summaryrefslogtreecommitdiffstats
path: root/tools/profiler/public/ProfilerThreadRegistrationData.h
blob: 7c14290e4cf991bd2cce6f9fbc74ca334b9e2e97 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

// This header contains classes that hold data related to thread profiling:
// Data members are stored `protected` in `ThreadRegistrationData`.
// Non-virtual sub-classes of ProfilerThreadRegistrationData provide layers of
// public accessors to subsets of the data. Each level builds on the previous
// one and adds further access to more data, but always with the appropriate
// guards where necessary.
// These classes have protected constructors, so only some trusted classes
// `ThreadRegistration` and `ThreadRegistry` will be able to construct them, and
// then give limited access depending on who asks (the owning thread or another
// one), and how much data they actually need.
//
// The hierarchy is, from base to most derived:
// - ThreadRegistrationData
// - ThreadRegistrationUnlockedConstReader
// - ThreadRegistrationUnlockedConstReaderAndAtomicRW
// - ThreadRegistrationUnlockedRWForLockedProfiler
// - ThreadRegistrationUnlockedReaderAndAtomicRWOnThread
// - ThreadRegistrationLockedRWFromAnyThread
// - ThreadRegistrationLockedRWOnThread
// - ThreadRegistration::EmbeddedData (actual data member in ThreadRegistration)
//
// Tech detail: These classes need to be a single hierarchy so that
// `ThreadRegistration` can contain the most-derived class, and from there can
// publish references to base classes without relying on Undefined Behavior.
// (It's not allowed to have some object and give a reference to a sub-class,
// unless that object was *really* constructed as that sub-class at least, even
// if that sub-class only adds member functions!)
// And where appropriate, these references will come along with the required
// lock.

#ifndef ProfilerThreadRegistrationData_h
#define ProfilerThreadRegistrationData_h

#include "js/ProfilingFrameIterator.h"
#include "js/ProfilingStack.h"
#include "mozilla/Atomics.h"
#include "mozilla/BaseProfilerDetail.h"
#include "mozilla/MemoryReporting.h"
#include "mozilla/ProfilerThreadPlatformData.h"
#include "mozilla/ProfilerThreadRegistrationInfo.h"
#include "nsCOMPtr.h"
#include "nsIThread.h"

class ProfiledThreadData;
class PSAutoLock;
struct JSContext;

// Enum listing which profiling features are active for a single thread.
enum class ThreadProfilingFeatures : uint32_t {
  // The thread is not being profiled at all (either the profiler is not
  // running, or this thread is not examined during profiling.)
  NotProfiled = 0u,

  // Single features, binary exclusive. May be `Combine()`d.
  CPUUtilization = 1u << 0,
  Sampling = 1u << 1,
  Markers = 1u << 2,

  // All possible features. Usually used as a mask to see if any feature is
  // active at a given time.
  Any = CPUUtilization | Sampling | Markers
};

// Binary OR of one of more ThreadProfilingFeatures, to mix all arguments.
template <typename... Ts>
[[nodiscard]] constexpr ThreadProfilingFeatures Combine(
    ThreadProfilingFeatures a1, Ts... as) {
  static_assert((true && ... &&
                 std::is_same_v<std::remove_cv_t<std::remove_reference_t<Ts>>,
                                ThreadProfilingFeatures>));
  return static_cast<ThreadProfilingFeatures>(
      (static_cast<std::underlying_type_t<ThreadProfilingFeatures>>(a1) | ... |
       static_cast<std::underlying_type_t<ThreadProfilingFeatures>>(as)));
}

// Binary AND of one of more ThreadProfilingFeatures, to find features common to
// all arguments.
template <typename... Ts>
[[nodiscard]] constexpr ThreadProfilingFeatures Intersect(
    ThreadProfilingFeatures a1, Ts... as) {
  static_assert((true && ... &&
                 std::is_same_v<std::remove_cv_t<std::remove_reference_t<Ts>>,
                                ThreadProfilingFeatures>));
  return static_cast<ThreadProfilingFeatures>(
      (static_cast<std::underlying_type_t<ThreadProfilingFeatures>>(a1) & ... &
       static_cast<std::underlying_type_t<ThreadProfilingFeatures>>(as)));
}

