1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
|
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
// This program provides processor power estimates. It does this by reading
// model-specific registers (MSRs) that are part Intel's Running Average Power
// Limit (RAPL) interface. These MSRs provide good quality estimates of the
// energy consumption of up to four system components:
// - PKG: the entire processor package;
// - PP0: the cores (a subset of the package);
// - PP1: the GPU (a subset of the package);
// - DRAM: main memory.
//
// For more details about RAPL, see section 14.9 of Volume 3 of the "Intel 64
// and IA-32 Architecture's Software Developer's Manual", Order Number 325384.
//
// This program exists because there are no existing tools on Mac that can
// obtain all four RAPL estimates. (|powermetrics| can obtain the package
// estimate, but not the others. Intel Power Gadget can obtain the package and
// cores estimates.)
//
// On Linux |perf| can obtain all four estimates (as Joules, which are easily
// converted to Watts), but this program is implemented for Linux because it's
// not too hard to do, and that gives us multi-platform consistency.
//
// This program does not support Windows, unfortunately. It's not obvious how
// to access the RAPL MSRs on Windows.
//
// This program deliberately uses only standard libraries and avoids
// Mozilla-specific code, to make it easy to compile and test on different
// machines.
#include <assert.h>
#include <getopt.h>
#include <math.h>
#include <signal.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include <algorithm>
#include <numeric>
#include <vector>
//---------------------------------------------------------------------------
// Utilities
//---------------------------------------------------------------------------
// The value of argv[0] passed to main(). Used in error messages.
static const char* gArgv0;
static void Abort(const char* aFormat, ...) {
va_list vargs;
va_start(vargs, aFormat);
fprintf(stderr, "%s: ", gArgv0);
vfprintf(stderr, aFormat, vargs);
fprintf(stderr, "\n");
va_end(vargs);
exit(1);
}
static void CmdLineAbort(const char* aMsg) {
if (aMsg) {
fprintf(stderr, "%s: %s\n", gArgv0, aMsg);
}
fprintf(stderr, "Use --help for more information.\n");
exit(1);
}
// A special value that represents an estimate from an unsupported RAPL domain.
static const double kUnsupported_j = -1.0;
// Print to stdout and flush it, so that the output appears immediately even if
// being redirected through |tee| or anything like that.
static void PrintAndFlush(const char* aFormat, ...) {
va_list vargs;
va_start(vargs, aFormat);
vfprintf(stdout, aFormat, vargs);
va_end(vargs);
fflush(stdout);
}
//---------------------------------------------------------------------------
// Mac-specific code
//---------------------------------------------------------------------------
#if defined(__APPLE__)
// Because of the pkg_energy_statistics_t::pkes_version check below, the
// earliest OS X version this code will work with is 10.9.0 (xnu-2422.1.72).
# include <sys/types.h>
# include <sys/sysctl.h>
// OS X has four kinds of system calls:
//
// 1. Mach traps;
// 2. UNIX system calls;
// 3. machine-dependent calls;
// 4. diagnostic calls.
//
// (See "Mac OS X and iOS Internals" by Jonathan Levin for more details.)
//
// The last category has a single call named diagCall() or diagCall64(). Its
// mode is controlled by its first argument, and one of the modes allows access
// to the Intel RAPL MSRs.
//
// The interface to diagCall64() is not exported, so we have to import some
// definitions from the XNU kernel. All imported definitions are annotated with
// the XNU source file they come from, and information about what XNU versions
// they were introduced in and (if relevant) modified.
// The diagCall64() mode.
// From osfmk/i386/Diagnostics.h
// - In 10.8.4 (xnu-2050.24.15) this value was introduced. (In 10.8.3 the value
// 17 was used for dgGzallocTest.)
# define dgPowerStat 17
// From osfmk/i386/cpu_data.h
// - In 10.8.5 these values were introduced, along with core_energy_stat_t.
# define CPU_RTIME_BINS (12)
# define CPU_ITIME_BINS (CPU_RTIME_BINS)
// core_energy_stat_t and pkg_energy_statistics_t are both from
// osfmk/i386/Diagnostics.c.
// - In 10.8.4 (xnu-2050.24.15) both structs were introduced, but with many
// fewer fields.
// - In 10.8.5 (xnu-2050.48.11) both structs were substantially expanded, with
// numerous new fields.
// - In 10.9.0 (xnu-2422.1.72) pkg_energy_statistics_t::pkes_version was added.
