1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
|
/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* Platform specific code to invoke XPCOM methods on native objects */
#include "xptcprivate.h"
#include "mozilla/Compiler.h"
#if !defined(__arm__) || !(defined(LINUX) || defined(ANDROID) || defined(XP_IOS))
#error "This code is for Linux/iOS ARM only. Check that it works on your system, too.\nBeware that this code is highly compiler dependent."
#endif
#if MOZ_IS_GCC
#if defined(__ARM_EABI__) && !defined(__ARM_PCS_VFP) && !defined(__ARM_PCS)
#error "Can't identify floating point calling conventions.\nPlease ensure that your toolchain defines __ARM_PCS or __ARM_PCS_VFP."
#endif
#endif
#ifndef __ARM_PCS_VFP
/* This function copies a 64-bits word from dw to the given pointer in
* a buffer delimited by start and end, possibly wrapping around the
* buffer boundaries, and/or properly aligning the data at 64-bits word
* boundaries (for EABI).
* start and end are both assumed to be 64-bits aligned.
* Returns a pointer to the second 32-bits word copied (to accomodate
* the invoke_copy_to_stack loop).
*/
static uint32_t *
copy_double_word(uint32_t *start, uint32_t *current, uint32_t *end, uint64_t *dw)
{
#ifdef __ARM_EABI__
/* Aligning the pointer for EABI */
current = (uint32_t *)(((uint32_t)current + 7) & ~7);
/* Wrap when reaching the end of the buffer */
if (current == end) current = start;
#else
/* On non-EABI, 64-bits values are not aligned and when we reach the end
* of the buffer, we need to write half of the data at the end, and the
* other half at the beginning. */
if (current == end - 1) {
*current = ((uint32_t*)dw)[0];
*start = ((uint32_t*)dw)[1];
return start;
}
#endif
*((uint64_t*) current) = *dw;
return current + 1;
}
/* See stack_space comment in NS_InvokeByIndex to see why this needs not to
* be static on DEBUG builds. */
#ifndef DEBUG
static
#endif
void
invoke_copy_to_stack(uint32_t* stk, uint32_t *end,
uint32_t paramCount, nsXPTCVariant* s)
{
/* The stack buffer is 64-bits aligned. The end argument points to its end.
* The caller is assumed to create a stack buffer of at least four 32-bits
* words.
* We use the last three 32-bit words to store the values for r1, r2 and r3
* for the method call, i.e. the first words for arguments passing.
*/
uint32_t *d = end - 3;
for(uint32_t i = 0; i < paramCount; i++, d++, s++)
{
/* Wrap when reaching the end of the stack buffer */
if (d == end) d = stk;
NS_ASSERTION(d >= stk && d < end,
"invoke_copy_to_stack is copying outside its given buffer");
if(s->IsIndirect())
{
*((void**)d) = &s->val;
continue;
}
// According to the ARM EABI, integral types that are smaller than a word
// are to be sign/zero-extended to a full word and treated as 4-byte values.
switch(s->type)
{
case nsXPTType::T_I8 : *((int32_t*) d) = s->val.i8; break;
case nsXPTType::T_I16 : *((int32_t*) d) = s->val.i16; break;
case nsXPTType::T_I32 : *((int32_t*) d) = s->val.i32; break;
case nsXPTType::T_I64 :
d = copy_double_word(stk, d, end, (uint64_t *)&s->val.i64);
break;
case nsXPTType::T_U8 : *((uint32_t*)d) = s->val.u8; break;
case nsXPTType::T_U16 : *((uint32_t*)d) = s->val.u16; break;
case nsXPTType::T_U32 : *((uint32_t*)d) = s->val.u32; break;
case nsXPTType::T_U64 :
d = copy_double_word(stk, d, end, (uint64_t *)&s->val.u64);
break;
case nsXPTType::T_FLOAT : *((float*) d) = s->val.f; break;
case nsXPTType::T_DOUBLE :
d = copy_double_word(stk, d, end, (uint64_t *)&s->val.d);
break;
case nsXPTType::T_BOOL : *((int32_t*) d) = s->val.b; break;
case nsXPTType::T_CHAR : *((int32_t*) d) = s->val.c; break;
case nsXPTType::T_WCHAR : *((int32_t*) d) = s->val.wc; break;
default:
// all the others are plain pointer types
*((void**)d) = s->val.p;
break;
}
}
}
typedef nsresult (*vtable_func)(nsISupports *, uint32_t, uint32_t, uint32_t);
// Avoid AddressSanitizer instrumentation for the next function because it
// depends on __builtin_alloca behavior and alignment that cannot be relied on
// once the function is compiled with a version of ASan that has dynamic-alloca
// instrumentation enabled.