// Are there features in common between the two given sets?
// Mostly useful to test if any of a set of features is present in another set.
template <typename... Ts>
[[nodiscard]] constexpr bool DoFeaturesIntersect(ThreadProfilingFeatures a1,
                                                 ThreadProfilingFeatures a2) {
  return Intersect(a1, a2) != ThreadProfilingFeatures::NotProfiled;
}

namespace mozilla::profiler {

// All data members related to thread profiling are stored here.
// See derived classes below, which give limited unlocked/locked read/write
// access in different situations, and will be available through
// ThreadRegistration and ThreadRegistry.
class ThreadRegistrationData {
 public:
  // No public accessors here. See derived classes for accessors, and
  // Get.../With... functions for who can use these accessors.

  size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
    // Not including data that is not fully owned here.
    return 0;
  }

  size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
    return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
  }

  static constexpr size_t MAX_JS_FRAMES = 1024;
  using JsFrame = JS::ProfilingFrameIterator::Frame;
  using JsFrameBuffer = JsFrame[MAX_JS_FRAMES];

  // `protected` to allow derived classes to read all data members.
 protected:
  ThreadRegistrationData(const char* aName, const void* aStackTop);

#ifdef DEBUG
  // Destructor only used to check invariants.
  ~ThreadRegistrationData() {
    MOZ_ASSERT((mProfilingFeatures != ThreadProfilingFeatures::NotProfiled) ==
               !!mProfiledThreadData);
    MOZ_ASSERT(!mProfiledThreadData,
               "mProfiledThreadData pointer should have been reset before "
               "~ThreadRegistrationData");
  }
#endif  // DEBUG

  // Permanent thread information.
  // Set at construction, read from anywhere, moved-from at destruction.
  ThreadRegistrationInfo mInfo;

  // Contains profiler labels and JS frames.
  // Deep-written on thread only, deep-read from thread and suspended thread.
  ProfilingStack mProfilingStack;

  // In practice, only read from thread and suspended thread.
  PlatformData mPlatformData;

  // Only read from thread and suspended thread.
  const void* const mStackTop;

  // Written from thread, read from thread and suspended thread.
  nsCOMPtr<nsIThread> mThread;

  // If this is a JS thread, this is its JSContext, which is required for any
  // JS sampling.
  // Written from thread, read from thread and suspended thread.
  JSContext* mJSContext = nullptr;

  // If mJSContext is not null AND the thread is being profiled, this points at
  // the start of a JsFrameBuffer to be used for on-thread synchronous sampling.
  JsFrame* mJsFrameBuffer = nullptr;

  // The profiler needs to start and stop JS sampling of JS threads at various
  // times. However, the JS engine can only do the required actions on the
  // JS thread itself ("on-thread"), not from another thread ("off-thread").
  // Therefore, we have the following two-step process.
  //
  // - The profiler requests (on-thread or off-thread) that the JS sampling be
  //   started/stopped, by changing mJSSampling to the appropriate REQUESTED
  //   state.
  //
  // - The relevant JS thread polls (on-thread) for changes to mJSSampling.
  //   When it sees a REQUESTED state, it performs the appropriate actions to
  //   actually start/stop JS sampling, and changes mJSSampling out of the
  //   REQUESTED state.
  //
  // The state machine is as follows.
  //
  //             INACTIVE --> ACTIVE_REQUESTED
  //                  ^       ^ |
  //                  |     _/  |
  //                  |   _/    |
  //                  |  /      |
  //                  | v       v
  //   INACTIVE_REQUESTED <-- ACTIVE
  //
  // The polling is done in the following two ways.
  //
  // - Via the interrupt callback mechanism; the JS thread must call
  //   profiler_js_interrupt_callback() from its own interrupt callback.
  //   This is how sampling must be started/stopped for threads where the
  //   request was made off-thread.
  //
  // - When {Start,Stop}JSSampling() is called on-thread, we can immediately
  //   follow it with a PollJSSampling() call to avoid the delay between the
  //   two steps. Likewise, setJSContext() calls PollJSSampling().
  //
  // One non-obvious thing about all this: these JS sampling requests are made
  // on all threads, even non-JS threads. mContext needs to also be set (via
  // setJSContext(), which can only happen for JS threads) for any JS sampling
  // to actually happen.
  //
  enum {
    INACTIVE = 0,
    ACTIVE_REQUESTED = 1,
    ACTIVE = 2,
    INACTIVE_REQUESTED = 3,
  } mJSSampling = INACTIVE;

  uint32_t mJSFlags = 0;

  // Flags to conveniently track various JS instrumentations.
  enum class JSInstrumentationFlags {
    StackSampling = 0x1,
    Allocations = 0x2,
  };

  [[nodiscard]] bool JSAllocationsEnabled() const {
    return mJSFlags & uint32_t(JSInstrumentationFlags::Allocations);
  }

  // The following members may be modified from another thread.
  // They need to be atomic, because LockData() does not prevent reads from
  // the owning thread.

