1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
|
/* This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
use crate::{CallbackIds, Config, FunctionIds, ObjectIds};
use askama::Template;
use extend::ext;
use heck::{ToShoutySnakeCase, ToUpperCamelCase};
use std::collections::HashSet;
use std::iter;
use uniffi_bindgen::interface::{
CallbackInterface, ComponentInterface, FfiArgument, FfiFunction, FfiType, Object,
};
#[derive(Template)]
#[template(path = "UniFFIScaffolding.cpp", escape = "none")]
pub struct CPPScaffoldingTemplate<'a> {
// Prefix for each function name in. This is related to how we handle the test fixtures. For
// each function defined in the UniFFI namespace in UniFFI.webidl we:
// - Generate a function in to handle it using the real UDL files
// - Generate a different function in for handle it using the fixture UDL files
// - Have a hand-written stub function that always calls the first function and only calls
// the second function in if MOZ_UNIFFI_FIXTURES is defined.
pub prefix: &'a str,
pub components: &'a Vec<(ComponentInterface, Config)>,
pub function_ids: &'a FunctionIds<'a>,
pub object_ids: &'a ObjectIds<'a>,
pub callback_ids: &'a CallbackIds<'a>,
}
impl<'a> CPPScaffoldingTemplate<'a> {
fn has_any_objects(&self) -> bool {
self.components
.iter()
.any(|(ci, _)| ci.object_definitions().len() > 0)
}
}
// Define extension traits with methods used in our template code
#[ext(name=ComponentInterfaceCppExt)]
pub impl ComponentInterface {
// C++ pointer type name. This needs to be a valid C++ type name and unique across all UDL
// files.
fn pointer_type(&self, object: &Object) -> String {
self._pointer_type(object.name())
}
fn _pointer_type(&self, name: &str) -> String {
format!(
"k{}{}PointerType",
self.namespace().to_upper_camel_case(),
name.to_upper_camel_case()
)
}
// Iterate over all functions to expose via the UniFFIScaffolding class
//
// This is basically all the user functions, except we don't expose the free methods for
// objects. Freeing is handled by the UniFFIPointer class.
//
// Note: this function should return `impl Iterator<&FfiFunction>`, but that's not currently
// allowed for traits.
fn exposed_functions(&self) -> Vec<&FfiFunction> {
let excluded: HashSet<_> = self
.object_definitions()
.iter()
.map(|o| o.ffi_object_free().name())
.chain(
self.callback_interface_definitions()
.iter()
.map(|cbi| cbi.ffi_init_callback().name()),
)
.collect();
self.iter_user_ffi_function_definitions()
.filter(move |f| !excluded.contains(f.name()))
.collect()
}
// ScaffoldingConverter class
//
// This is used to convert types between the JS code and Rust
fn scaffolding_converter(&self, ffi_type: &FfiType) -> String {
match ffi_type {
FfiType::RustArcPtr(name) => {
format!("ScaffoldingObjectConverter<&{}>", self._pointer_type(name),)
}
_ => format!("ScaffoldingConverter<{}>", ffi_type.rust_type()),
}
}
// ScaffoldingCallHandler class
fn scaffolding_call_handler(&self, func: &FfiFunction) -> String {
let return_param = match func.return_type() {
Some(return_type) => self.scaffolding_converter(return_type),
None => "ScaffoldingConverter<void>".to_string(),
};
let all_params = iter::once(return_param)
.chain(
func.arguments()
.into_iter()
.map(|a| self.scaffolding_converter(&a.type_())),
)
.collect::<Vec<_>>()
.join(", ");
return format!("ScaffoldingCallHandler<{}>", all_params);
}
}
#[ext(name=FFIFunctionCppExt)]
pub impl FfiFunction {
fn nm(&self) -> String {
self.name().to_upper_camel_case()
}
fn rust_name(&self) -> String {
self.name().to_string()
}
fn rust_return_type(&self) -> String {
match self.return_type() {
Some(t) => t.rust_type(),
None => "void".to_owned(),
}
}
fn rust_arg_list(&self) -> String {
let mut parts: Vec<String> = self.arguments().iter().map(|a| a.rust_type()).collect();
parts.push("RustCallStatus*".to_owned());
parts.join(", ")
}
}
#[ext(name=FFITypeCppExt)]
pub impl FfiType {
// Type for the Rust scaffolding code
fn rust_type(&self) -> String {
match self {
FfiType::UInt8 => "uint8_t",
FfiType::Int8 => "int8_t",
FfiType::UInt16 => "uint16_t",
FfiType::Int16 => "int16_t",
FfiType::UInt32 => "uint32_t",
FfiType::Int32 => "int32_t",
FfiType::UInt64 => "uint64_t",
FfiType::Int64 => "int64_t",
FfiType::Float32 => "float",
FfiType::Float64 => "double",
FfiType::RustBuffer(_) => "RustBuffer",
FfiType::RustArcPtr(_) => "void *",
FfiType::ForeignCallback => "ForeignCallback",
FfiType::ForeignBytes => unimplemented!("ForeignBytes not supported"),
}
.to_owned()
}
}
#[ext(name=FFIArgumentCppExt)]
pub impl FfiArgument {
fn rust_type(&self) -> String {
self.type_().rust_type()
}
}
#[ext(name=ObjectCppExt)]
pub impl Object {
fn nm(&self) -> String {
self.name().to_upper_camel_case()
}
}
#[ext(name=CallbackInterfaceCppExt)]
pub impl CallbackInterface {
fn nm(&self) -> String {
self.name().to_upper_camel_case()
}
/// Name of the static pointer to the JS callback handler
fn js_handler(&self) -> String {
format!("JS_CALLBACK_HANDLER_{}", self.name().to_shouty_snake_case())
}
/// Name of the C function handler
fn c_handler(&self, prefix: &str) -> String {
format!(
"{prefix}CallbackHandler{}",
self.name().to_upper_camel_case()
)
}
}
|