// diagCall64(dgPowerStat) fills it with '1' in all versions since (up to
// 10.10.2 at time of writing).
// - in 10.10.2 (xnu-2782.10.72) core_energy_stat_t::gpmcs was conditionally
// added, if DIAG_ALL_PMCS is true. (DIAG_ALL_PMCS is not even defined in the
// source code, but it could be defined at compile-time via compiler flags.)
// pkg_energy_statistics_t::pkes_version did not change, though.
typedef struct {
uint64_t caperf;
uint64_t cmperf;
uint64_t ccres[6];
uint64_t crtimes[CPU_RTIME_BINS];
uint64_t citimes[CPU_ITIME_BINS];
uint64_t crtime_total;
uint64_t citime_total;
uint64_t cpu_idle_exits;
uint64_t cpu_insns;
uint64_t cpu_ucc;
uint64_t cpu_urc;
# if DIAG_ALL_PMCS // Added in 10.10.2 (xnu-2782.10.72).
uint64_t gpmcs[4]; // Added in 10.10.2 (xnu-2782.10.72).
# endif /* DIAG_ALL_PMCS */ // Added in 10.10.2 (xnu-2782.10.72).
} core_energy_stat_t;
typedef struct {
uint64_t pkes_version; // Added in 10.9.0 (xnu-2422.1.72).
uint64_t pkg_cres[2][7];
// This is read from MSR 0x606, which Intel calls MSR_RAPL_POWER_UNIT
// and XNU calls MSR_IA32_PKG_POWER_SKU_UNIT.
uint64_t pkg_power_unit;
// These are the four fields for the four RAPL domains. For each field
// we list:
//
// - the corresponding MSR number;
// - Intel's name for that MSR;
// - XNU's name for that MSR;
// - which Intel processors the MSR is supported on.
//
// The last of these is determined from chapter 35 of Volume 3 of the
// "Intel 64 and IA-32 Architecture's Software Developer's Manual",
// Order Number 325384. (Note that chapter 35 contradicts section 14.9
// to some degree.)
// 0x611 == MSR_PKG_ENERGY_STATUS == MSR_IA32_PKG_ENERGY_STATUS
// Atom (various), Sandy Bridge, Next Gen Xeon Phi (model 0x57).
uint64_t pkg_energy;
// 0x639 == MSR_PP0_ENERGY_STATUS == MSR_IA32_PP0_ENERGY_STATUS
// Atom (various), Sandy Bridge, Next Gen Xeon Phi (model 0x57).
uint64_t pp0_energy;
// 0x641 == MSR_PP1_ENERGY_STATUS == MSR_PP1_ENERGY_STATUS
// Sandy Bridge, Haswell.
uint64_t pp1_energy;
// 0x619 == MSR_DRAM_ENERGY_STATUS == MSR_IA32_DDR_ENERGY_STATUS
// Xeon E5, Xeon E5 v2, Haswell/Haswell-E, Next Gen Xeon Phi (model
// 0x57)
uint64_t ddr_energy;
uint64_t llc_flushed_cycles;
uint64_t ring_ratio_instantaneous;
uint64_t IA_frequency_clipping_cause;
uint64_t GT_frequency_clipping_cause;
uint64_t pkg_idle_exits;
uint64_t pkg_rtimes[CPU_RTIME_BINS];
uint64_t pkg_itimes[CPU_ITIME_BINS];
uint64_t mbus_delay_time;
uint64_t mint_delay_time;
uint32_t ncpus;
core_energy_stat_t cest[];
} pkg_energy_statistics_t;
static int diagCall64(uint64_t aMode, void* aBuf) {
// We cannot use syscall() here because it doesn't work with diagnostic
// system calls -- it raises SIGSYS if you try. So we have to use asm.
# ifdef __x86_64__
// The 0x40000 prefix indicates it's a diagnostic system call. The 0x01
// suffix indicates the syscall number is 1, which also happens to be the
// only diagnostic system call. See osfmk/mach/i386/syscall_sw.h for more
// details.
static const uint64_t diagCallNum = 0x4000001;
uint64_t rv;
__asm__ __volatile__(
"syscall"
// Return value goes in "a" (%rax).
: /* outputs */ "=a"(rv)
// The syscall number goes in "0", a synonym (from outputs) for "a"
// (%rax). The syscall arguments go in "D" (%rdi) and "S" (%rsi).
