'de, A, K, V> Iterator for MapIter<'de, A, K, V>
where
A: MapAccess<'de>,
K: Deserialize<'de>,
V: Deserialize<'de>,
{
type Item = Result<(K, V), A::Error>;
fn next(&mut self) -> Option<Self::Item> {
self.access.next_entry().transpose()
}
fn size_hint(&self) -> (usize, Option<usize>) {
match self.access.size_hint() {
Some(size) => (size, Some(size)),
None => (0, None),
}
}
}
pub(crate) struct SeqIter<'de, A, T> {
access: A,
marker: PhantomData<(&'de (), T)>,
}
impl<'de, A, T> SeqIter<'de, A, T> {
pub(crate) fn new(access: A) -> Self
where
A: SeqAccess<'de>,
{
Self {
access,
marker: PhantomData,
}
}
}
impl<'de, A, T> Iterator for SeqIter<'de, A, T>
where
A: SeqAccess<'de>,
T: Deserialize<'de>,
{
type Item = Result<T, A::Error>;
fn next(&mut self) -> Option<Self::Item> {
self.access.next_element().transpose()
}
fn size_hint(&self) -> (usize, Option<usize>) {
match self.access.size_hint() {
Some(size) => (size, Some(size)),
None => (0, None),
}
}
}
pub(crate) fn duration_as_secs_f64(dur: &core::time::Duration) -> f64 {
(dur.as_secs() as f64) + (dur.subsec_nanos() as f64) / (NANOS_PER_SEC as f64)
}
pub(crate) fn duration_signed_from_secs_f64(
secs: f64,
) -> Result<self::duration::DurationSigned, String> {
const MAX_NANOS_F64: f64 = ((u64::max_value() as u128 + 1) * (NANOS_PER_SEC as u128)) as f64;
// TODO why are the seconds converted to nanoseconds first?
// Does it make sense to just truncate the value?
let mut nanos = secs * (NANOS_PER_SEC as f64);
if !nanos.is_finite() {
return Err("got non-finite value when converting float to duration".into());
}
if nanos >= MAX_NANOS_F64 {
return Err("overflow when converting float to duration".into());
}
let mut sign = self::duration::Sign::Positive;
if nanos < 0.0 {
nanos = -nanos;
sign = self::duration::Sign::Negative;
}
let nanos = nanos as u128;
Ok(self::duration::DurationSigned::new(
sign,
(nanos / (NANOS_PER_SEC as u128)) as u64,
(nanos % (NANOS_PER_SEC as u128)) as u32,
))
}
|