1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
|
//! Threadpool
mod idle;
use self::idle::Idle;
mod worker;
pub(crate) use worker::Launch;
pub(crate) use worker::block_in_place;
use crate::loom::sync::Arc;
use crate::runtime::task::JoinHandle;
use crate::runtime::{Callback, Parker};
use std::fmt;
use std::future::Future;
/// Work-stealing based thread pool for executing futures.
pub(crate) struct ThreadPool {
spawner: Spawner,
}
/// Submits futures to the associated thread pool for execution.
///
/// A `Spawner` instance is a handle to a single thread pool that allows the owner
/// of the handle to spawn futures onto the thread pool.
///
/// The `Spawner` handle is *only* used for spawning new futures. It does not
/// impact the lifecycle of the thread pool in any way. The thread pool may
/// shut down while there are outstanding `Spawner` instances.
///
/// `Spawner` instances are obtained by calling [`ThreadPool::spawner`].
///
/// [`ThreadPool::spawner`]: method@ThreadPool::spawner
#[derive(Clone)]
pub(crate) struct Spawner {
shared: Arc<worker::Shared>,
}
// ===== impl ThreadPool =====
impl ThreadPool {
pub(crate) fn new(
size: usize,
parker: Parker,
before_park: Option<Callback>,
after_unpark: Option<Callback>,
) -> (ThreadPool, Launch) {
let (shared, launch) = worker::create(size, parker, before_park, after_unpark);
let spawner = Spawner { shared };
let thread_pool = ThreadPool { spawner };
(thread_pool, launch)
}
/// Returns reference to `Spawner`.
///
/// The `Spawner` handle can be cloned and enables spawning tasks from other
/// threads.
pub(crate) fn spawner(&self) -> &Spawner {
&self.spawner
}
/// Blocks the current thread waiting for the future to complete.
///
/// The future will execute on the current thread, but all spawned tasks
/// will be executed on the thread pool.
pub(crate) fn block_on<F>(&self, future: F) -> F::Output
where
F: Future,
{
let mut enter = crate::runtime::enter(true);
enter.block_on(future).expect("failed to park thread")
}
}
impl fmt::Debug for ThreadPool {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("ThreadPool").finish()
}
}
impl Drop for ThreadPool {
fn drop(&mut self) {
self.spawner.shutdown();
}
}
// ==== impl Spawner =====
impl Spawner {
/// Spawns a future onto the thread pool
pub(crate) fn spawn<F>(&self, future: F) -> JoinHandle<F::Output>
where
F: crate::future::Future + Send + 'static,
F::Output: Send + 'static,
{
worker::Shared::bind_new_task(&self.shared, future)
}
pub(crate) fn shutdown(&mut self) {
self.shared.close();
}
}
cfg_metrics! {
use crate::runtime::{SchedulerMetrics, WorkerMetrics};
impl Spawner {
pub(crate) fn num_workers(&self) -> usize {
self.shared.worker_metrics.len()
}
pub(crate) fn scheduler_metrics(&self) -> &SchedulerMetrics {
&self.shared.scheduler_metrics
}
pub(crate) fn worker_metrics(&self, worker: usize) -> &WorkerMetrics {
&self.shared.worker_metrics[worker]
}
pub(crate) fn injection_queue_depth(&self) -> usize {
self.shared.injection_queue_depth()
}
pub(crate) fn worker_local_queue_depth(&self, worker: usize) -> usize {
self.shared.worker_local_queue_depth(worker)
}
}
}
impl fmt::Debug for Spawner {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Spawner").finish()
}
}
|