1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "minidump_callback.h"
#include <winternl.h>
#include <algorithm>
#include <cassert>
namespace google_breakpad {
static const DWORD sHeapRegionSize= 1024;
static DWORD sPageSize = 0;
using NtQueryInformationThreadFunc = decltype(::NtQueryInformationThread);
static NtQueryInformationThreadFunc* sNtQueryInformationThread = nullptr;
namespace {
enum {
ThreadBasicInformation,
};
struct CLIENT_ID {
PVOID UniqueProcess;
PVOID UniqueThread;
};
struct THREAD_BASIC_INFORMATION {
NTSTATUS ExitStatus;
PVOID TebBaseAddress;
CLIENT_ID ClientId;
KAFFINITY AffMask;
DWORD Priority;
DWORD BasePriority;
};
}
void InitAppMemoryInternal()
{
if (!sPageSize) {
SYSTEM_INFO systemInfo;
GetSystemInfo(&systemInfo);
sPageSize = systemInfo.dwPageSize;
}
if (!sNtQueryInformationThread) {
sNtQueryInformationThread = (NtQueryInformationThreadFunc*)
(::GetProcAddress(::GetModuleHandleW(L"ntdll.dll"),
"NtQueryInformationThread"));
}
}
bool GetAppMemoryFromRegister(HANDLE aProcess,
const NT_TIB* aTib,
RegisterValueType aRegister,
AppMemory* aResult)
{
static_assert(sizeof(RegisterValueType) == sizeof(void*),
"Size mismatch between DWORD/DWORD64 and void*");
if (!sPageSize) {
// GetSystemInfo() should not fail, but bail out just in case it fails.
return false;
}
RegisterValueType addr = aRegister;
addr &= ~(static_cast<RegisterValueType>(sPageSize) - 1);
if (aTib) {
if (aRegister >= (RegisterValueType)aTib->StackLimit &&
aRegister <= (RegisterValueType)aTib->StackBase) {
// aRegister points to the stack.
return false;
}
}
MEMORY_BASIC_INFORMATION memInfo;
memset(&memInfo, 0, sizeof(memInfo));
SIZE_T rv = ::VirtualQueryEx(aProcess,
reinterpret_cast<void*>(addr),
&memInfo,
sizeof(memInfo));
if (!rv) {
// VirtualQuery fails: aAddr is not on heap.
return false;
}
// Check protection and type of the memory region. Include the region if it's
// 1. read-write: heap, or
// 2. read-executable and private: likely to be JIT code.
if (memInfo.Protect != PAGE_READWRITE &&
memInfo.Protect != PAGE_EXECUTE_READ) {
return false;
}
// Try to include a region of size sHeapRegionSize around aRegister, bounded
// by the [BaseAddress, BaseAddress + RegionSize].
RegisterValueType lower =
std::max(aRegister - sHeapRegionSize / 2,
reinterpret_cast<RegisterValueType>(memInfo.BaseAddress));
RegisterValueType upper =
std::min(lower + sHeapRegionSize,
reinterpret_cast<RegisterValueType>(memInfo.BaseAddress) +
memInfo.RegionSize);
aResult->ptr = lower;
aResult->length = upper - lower;
return true;
}
static AppMemoryList::iterator
FindNextPreallocated(AppMemoryList& aList, AppMemoryList::iterator aBegin) {
auto it = aBegin;
for (auto it = aBegin; it != aList.end(); it++) {
if (it->preallocated) {
return it;
}
}
assert(it == aList.end());
return it;
}
static bool
GetThreadTib(HANDLE aProcess, DWORD aThreadId, NT_TIB* aTib) {
HANDLE threadHandle = ::OpenThread(THREAD_QUERY_INFORMATION,
FALSE,
aThreadId);
if (!threadHandle) {
return false;
}
if (!sNtQueryInformationThread) {
return false;
}
THREAD_BASIC_INFORMATION threadInfo;
auto status = (*sNtQueryInformationThread)(threadHandle,
(THREADINFOCLASS)ThreadBasicInformation,
&threadInfo,
sizeof(threadInfo),
NULL);
if (!NT_SUCCESS(status)) {
return false;
}
auto readSuccess = ::ReadProcessMemory(aProcess,
threadInfo.TebBaseAddress,
aTib,
sizeof(*aTib),
NULL);
if (!readSuccess) {
return false;
}
::CloseHandle(threadHandle);
return true;
}
void IncludeAppMemoryFromExceptionContext(HANDLE aProcess,
DWORD aThreadId,
AppMemoryList& aList,
PCONTEXT aExceptionContext,
bool aInstructionPointerOnly) {
RegisterValueType heapAddrCandidates[kExceptionAppMemoryRegions];
size_t numElements = 0;
NT_TIB tib;
memset(&tib, 0, sizeof(tib));
if (!GetThreadTib(aProcess, aThreadId, &tib)) {
// Fail to query thread stack range: only safe to include the region around
// the instruction pointer.
aInstructionPointerOnly = true;
}
// Add registers that might have a heap address to heapAddrCandidates.