: /* inputs */ "0"(diagCallNum), "D"(aMode), "S"(aBuf)
// The |syscall| instruction clobbers %rcx, %r11, and %rflags ("cc"). And
// this particular syscall also writes memory (aBuf).
: /* clobbers */ "rcx", "r11", "cc", "memory");
return rv;
# else
# error Sorry, only x86-64 is supported
# endif
}
static void diagCall64_dgPowerStat(pkg_energy_statistics_t* aPkes) {
static const uint64_t supported_version = 1;
// Write an unsupported version number into pkes_version so that the check
// below cannot succeed by dumb luck.
aPkes->pkes_version = supported_version - 1;
// diagCall64() returns 1 on success, and 0 on failure (which can only happen
// if the mode is unrecognized, e.g. in 10.7.x or earlier versions).
if (diagCall64(dgPowerStat, aPkes) != 1) {
Abort("diagCall64() failed");
}
if (aPkes->pkes_version != 1) {
Abort("unexpected pkes_version: %llu", aPkes->pkes_version);
}
}
class RAPL {
bool mIsGpuSupported; // Is the GPU domain supported by the processor?
bool mIsRamSupported; // Is the RAM domain supported by the processor?
// The DRAM domain on Haswell servers has a fixed energy unit (1/65536 J ==
// 15.3 microJoules) which is different to the power unit MSR. (See the
// "Intel Xeon Processor E5-1600 and E5-2600 v3 Product Families, Volume 2 of
// 2, Registers" datasheet, September 2014, Reference Number: 330784-001.)
// This field records whether the quirk is present.
bool mHasRamUnitsQuirk;
// The abovementioned 15.3 microJoules value.
static const double kQuirkyRamJoulesPerTick;
// The previous sample's MSR values.
uint64_t mPrevPkgTicks;
uint64_t mPrevPp0Ticks;
uint64_t mPrevPp1Ticks;
uint64_t mPrevDdrTicks;
// The struct passed to diagCall64().
pkg_energy_statistics_t* mPkes;
public:
RAPL() : mHasRamUnitsQuirk(false) {
// Work out which RAPL MSRs this CPU model supports.
int cpuModel;
size_t size = sizeof(cpuModel);
if (sysctlbyname("machdep.cpu.model", &cpuModel, &size, NULL, 0) != 0) {
Abort("sysctlbyname(\"machdep.cpu.model\") failed");
}
// This is similar to arch/x86/kernel/cpu/perf_event_intel_rapl.c in
// linux-4.1.5/.
//
// By linux-5.6.14/, this stuff had moved into
// arch/x86/events/intel/rapl.c, which references processor families in
// arch/x86/include/asm/intel-family.h.
switch (cpuModel) {
case 0x2a: // Sandy Bridge
case 0x3a: // Ivy Bridge
// Supports package, cores, GPU.
mIsGpuSupported = true;
mIsRamSupported = false;
break;
case 0x3f: // Haswell X
case 0x4f: // Broadwell X
case 0x55: // Skylake X
case 0x56: // Broadwell D
// Supports package, cores, RAM. Has the units quirk.
mIsGpuSupported = false;
mIsRamSupported = true;
mHasRamUnitsQuirk = true;
break;
case 0x2d: // Sandy Bridge X
case 0x3e: // Ivy Bridge X
// Supports package, cores, RAM.
mIsGpuSupported = false;
mIsRamSupported = true;
break;
case 0x3c: // Haswell
case 0x3d: // Broadwell
case 0x45: // Haswell L
case 0x46: // Haswell G
case 0x47: // Broadwell G
// Supports package, cores, GPU, RAM.
mIsGpuSupported = true;
mIsRamSupported = true;
break;
case 0x4e: // Skylake L
case 0x5e: // Skylake
case 0x8e: // Kaby Lake L
case 0x9e: // Kaby Lake
case 0x66: // Cannon Lake L
case 0x7d: // Ice Lake
case 0x7e: // Ice Lake L
case 0xa5: // Comet Lake
case 0xa6: // Comet Lake L
// Supports package, cores, GPU, RAM, PSYS.