MOZ_ASAN_IGNORE
EXPORT_XPCOM_API(nsresult)
NS_InvokeByIndex(nsISupports* that, uint32_t methodIndex,
uint32_t paramCount, nsXPTCVariant* params)
{
/* This is to call a given method of class that.
* The parameters are in params, the number is in paramCount.
* The routine will issue calls to count the number of words
* required for argument passing and to copy the arguments to
* the stack.
* ACPS passes the first 3 params in r1-r3 (with exceptions for 64-bits
* arguments), and the remaining goes onto the stack.
* We allocate a buffer on the stack for a "worst case" estimate of how much
* stack might be needed for EABI, i.e. twice the number of parameters.
* The end of this buffer will be used to store r1 to r3, so that the start
* of the stack is the remaining parameters.
* The magic here is to call the method with "that" and three 32-bits
* arguments corresponding to r1-r3, so that the compiler generates the
* proper function call. The stack will also contain the remaining arguments.
*
* !!! IMPORTANT !!!
* This routine makes assumptions about the vtable layout of the c++ compiler. It's implemented
* for arm-linux GNU g++ >= 2.8.1 (including egcs and gcc-2.95.[1-3])!
*
*/
vtable_func *vtable, func;
int base_size = (paramCount > 1) ? paramCount : 2;
/* !!! IMPORTANT !!!
* On DEBUG builds, the NS_ASSERTION used in invoke_copy_to_stack needs to use
* the stack to pass the 5th argument to NS_DebugBreak. When invoke_copy_to_stack
* is inlined, this can result, depending on the compiler and flags, in the
* stack pointer not pointing at stack_space when the method is called at the
* end of this function. More generally, any function call requiring stack
* allocation of arguments is unsafe to be inlined in this function.
*/
uint32_t *stack_space = (uint32_t *) __builtin_alloca(base_size * 8);
invoke_copy_to_stack(stack_space, &stack_space[base_size * 2],
paramCount, params);
vtable = *reinterpret_cast<vtable_func **>(that);
func = vtable[methodIndex];
/* !!! IMPORTANT !!!
* In the case of paramCount = 0 (and also some other cases in practice but
* the compiler doesn't know about them), the stack_space is not initialized.
* Reading the stack_space is technically undefined behavior, but practically,
* the values we read from there only matter to the called function when they
* are initialized.
* The asm volatile block makes the compiler ignore that the stack_space
* may not be initialized, avoiding it optimizing away e.g. the first loop
* test in invoke_copy_to_stack.
*/
asm volatile(";");
return func(that, stack_space[base_size * 2 - 3],
stack_space[base_size * 2 - 2],
stack_space[base_size * 2 - 1]);
}
#else /* __ARM_PCS_VFP */
/* "Procedure Call Standard for the ARM Architecture" document, sections
* "5.5 Parameter Passing" and "6.1.2 Procedure Calling" contain all the
* needed information.
*
* http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf
*/
#if defined(__thumb__) && !defined(__thumb2__)
#error "Thumb1 is not supported"
#endif
#ifndef __ARMEL__
#error "Only little endian compatibility was tested"
#endif
/*
* Allocation of integer function arguments initially to registers r1-r3
* and then to stack. Handling of 'this' argument which goes to r0 registers
* is handled separately and does not belong to these two inline functions.
*
* The doubleword arguments are allocated to even:odd
* register pairs or get aligned at 8-byte boundary on stack. The "holes"
* which may appear as a result of this realignment remain unused.