// Note that older versions of DbgHelp.dll don't correctly put the memory
// around the faulting instruction pointer into the minidump. Include Rip/Eip
// unconditionally ensures it gets included.
#if defined(_M_IX86)
if (!aInstructionPointerOnly) {
heapAddrCandidates[numElements++] = aExceptionContext->Eax;
heapAddrCandidates[numElements++] = aExceptionContext->Ebx;
heapAddrCandidates[numElements++] = aExceptionContext->Ecx;
heapAddrCandidates[numElements++] = aExceptionContext->Edx;
heapAddrCandidates[numElements++] = aExceptionContext->Esi;
heapAddrCandidates[numElements++] = aExceptionContext->Edi;
}
heapAddrCandidates[numElements++] = aExceptionContext->Eip;
#elif defined(_M_AMD64)
if (!aInstructionPointerOnly) {
heapAddrCandidates[numElements++] = aExceptionContext->Rax;
heapAddrCandidates[numElements++] = aExceptionContext->Rbx;
heapAddrCandidates[numElements++] = aExceptionContext->Rcx;
heapAddrCandidates[numElements++] = aExceptionContext->Rdx;
heapAddrCandidates[numElements++] = aExceptionContext->Rsi;
heapAddrCandidates[numElements++] = aExceptionContext->Rdi;
heapAddrCandidates[numElements++] = aExceptionContext->R8;
heapAddrCandidates[numElements++] = aExceptionContext->R9;
heapAddrCandidates[numElements++] = aExceptionContext->R10;
heapAddrCandidates[numElements++] = aExceptionContext->R11;
heapAddrCandidates[numElements++] = aExceptionContext->R12;
heapAddrCandidates[numElements++] = aExceptionContext->R13;
heapAddrCandidates[numElements++] = aExceptionContext->R14;
heapAddrCandidates[numElements++] = aExceptionContext->R15;
}
heapAddrCandidates[numElements++] = aExceptionContext->Rip;
#elif defined(_M_ARM64)
if (!aInstructionPointerOnly) {
for (auto reg : aExceptionContext->X) {
heapAddrCandidates[numElements++] = reg;
}
heapAddrCandidates[numElements++] = aExceptionContext->Sp;
}
heapAddrCandidates[numElements++] = aExceptionContext->Pc;
#endif
// Inplace sort the candidates for excluding or merging memory regions.
auto begin = &heapAddrCandidates[0], end = &heapAddrCandidates[numElements];
std::make_heap(begin, end);
std::sort_heap(begin, end);
auto appMemory = FindNextPreallocated(aList, aList.begin());
for (size_t i = 0; i < numElements; i++) {
if (appMemory == aList.end()) {
break;
}
AppMemory tmp{};
if (!GetAppMemoryFromRegister(aProcess,
aInstructionPointerOnly ? nullptr : &tib,
heapAddrCandidates[i],
&tmp)) {
continue;
}
if (!(tmp.ptr && tmp.length)) {
// Something unexpected happens. Skip this candidate.
continue;
}
if (!appMemory->ptr) {
*appMemory = tmp;
continue;
}
if (appMemory->ptr + appMemory->length > tmp.ptr) {
// The beginning of the next region fall within the range of the previous
// region: merge into one. Note that we don't merge adjacent regions like
// [0, 99] and [100, 199] in case we cross the border of memory allocation
// regions.
appMemory->length = tmp.ptr + tmp.length - appMemory->ptr;
continue;
}
appMemory = FindNextPreallocated(aList, ++appMemory);
if (appMemory == aList.end()) {
break;
}
*appMemory = tmp;
}
}
BOOL CALLBACK MinidumpWriteDumpCallback(
PVOID context,
const PMINIDUMP_CALLBACK_INPUT callback_input,
PMINIDUMP_CALLBACK_OUTPUT callback_output) {
switch (callback_input->CallbackType) {
case MemoryCallback: {
MinidumpCallbackContext* callback_context =
reinterpret_cast<MinidumpCallbackContext*>(context);
// Skip unused preallocated AppMemory elements.
while (callback_context->iter != callback_context->end &&
callback_context->iter->preallocated &&
!callback_context->iter->ptr) {
callback_context->iter++;
}
if (callback_context->iter == callback_context->end)
return FALSE;
// Include the specified memory region.
callback_output->MemoryBase = callback_context->iter->ptr;
callback_output->MemorySize = callback_context->iter->length;
callback_context->iter++;
return TRUE;
}
// Include all modules.
case IncludeModuleCallback:
case ModuleCallback:
return TRUE;
// Include all threads.
case IncludeThreadCallback:
case ThreadCallback:
return TRUE;
// Stop receiving cancel callbacks.
case CancelCallback:
callback_output->CheckCancel = FALSE;
callback_output->Cancel = FALSE;
return TRUE;
}
// Ignore other callback types.
return FALSE;
}
} // namespace google_breakpad
|