// XXX: this tool currently doesn't measure PSYS.
mIsGpuSupported = true;
mIsRamSupported = true;
break;
default:
Abort("unknown CPU model: %d", cpuModel);
break;
}
// Get the maximum number of logical CPUs so that we know how big to make
// |mPkes|.
int logicalcpu_max;
size = sizeof(logicalcpu_max);
if (sysctlbyname("hw.logicalcpu_max", &logicalcpu_max, &size, NULL, 0) !=
0) {
Abort("sysctlbyname(\"hw.logicalcpu_max\") failed");
}
// Over-allocate by 1024 bytes per CPU to allow for the uncertainty around
// core_energy_stat_t::gpmcs and for any other future extensions to that
// struct. (The fields we read all come before the core_energy_stat_t
// array, so it won't matter to us whether gpmcs is present or not.)
size_t pkesSize = sizeof(pkg_energy_statistics_t) +
logicalcpu_max * sizeof(core_energy_stat_t) +
logicalcpu_max * 1024;
mPkes = (pkg_energy_statistics_t*)malloc(pkesSize);
if (!mPkes) {
Abort("malloc() failed");
}
// Do an initial measurement so that the first sample's diffs are sensible.
double dummy1, dummy2, dummy3, dummy4;
EnergyEstimates(dummy1, dummy2, dummy3, dummy4);
}
~RAPL() { free(mPkes); }
static double Joules(uint64_t aTicks, double aJoulesPerTick) {
return double(aTicks) * aJoulesPerTick;
}
void EnergyEstimates(double& aPkg_J, double& aCores_J, double& aGpu_J,
double& aRam_J) {
diagCall64_dgPowerStat(mPkes);
// Bits 12:8 are the ESU.
// Energy measurements come in multiples of 1/(2^ESU).
uint32_t energyStatusUnits = (mPkes->pkg_power_unit >> 8) & 0x1f;
double joulesPerTick = ((double)1 / (1 << energyStatusUnits));
aPkg_J = Joules(mPkes->pkg_energy - mPrevPkgTicks, joulesPerTick);
aCores_J = Joules(mPkes->pp0_energy - mPrevPp0Ticks, joulesPerTick);
aGpu_J = mIsGpuSupported
? Joules(mPkes->pp1_energy - mPrevPp1Ticks, joulesPerTick)
: kUnsupported_j;
aRam_J = mIsRamSupported
? Joules(mPkes->ddr_energy - mPrevDdrTicks,
mHasRamUnitsQuirk ? kQuirkyRamJoulesPerTick
: joulesPerTick)
: kUnsupported_j;
mPrevPkgTicks = mPkes->pkg_energy;
mPrevPp0Ticks = mPkes->pp0_energy;
if (mIsGpuSupported) {
mPrevPp1Ticks = mPkes->pp1_energy;
}
if (mIsRamSupported) {
mPrevDdrTicks = mPkes->ddr_energy;
}
}
};
/* static */ const double RAPL::kQuirkyRamJoulesPerTick = (double)1 / 65536;
//---------------------------------------------------------------------------
// Linux-specific code
//---------------------------------------------------------------------------
#elif defined(__linux__)
# include <linux/perf_event.h>
# include <sys/syscall.h>
// There is no glibc wrapper for this system call so we provide our own.
static int perf_event_open(struct perf_event_attr* aAttr, pid_t aPid, int aCpu,
int aGroupFd, unsigned long aFlags) {
return syscall(__NR_perf_event_open, aAttr, aPid, aCpu, aGroupFd, aFlags);
}
// Returns false if the file cannot be opened.
template <typename T>
static bool ReadValueFromPowerFile(const char* aStr1, const char* aStr2,
const char* aStr3, const char* aScanfString,
T* aOut) {
// The filenames going into this buffer are under our control and the longest
// one is "/sys/bus/event_source/devices/power/events/energy-cores.scale".
// So 256 chars is plenty.
char filename[256];
sprintf(filename, "/sys/bus/event_source/devices/power/%s%s%s", aStr1, aStr2,
aStr3);
FILE* fp = fopen(filename, "r");
if (!fp) {
return false;
}
if (fscanf(fp, aScanfString, aOut) != 1) {
Abort("fscanf() failed");
}
fclose(fp);
return true;
}
// This class encapsulates the reading of a single RAPL domain.
class Domain {
bool mIsSupported; // Is the domain supported by the processor?