  // mSleep tracks whether the thread is sleeping, and if so, whether it has
  // been previously observed. This is used for an optimization: in some
  // cases, when a thread is asleep, we duplicate the previous sample, which
  // is cheaper than taking a new sample.
  //
  // mSleep is atomic because it is accessed from multiple threads.
  //
  // - It is written only by this thread, via setSleeping() and setAwake().
  //
  // - It is read by SamplerThread::Run().
  //
  // There are two cases where racing between threads can cause an issue.
  //
  // - If CanDuplicateLastSampleDueToSleep() returns false but that result is
  //   invalidated before being acted upon, we will take a full sample
  //   unnecessarily. This is additional work but won't cause any correctness
  //   issues. (In actual fact, this case is impossible. In order to go from
  //   CanDuplicateLastSampleDueToSleep() returning false to it returning true
  //   requires an intermediate call to it in order for mSleep to go from
  //   SLEEPING_NOT_OBSERVED to SLEEPING_OBSERVED.)
  //
  // - If CanDuplicateLastSampleDueToSleep() returns true but that result is
  //   invalidated before being acted upon -- i.e. the thread wakes up before
  //   DuplicateLastSample() is called -- we will duplicate the previous
  //   sample. This is inaccurate, but only slightly... we will effectively
  //   treat the thread as having slept a tiny bit longer than it really did.
  //
  // This latter inaccuracy could be avoided by moving the
  // CanDuplicateLastSampleDueToSleep() check within the thread-freezing code,
  // e.g. the section where Tick() is called. But that would reduce the
  // effectiveness of the optimization because more code would have to be run
  // before we can tell that duplication is allowed.
  //
  static const int AWAKE = 0;
  static const int SLEEPING_NOT_OBSERVED = 1;
  static const int SLEEPING_OBSERVED = 2;
  // Read&written from thread and suspended thread.
  Atomic<int> mSleep{AWAKE};
  Atomic<uint64_t> mThreadCpuTimeInNsAtLastSleep{0};

#ifdef NIGHTLY_BUILD
  // The first wake is the thread creation.
  Atomic<uint64_t, MemoryOrdering::Relaxed> mWakeCount{1};
  mutable baseprofiler::detail::BaseProfilerMutex mRecordWakeCountMutex;
  mutable uint64_t mAlreadyRecordedWakeCount = 0;
  mutable uint64_t mAlreadyRecordedCpuTimeInMs = 0;
#endif

  // Is this thread currently being profiled, and with which features?
  // Written from profiler, read from any thread.
  // Invariant: `!!mProfilingFeatures == !!mProfiledThreadData` (set together.)
  Atomic<ThreadProfilingFeatures, MemoryOrdering::Relaxed> mProfilingFeatures{
      ThreadProfilingFeatures::NotProfiled};

  // If the profiler is active and this thread is selected for profiling, this
  // points at the relevant ProfiledThreadData.
  // Fully controlled by the profiler.
  // Invariant: `!!mProfilingFeatures == !!mProfiledThreadData` (set together).
  ProfiledThreadData* mProfiledThreadData = nullptr;
};

// Accessing const data from any thread.
class ThreadRegistrationUnlockedConstReader : public ThreadRegistrationData {
 public:
  [[nodiscard]] const ThreadRegistrationInfo& Info() const { return mInfo; }

  [[nodiscard]] const PlatformData& PlatformDataCRef() const {
    return mPlatformData;
  }

  [[nodiscard]] const void* StackTop() const { return mStackTop; }

 protected:
  ThreadRegistrationUnlockedConstReader(const char* aName,
                                        const void* aStackTop)
      : ThreadRegistrationData(aName, aStackTop) {}
};

// Accessing atomic data from any thread.
class ThreadRegistrationUnlockedConstReaderAndAtomicRW
    : public ThreadRegistrationUnlockedConstReader {
 public:
  [[nodiscard]] const ProfilingStack& ProfilingStackCRef() const {
    return mProfilingStack;
  }
  [[nodiscard]] ProfilingStack& ProfilingStackRef() { return mProfilingStack; }