*
* 'ireg_args' - pointer to the current position in the buffer,
* corresponding to the register arguments
* 'stack_args' - pointer to the current position in the buffer,
* corresponding to the arguments on stack
* 'end' - pointer to the end of the registers argument
* buffer (it is guaranteed to be 8-bytes aligned)
*/
static inline void copy_word(uint32_t* &ireg_args,
uint32_t* &stack_args,
uint32_t* end,
uint32_t data)
{
if (ireg_args < end) {
*ireg_args = data;
ireg_args++;
} else {
*stack_args = data;
stack_args++;
}
}
static inline void copy_dword(uint32_t* &ireg_args,
uint32_t* &stack_args,
uint32_t* end,
uint64_t data)
{
if (ireg_args + 1 < end) {
if ((uint32_t)ireg_args & 4) {
ireg_args++;
}
*(uint64_t *)ireg_args = data;
ireg_args += 2;
} else {
ireg_args = end;
if ((uint32_t)stack_args & 4) {
stack_args++;
}
*(uint64_t *)stack_args = data;
stack_args += 2;
}
}
/*
* Allocation of floating point arguments to VFP registers (s0-s15, d0-d7).
*
* Unlike integer registers allocation, "back-filling" needs to be
* supported. For example, the third floating point argument in the
* following function is going to be allocated to s1 register, back-filling
* the "hole":
* void f(float s0, double d1, float s1)
*
* Refer to the "Procedure Call Standard for the ARM Architecture" document
* for more details.
*
* 'vfp_s_args' - pointer to the current position in the buffer with
* the next unallocated single precision register
* 'vfp_d_args' - pointer to the current position in the buffer with
* the next unallocated double precision register,
* it has the same value as 'vfp_s_args' when back-filling
* is not used
* 'end' - pointer to the end of the vfp registers argument
* buffer (it is guaranteed to be 8-bytes aligned)
*
* Mozilla bugtracker has a test program attached which be used for
* experimenting with VFP registers allocation code and testing its
* correctness:
* https://bugzilla.mozilla.org/show_bug.cgi?id=601914#c19
*/
static inline bool copy_vfp_single(float* &vfp_s_args, double* &vfp_d_args,
float* end, float data)
{
if (vfp_s_args >= end)
return false;
*vfp_s_args = data;
vfp_s_args++;
if (vfp_s_args < (float *)vfp_d_args) {
// It was the case of back-filling, now the next free single precision
// register should overlap with the next free double precision register
vfp_s_args = (float *)vfp_d_args;
} else if (vfp_s_args > (float *)vfp_d_args) {
// also update the pointer to the next free double precision register
vfp_d_args++;
}
return true;
}
static inline bool copy_vfp_double(float* &vfp_s_args, double* &vfp_d_args,
float* end, double data)
{
if (vfp_d_args >= (double *)end) {
// The back-filling continues only so long as no VFP CPRC has been
// allocated to a slot on the stack. Basically no VFP registers can
// be allocated after this point.
vfp_s_args = end;
return false;
}
if (vfp_s_args == (float *)vfp_d_args) {
// also update the pointer to the next free single precision register
vfp_s_args += 2;
}
*vfp_d_args = data;
vfp_d_args++;
return true;
}
static void
invoke_copy_to_stack(uint32_t* stk, uint32_t *end,
uint32_t paramCount, nsXPTCVariant* s)
{
uint32_t *ireg_args = end - 3;
float *vfp_s_args = (float *)end;
double *vfp_d_args = (double *)end;
float *vfp_end = vfp_s_args + 16;
for (uint32_t i = 0; i < paramCount; i++, s++) {
if (s->IsIndirect()) {
copy_word(ireg_args, stk, end, (uint32_t)&s->val);
continue;
}
// According to the ARM EABI, integral types that are smaller than a word
// are to be sign/zero-extended to a full word and treated as 4-byte values
switch (s->type)
{
case nsXPTType::T_FLOAT:
if (!copy_vfp_single(vfp_s_args, vfp_d_args, vfp_end, s->val.f)) {
copy_word(end, stk, end, reinterpret_cast<uint32_t&>(s->val.f));
}
break;
case nsXPTType::T_DOUBLE:
if (!copy_vfp_double(vfp_s_args, vfp_d_args, vfp_end, s->val.d)) {
copy_dword(end, stk, end, reinterpret_cast<uint64_t&>(s->val.d));
}
break;
case nsXPTType::T_I8: copy_word(ireg_args, stk, end, s->val.i8); break;
case nsXPTType::T_I16: copy_word(ireg_args, stk, end, s->val.i16); break;
case nsXPTType::T_I32: copy_word(ireg_args, stk, end, s->val.i32); break;
case nsXPTType::T_I64: copy_dword(ireg_args, stk, end, s->val.i64); break;
case nsXPTType::T_U8: copy_word(ireg_args, stk, end, s->val.u8); break;
case nsXPTType::T_U16: copy_word(ireg_args, stk, end, s->val.u16); break;
case nsXPTType::T_U32: copy_word(ireg_args, stk, end, s->val.u32); break;
case nsXPTType::T_U64: copy_dword(ireg_args, stk, end, s->val.u64); break;
case nsXPTType::T_BOOL: copy_word(ireg_args, stk, end, s->val.b); break;
case nsXPTType::T_CHAR: copy_word(ireg_args, stk, end, s->val.c); break;
case nsXPTType::T_WCHAR: copy_word(ireg_args, stk, end, s->val.wc); break;
default:
// all the others are plain pointer types
copy_word(ireg_args, stk, end, reinterpret_cast<uint32_t>(s->val.p));
break;
}
}
}
typedef uint32_t (*vtable_func)(nsISupports *, uint32_t, uint32_t, uint32_t);
EXPORT_XPCOM_API(nsresult)
NS_InvokeByIndex(nsISupports* that, uint32_t methodIndex,
uint32_t paramCount, nsXPTCVariant* params)
{
vtable_func *vtable = *reinterpret_cast<vtable_func **>(that);
vtable_func func = vtable[methodIndex];
// 'register uint32_t result asm("r0")' could be used here, but it does not
// seem to be reliable in all cases: http://gcc.gnu.org/PR46164
nsresult result;
asm (
"mov r3, sp\n"
"mov %[stack_space_size], %[param_count_plus_2], lsl #3\n"
"tst r3, #4\n" /* check stack alignment */
"add %[stack_space_size], #(4 * 16)\n" /* space for VFP registers */
"mov r3, %[params]\n"
"it ne\n"
"addne %[stack_space_size], %[stack_space_size], #4\n"
"sub r0, sp, %[stack_space_size]\n" /* allocate space on stack */
"sub r2, %[param_count_plus_2], #2\n"
"mov sp, r0\n"
"add r1, r0, %[param_count_plus_2], lsl #3\n"
"blx %[invoke_copy_to_stack]\n"
"add ip, sp, %[param_count_plus_2], lsl #3\n"
"mov r0, %[that]\n"
"ldmdb ip, {r1, r2, r3}\n"
"vldm ip, {d0, d1, d2, d3, d4, d5, d6, d7}\n"
"blx %[func]\n"
"add sp, sp, %[stack_space_size]\n" /* cleanup stack */
"mov %[stack_space_size], r0\n" /* it's actually 'result' variable */
: [stack_space_size] "=&r" (result)
: [func] "r" (func),
[that] "r" (that),
[params] "r" (params),
[param_count_plus_2] "r" (paramCount + 2),
[invoke_copy_to_stack] "r" (invoke_copy_to_stack)
: "cc", "memory",
// Mark all the scratch registers as clobbered because they may be
// modified by the functions, called from this inline assembly block
"r0", "r1", "r2", "r3", "ip", "lr",
"d0", "d1", "d2", "d3", "d4", "d5", "d6", "d7",
// Also unconditionally mark d16-d31 registers as clobbered even though
// they actually don't exist in vfpv2 and vfpv3-d16 variants. There is
// no way to identify VFP variant using preprocessor at the momemnt
// (see http://gcc.gnu.org/PR46128 for more details), but fortunately
// current versions of gcc do not seem to complain about these registers
// even when this code is compiled with '-mfpu=vfpv3-d16' option.
// If gcc becomes more strict in the future and/or provides a way to
// identify VFP variant, the following d16-d31 registers list needs
// to be wrapped into some #ifdef
"d16", "d17", "d18", "d19", "d20", "d21", "d22", "d23",
"d24", "d25", "d26", "d27", "d28", "d29", "d30", "d31"
);
return result;
}
#endif
|