// These three are only set if |mIsSupported| is true.
double mJoulesPerTick; // How many Joules each tick of the MSR represents.
int mFd; // The fd through which the MSR is read.
double mPrevTicks; // The previous sample's MSR value.
public:
enum IsOptional { Optional, NonOptional };
Domain(const char* aName, uint32_t aType,
IsOptional aOptional = NonOptional) {
uint64_t config;
if (!ReadValueFromPowerFile("events/energy-", aName, "", "event=%llx",
&config)) {
// Failure is allowed for optional domains.
if (aOptional == NonOptional) {
Abort(
"failed to open file for non-optional domain '%s'\n"
"- Is your kernel version 3.14 or later, as required? "
"Run |uname -r| to see.",
aName);
}
mIsSupported = false;
return;
}
mIsSupported = true;
if (!ReadValueFromPowerFile("events/energy-", aName, ".scale", "%lf",
&mJoulesPerTick)) {
Abort("failed to read from .scale file");
}
// The unit should be "Joules", so 128 chars should be plenty.
char unit[128];
if (!ReadValueFromPowerFile("events/energy-", aName, ".unit", "%127s",
unit)) {
Abort("failed to read from .unit file");
}
if (strcmp(unit, "Joules") != 0) {
Abort("unexpected unit '%s' in .unit file", unit);
}
struct perf_event_attr attr;
memset(&attr, 0, sizeof(attr));
attr.type = aType;
attr.size = uint32_t(sizeof(attr));
attr.config = config;
// Measure all processes/threads. The specified CPU doesn't matter.
mFd = perf_event_open(&attr, /* aPid = */ -1, /* aCpu = */ 0,
/* aGroupFd = */ -1, /* aFlags = */ 0);
if (mFd < 0) {
Abort(
"perf_event_open() failed\n"
"- Did you run as root (e.g. with |sudo|) or set\n"
" /proc/sys/kernel/perf_event_paranoid to 0, as required?");
}
mPrevTicks = 0;
}
~Domain() {
if (mIsSupported) {
close(mFd);
}
}
double EnergyEstimate() {
if (!mIsSupported) {
return kUnsupported_j;
}
uint64_t thisTicks;
if (read(mFd, &thisTicks, sizeof(uint64_t)) != sizeof(uint64_t)) {
Abort("read() failed");
}
uint64_t ticks = thisTicks - mPrevTicks;
mPrevTicks = thisTicks;
double joules = ticks * mJoulesPerTick;
return joules;
}
};
class RAPL {
Domain* mPkg;
Domain* mCores;
Domain* mGpu;
Domain* mRam;
public:
RAPL() {
uint32_t type;
if (!ReadValueFromPowerFile("type", "", "", "%u", &type)) {
Abort("failed to read from type file");
}
mPkg = new Domain("pkg", type);
mCores = new Domain("cores", type);
mGpu = new Domain("gpu", type, Domain::Optional);
mRam = new Domain("ram", type, Domain::Optional);
if (!mPkg || !mCores || !mGpu || !mRam) {
Abort("new Domain() failed");
}
}
~RAPL() {
delete mPkg;
delete mCores;
delete mGpu;
delete mRam;
}
void EnergyEstimates(double& aPkg_J, double& aCores_J, double& aGpu_J,
double& aRam_J) {
aPkg_J = mPkg->EnergyEstimate();
aCores_J = mCores->EnergyEstimate();
aGpu_J = mGpu->EnergyEstimate();
aRam_J = mRam->EnergyEstimate();
}
};
#else
//---------------------------------------------------------------------------
// Unsupported platforms
//---------------------------------------------------------------------------
# error Sorry, this platform is not supported
#endif // platform
//---------------------------------------------------------------------------
// The main loop
//---------------------------------------------------------------------------
// The sample interval, measured in seconds.
static double gSampleInterval_sec;
// The platform-specific RAPL-reading machinery.
static RAPL* gRapl;
// All the sampled "total" values, in Watts.
static std::vector<double> gTotals_W;
// Power = Energy / Time, where power is measured in Watts, Energy is measured
// in Joules, and Time is measured in seconds.
static double JoulesToWatts(double aJoules) {
return aJoules / gSampleInterval_sec;
}
// "Normalize" here means convert kUnsupported_j to zero so it can be used in
// additive expressions. All printed values are 5 or maybe 6 chars (though 6
// chars would require a value > 100 W, which is unlikely). Values above 1000 W
// are normalized to " n/a ", so 6 chars is the longest that may be printed.