  // Similar to `profiler_is_active()`, this atomic flag may become out-of-date.
  // It should only be used as an indication to know whether this thread is
  // probably being profiled (with some specific features), to avoid doing
  // expensive operations otherwise. Edge cases:
  // - This thread could get `NotProfiled`, but the profiler has just started,
  //   so some very early data may be missing. No real impact on profiling.
  // - This thread could see profiled features, but the profiled has just
  //   stopped, so some some work will be done and then discarded when finally
  //   attempting to write to the buffer. No impact on profiling.
  // - This thread could see profiled features, but the profiler will quickly
  //   stop and restart, so this thread will write information relevant to the
  //   previous profiling session. Very rare, and little impact on profiling.
  [[nodiscard]] ThreadProfilingFeatures ProfilingFeatures() const {
    return mProfilingFeatures;
  }

  // Call this whenever the current thread sleeps. Calling it twice in a row
  // without an intervening setAwake() call is an error.
  void SetSleeping() {
    MOZ_ASSERT(mSleep == AWAKE);
    mSleep = SLEEPING_NOT_OBSERVED;
  }

  // Call this whenever the current thread wakes. Calling it twice in a row
  // without an intervening setSleeping() call is an error.
  void SetAwake() {
    MOZ_ASSERT(mSleep != AWAKE);
    mSleep = AWAKE;
#ifdef NIGHTLY_BUILD
    ++mWakeCount;
#endif
  }

  // Returns the CPU time used by the thread since the previous call to this
  // method or since the thread was started if this is the first call.
  uint64_t GetNewCpuTimeInNs() {
    uint64_t newCpuTimeNs;
    if (!GetCpuTimeSinceThreadStartInNs(&newCpuTimeNs, PlatformDataCRef())) {
      newCpuTimeNs = 0;
    }
    uint64_t before = mThreadCpuTimeInNsAtLastSleep;
    uint64_t result =
        MOZ_LIKELY(newCpuTimeNs > before) ? newCpuTimeNs - before : 0;
    mThreadCpuTimeInNsAtLastSleep = newCpuTimeNs;
    return result;
  }

#ifdef NIGHTLY_BUILD
  void RecordWakeCount() const;
#endif

  // This is called on every profiler restart. Put things that should happen
  // at that time here.
  void ReinitializeOnResume() {
    // This is needed to cause an initial sample to be taken from sleeping
    // threads that had been observed prior to the profiler stopping and
    // restarting. Otherwise sleeping threads would not have any samples to
    // copy forward while sleeping.
    (void)mSleep.compareExchange(SLEEPING_OBSERVED, SLEEPING_NOT_OBSERVED);
  }

  // This returns true for the second and subsequent calls in each sleep
  // cycle, so that the sampler can skip its full sampling and reuse the first
  // asleep sample instead.
  [[nodiscard]] bool CanDuplicateLastSampleDueToSleep() {
    if (mSleep == AWAKE) {
      return false;
    }
    if (mSleep.compareExchange(SLEEPING_NOT_OBSERVED, SLEEPING_OBSERVED)) {
      return false;
    }
    return true;
  }

  [[nodiscard]] bool IsSleeping() const { return mSleep != AWAKE; }

 protected:
  ThreadRegistrationUnlockedConstReaderAndAtomicRW(const char* aName,
                                                   const void* aStackTop)
      : ThreadRegistrationUnlockedConstReader(aName, aStackTop) {}
};

// Like above, with special PSAutoLock-guarded accessors.
class ThreadRegistrationUnlockedRWForLockedProfiler
    : public ThreadRegistrationUnlockedConstReaderAndAtomicRW {
 public:
  // IMPORTANT! IMPORTANT! IMPORTANT! IMPORTANT! IMPORTANT! IMPORTANT!
  // Only add functions that take a `const PSAutoLock&` proof-of-lock.
  // (Because there is no other lock.)

  [[nodiscard]] const ProfiledThreadData* GetProfiledThreadData(
      const PSAutoLock&) const {
    return mProfiledThreadData;
  }

  [[nodiscard]] ProfiledThreadData* GetProfiledThreadData(const PSAutoLock&) {
    return mProfiledThreadData;
  }

 protected:
  ThreadRegistrationUnlockedRWForLockedProfiler(const char* aName,
                                                const void* aStackTop)
      : ThreadRegistrationUnlockedConstReaderAndAtomicRW(aName, aStackTop) {}
};

// Reading data, unlocked from the thread, or locked otherwise.
// This data MUST only be written from the thread with lock (i.e., in
// LockedRWOnThread through RWOnThreadWithLock.)
class ThreadRegistrationUnlockedReaderAndAtomicRWOnThread
    : public ThreadRegistrationUnlockedRWForLockedProfiler {
 public:
  // IMPORTANT! IMPORTANT! IMPORTANT! IMPORTANT! IMPORTANT! IMPORTANT!
  // Non-atomic members read here MUST be written from LockedRWOnThread (to
  // guarantee that they are only modified on this thread.)

  [[nodiscard]] JSContext* GetJSContext() const { return mJSContext; }

 protected:
  ThreadRegistrationUnlockedReaderAndAtomicRWOnThread(const char* aName,
                                                      const void* aStackTop)
      : ThreadRegistrationUnlockedRWForLockedProfiler(aName, aStackTop) {}
};

// Accessing locked data from the thread, or from any thread through the locked
// profiler:

// Like above, and profiler can also read&write mutex-protected members.
class ThreadRegistrationLockedRWFromAnyThread
    : public ThreadRegistrationUnlockedReaderAndAtomicRWOnThread {
 public:
  void SetProfilingFeaturesAndData(ThreadProfilingFeatures aProfilingFeatures,
                                   ProfiledThreadData* aProfiledThreadData,
                                   const PSAutoLock&);
  void ClearProfilingFeaturesAndData(const PSAutoLock&);

  // Not null when JSContext is not null AND this thread is being profiled.
  // Points at the start of JsFrameBuffer.
  [[nodiscard]] JsFrame* GetJsFrameBuffer() const { return mJsFrameBuffer; }

  [[nodiscard]] const nsCOMPtr<nsIEventTarget> GetEventTarget() const {
    return mThread;
  }

  void ResetMainThread(nsIThread* aThread) { mThread = aThread; }

  // aDelay is the time the event that is currently running on the thread was
  // queued before starting to run (if a PrioritizedEventQueue
  // (i.e. MainThread), this will be 0 for any event at a lower priority
  // than Input).
  // aRunning is the time the event has been running. If no event is running
  // these will both be TimeDuration() (i.e. 0). Both are out params, and are
  // always set. Their initial value is discarded.
  void GetRunningEventDelay(const TimeStamp& aNow, TimeDuration& aDelay,
                            TimeDuration& aRunning) {
    if (mThread) {  // can be null right at the start of a process
      TimeStamp start;
      mThread->GetRunningEventDelay(&aDelay, &start);
      if (!start.IsNull()) {
        // Note: the timestamp used here will be from when we started to
        // suspend and sample the thread; which is also the timestamp
        // associated with the sample.
        aRunning = aNow - start;
        return;
      }
    }
    aDelay = TimeDuration();
    aRunning = TimeDuration();
  }

  // Request that this thread start JS sampling. JS sampling won't actually
  // start until a subsequent PollJSSampling() call occurs *and* mContext has
  // been set.
  void StartJSSampling(uint32_t aJSFlags) {
    // This function runs on-thread or off-thread.

    MOZ_RELEASE_ASSERT(mJSSampling == INACTIVE ||
                       mJSSampling == INACTIVE_REQUESTED);
    mJSSampling = ACTIVE_REQUESTED;
    mJSFlags = aJSFlags;
  }

  // Request that this thread stop JS sampling. JS sampling won't actually
  // stop until a subsequent PollJSSampling() call occurs.
  void StopJSSampling() {
    // This function runs on-thread or off-thread.

    MOZ_RELEASE_ASSERT(mJSSampling == ACTIVE ||
                       mJSSampling == ACTIVE_REQUESTED);
    mJSSampling = INACTIVE_REQUESTED;
  }

 protected:
  ThreadRegistrationLockedRWFromAnyThread(const char* aName,
                                          const void* aStackTop)
      : ThreadRegistrationUnlockedReaderAndAtomicRWOnThread(aName, aStackTop) {}
};

// Accessing data, locked, from the thread.
// If any non-atomic data is readable from UnlockedReaderAndAtomicRWOnThread,
// it must be written from here, and not in base classes: Since this data is
// only written on the thread, it can be read from the same thread without
// lock; but writing must be locked so that other threads can safely read it,
// typically from LockedRWFromAnyThread.
class ThreadRegistrationLockedRWOnThread
    : public ThreadRegistrationLockedRWFromAnyThread {
 public:
  void SetJSContext(JSContext* aJSContext);
  void ClearJSContext();

  // Poll to see if JS sampling should be started/stopped.
  void PollJSSampling();

 public:
  ThreadRegistrationLockedRWOnThread(const char* aName, const void* aStackTop)
      : ThreadRegistrationLockedRWFromAnyThread(aName, aStackTop) {}
};

}  // namespace mozilla::profiler

#endif  // ProfilerThreadRegistrationData_h