static void NormalizeAndPrintAsWatts(char* aBuf, double& aValue_J) {
if (aValue_J == kUnsupported_j || aValue_J >= 1000) {
aValue_J = 0;
sprintf(aBuf, "%s", " n/a ");
} else {
sprintf(aBuf, "%5.2f", JoulesToWatts(aValue_J));
}
}
static void SigAlrmHandler(int aSigNum, siginfo_t* aInfo, void* aContext) {
static int sampleNumber = 1;
double pkg_J, cores_J, gpu_J, ram_J;
gRapl->EnergyEstimates(pkg_J, cores_J, gpu_J, ram_J);
// We should have pkg and cores estimates, but might not have gpu and ram
// estimates.
assert(pkg_J != kUnsupported_j);
assert(cores_J != kUnsupported_j);
// This needs to be big enough to print watt values to two decimal places. 16
// should be plenty.
static const size_t kNumStrLen = 16;
static char pkgStr[kNumStrLen], coresStr[kNumStrLen], gpuStr[kNumStrLen],
ramStr[kNumStrLen];
NormalizeAndPrintAsWatts(pkgStr, pkg_J);
NormalizeAndPrintAsWatts(coresStr, cores_J);
NormalizeAndPrintAsWatts(gpuStr, gpu_J);
NormalizeAndPrintAsWatts(ramStr, ram_J);
// Core and GPU power are a subset of the package power.
assert(pkg_J >= cores_J + gpu_J);
// Compute "other" (i.e. rest of the package) and "total" only after the
// other values have been normalized.
char otherStr[kNumStrLen];
double other_J = pkg_J - cores_J - gpu_J;
NormalizeAndPrintAsWatts(otherStr, other_J);
char totalStr[kNumStrLen];
double total_J = pkg_J + ram_J;
NormalizeAndPrintAsWatts(totalStr, total_J);
gTotals_W.push_back(JoulesToWatts(total_J));
// Print and flush so that the output appears immediately even if being
// redirected through |tee| or anything like that.
PrintAndFlush("#%02d %s W = %s (%s + %s + %s) + %s W\n", sampleNumber++,
totalStr, pkgStr, coresStr, gpuStr, otherStr, ramStr);
}
static void Finish() {
size_t n = gTotals_W.size();
// This time calculation assumes that the timers are perfectly accurate which
// is not true but the inaccuracy should be small in practice.
double time = n * gSampleInterval_sec;
printf("\n");
printf("%d sample%s taken over a period of %.3f second%s\n", int(n),
n == 1 ? "" : "s", n * gSampleInterval_sec, time == 1.0 ? "" : "s");
if (n == 0 || n == 1) {
exit(0);
}
// Compute the mean.
double sum = std::accumulate(gTotals_W.begin(), gTotals_W.end(), 0.0);
double mean = sum / n;
// Compute the *population* standard deviation:
//
// popStdDev = sqrt(Sigma(x - m)^2 / n)
//
// where |x| is the sum variable, |m| is the mean, and |n| is the
// population size.
//
// This is different from the *sample* standard deviation, which divides by
// |n - 1|, and would be appropriate if we were using a random sample of a
// larger population.
double sumOfSquaredDeviations = 0;
for (double& iter : gTotals_W) {
double deviation = (iter - mean);
sumOfSquaredDeviations += deviation * deviation;
}
double popStdDev = sqrt(sumOfSquaredDeviations / n);
// Sort so that percentiles can be determined. We use the "Nearest Rank"
// method of determining percentiles, which is simplest to compute and which
// chooses values from those that appear in the input set.
std::sort(gTotals_W.begin(), gTotals_W.end());
printf("\n");
printf("Distribution of 'total' values:\n");
printf(" mean = %5.2f W\n", mean);
printf(" std dev = %5.2f W\n", popStdDev);
printf(" 0th percentile = %5.2f W (min)\n", gTotals_W[0]);
printf(" 5th percentile = %5.2f W\n", gTotals_W[ceil(0.05 * n) - 1]);
printf(" 25th percentile = %5.2f W\n", gTotals_W[ceil(0.25 * n) - 1]);
printf(" 50th percentile = %5.2f W\n", gTotals_W[ceil(0.50 * n) - 1]);
printf(" 75th percentile = %5.2f W\n", gTotals_W[ceil(0.75 * n) - 1]);
printf(" 95th percentile = %5.2f W\n", gTotals_W[ceil(0.95 * n) - 1]);
printf("100th percentile = %5.2f W (max)\n", gTotals_W[n - 1]);
exit(0);
}
static void SigIntHandler(int aSigNum, siginfo_t* aInfo, void* aContext) {
Finish();
}
static void PrintUsage() {
printf(
"usage: rapl [options]\n"
"\n"
"Options:\n"
"\n"
" -h --help show this message\n"
" -i --sample-interval <N> sample every N ms [default=1000]\n"
" -n --sample-count <N> get N samples (0 means unlimited) "
"[default=0]\n"
"\n"
#if defined(__APPLE__)
"On Mac this program can be run by any user.\n"
#elif defined(__linux__)
"On Linux this program can only be run by the super-user unless the "
"contents\n"
"of /proc/sys/kernel/perf_event_paranoid is set to 0 or lower.\n"
#else
# error Sorry, this platform is not supported
#endif
"\n");
}
int main(int argc, char** argv) {
// Process command line options.
gArgv0 = argv[0];
// Default values.
int sampleInterval_msec = 1000;
int sampleCount = 0;
struct option longOptions[] = {
{"help", no_argument, NULL, 'h'},
{"sample-interval", required_argument, NULL, 'i'},
{"sample-count", required_argument, NULL, 'n'},
{NULL, 0, NULL, 0}};
const char* shortOptions = "hi:n:";
int c;
char* endPtr;
while ((c = getopt_long(argc, argv, shortOptions, longOptions, NULL)) != -1) {
switch (c) {
case 'h':
PrintUsage();
exit(0);
case 'i':
sampleInterval_msec = strtol(optarg, &endPtr, /* base = */ 10);
if (*endPtr) {
CmdLineAbort("sample interval is not an integer");
}
if (sampleInterval_msec < 1 || sampleInterval_msec > 3600000) {
CmdLineAbort("sample interval must be in the range 1..3600000 ms");
}
break;
case 'n':
sampleCount = strtol(optarg, &endPtr, /* base = */ 10);
if (*endPtr) {
CmdLineAbort("sample count is not an integer");
}
if (sampleCount < 0 || sampleCount > 1000000) {
CmdLineAbort("sample count must be in the range 0..1000000");
}
break;
default:
CmdLineAbort(NULL);
}
}
// The RAPL MSRs update every ~1 ms, but the measurement period isn't exactly
// 1 ms, which means the sample periods are not exact. "Power Measurement
// Techniques on Standard Compute Nodes: A Quantitative Comparison" by
// Hackenberg et al. suggests the following.
//
// "RAPL provides energy (and not power) consumption data without
// timestamps associated to each counter update. This makes sampling rates
// above 20 Samples/s unfeasible if the systematic error should be below
// 5%... Constantly polling the RAPL registers will both occupy a processor
// core and distort the measurement itself."
//
// So warn about this case.
if (sampleInterval_msec < 50) {
fprintf(stderr,
"\nWARNING: sample intervals < 50 ms are likely to produce "
"inaccurate estimates\n\n");
}
gSampleInterval_sec = double(sampleInterval_msec) / 1000;
// Initialize the platform-specific RAPL reading machinery.
gRapl = new RAPL();
if (!gRapl) {
Abort("new RAPL() failed");
}
// Install the signal handlers.
struct sigaction sa;
memset(&sa, 0, sizeof(sa));
sa.sa_flags = SA_RESTART | SA_SIGINFO;
// The extra parens around (0) suppress a -Wunreachable-code warning on OS X
// where sigemptyset() is a macro that can never fail and always returns 0.
if (sigemptyset(&sa.sa_mask) < (0)) {
Abort("sigemptyset() failed");
}
sa.sa_sigaction = SigAlrmHandler;
if (sigaction(SIGALRM, &sa, NULL) < 0) {
Abort("sigaction(SIGALRM) failed");
}
sa.sa_sigaction = SigIntHandler;
if (sigaction(SIGINT, &sa, NULL) < 0) {
Abort("sigaction(SIGINT) failed");
}
// Set up the timer.
struct itimerval timer;
timer.it_interval.tv_sec = sampleInterval_msec / 1000;
timer.it_interval.tv_usec = (sampleInterval_msec % 1000) * 1000;
timer.it_value = timer.it_interval;
if (setitimer(ITIMER_REAL, &timer, NULL) < 0) {
Abort("setitimer() failed");
}
// Print header.
PrintAndFlush(" total W = _pkg_ (cores + _gpu_ + other) + _ram_ W\n");
// Take samples.
if (sampleCount == 0) {
while (true) {
pause();
}
} else {
for (int i = 0; i < sampleCount; i++) {
pause();
}
}
Finish();
return 0;
}
|