summaryrefslogtreecommitdiffstats
path: root/lib/utils.c
blob: c1b25db60a417666dd640dd7b0f9f3ee3abec840 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
/*  Copyright (C) CZ.NIC, z.s.p.o. <knot-resolver@labs.nic.cz>
 *  SPDX-License-Identifier: GPL-3.0-or-later
 */

#include "lib/utils.h"

#include "contrib/cleanup.h"
#include "contrib/ucw/mempool.h"
#include "kresconfig.h"
#include "lib/defines.h"
#include "lib/generic/array.h"
#include "lib/module.h"
#include "lib/resolve.h"

#include <libknot/descriptor.h>
#include <libknot/dname.h>
#include <libknot/rrset-dump.h>
#include <libknot/rrtype/rrsig.h>
#include <libknot/version.h>
#include <uv.h>

#include <arpa/inet.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/statvfs.h>
#include <sys/un.h>

struct __attribute__((packed)) kr_sockaddr_key {
	int family;
};

struct __attribute__((packed)) kr_sockaddr_in_key {
	int family;
	char address[sizeof(((struct sockaddr_in *) NULL)->sin_addr)];
	uint16_t port;
};

struct __attribute__((packed)) kr_sockaddr_in6_key {
	int family;
	char address[sizeof(((struct sockaddr_in6 *) NULL)->sin6_addr)];
	uint32_t scope;
	uint16_t port;
};

struct __attribute((packed)) kr_sockaddr_un_key {
	int family;
	char path[sizeof(((struct sockaddr_un *) NULL)->sun_path)];
};

extern inline uint64_t kr_rand_bytes(unsigned int size);

/* Logging & debugging */
bool kr_dbg_assertion_abort = DBG_ASSERTION_ABORT;
int kr_dbg_assertion_fork = DBG_ASSERTION_FORK;

void kr_fail(bool is_fatal, const char *expr, const char *func, const char *file, int line)
{
	const int errno_orig = errno;
	if (is_fatal)
		kr_log_crit(SYSTEM, "requirement \"%s\" failed in %s@%s:%d\n", expr, func, file, line);
	else
		kr_log_error(SYSTEM, "assertion \"%s\" failed in %s@%s:%d\n", expr, func, file, line);

	if (is_fatal || (kr_dbg_assertion_abort && !kr_dbg_assertion_fork))
		abort();
	else if (!kr_dbg_assertion_abort || !kr_dbg_assertion_fork)
		goto recover;
	// We want to fork and abort the child, unless rate-limited.
	static uint64_t limited_until = 0;
	const uint64_t now = kr_now();
	if (now < limited_until)
		goto recover;
	if (kr_dbg_assertion_fork > 0) {
		// Add jitter +- 25%; in other words: 75% + uniform(0,50%).
		// Motivation: if a persistent problem starts happening, desynchronize
		// coredumps from different instances as they're not cheap.
		limited_until = now + kr_dbg_assertion_fork * 3 / 4
			+ kr_dbg_assertion_fork * kr_rand_bytes(1) / 256 / 2;
	}
	if (fork() == 0)
		abort();
recover:
	errno = errno_orig;
}

/*
 * Macros.
 */
#define strlen_safe(x) ((x) ? strlen(x) : 0)

/**
 * @internal Convert 16bit unsigned to string, keeps leading spaces.
 * @note Always fills dst length = 5
 * Credit: http://computer-programming-forum.com/46-asm/7aa4b50bce8dd985.htm
 */
static inline int u16tostr(uint8_t *dst, uint16_t num)
{
	uint32_t tmp = num * (((1 << 28) / 10000) + 1) - (num / 4);
	for(size_t i = 0; i < 5; i++) {
		dst[i] = '0' + (char) (tmp >> 28);
		tmp = (tmp & 0x0fffffff) * 10;
	}
	return 5;
}

char* kr_strcatdup(unsigned n, ...)
{
	if (n < 1) {
		return NULL;
	}

	/* Calculate total length */
	size_t total_len = 0;
	va_list vl;
	va_start(vl, n);
	for (unsigned i = 0; i < n; ++i) {
		char *item = va_arg(vl, char *);
		const size_t new_len = total_len + strlen_safe(item);
		if (unlikely(new_len < total_len)) {
			va_end(vl);
			return NULL;
		}
		total_len = new_len;
	}
	va_end(vl);

	/* Allocate result and fill */
	char *result = NULL;
	if (total_len > 0) {
		if (unlikely(total_len == SIZE_MAX)) return NULL;
		result = malloc(total_len + 1);
	}
	if (result) {
		char *stream = result;
		va_start(vl, n);
		for (unsigned i = 0; i < n; ++i) {
			char *item = va_arg(vl, char *);
			if (item) {
				size_t len = strlen(item);
				memcpy(stream, item, len + 1);
				stream += len;
			}
		}
		va_end(vl);
	}

	return result;
}

char * kr_absolutize_path(const char *dirname, const char *fname)
{
	if (kr_fails_assert(dirname && fname)) {
		errno = EINVAL;
		return NULL;
	}
	char *result;
	int aret;
	if (dirname[0] == '/') { // absolute path is easier
		aret = asprintf(&result, "%s/%s", dirname, fname);
	} else { // relative path, but don't resolve symlinks
		char buf[PATH_MAX];
		const char *cwd = getcwd(buf, sizeof(buf));
		if (!cwd)
			return NULL; // errno has been set already
		if (strcmp(dirname, ".") == 0) {
			// get rid of one common case of extraneous "./"
			aret = asprintf(&result, "%s/%s", cwd, fname);
		} else {
			aret = asprintf(&result, "%s/%s/%s", cwd, dirname, fname);
		}
	}
	if (aret > 0)
		return result;
	errno = -aret;
	return NULL;
}

int kr_memreserve(void *baton, void **mem, size_t elm_size, size_t want, size_t *have)
{
    if (*have >= want) {
        return 0;
    } else {
        knot_mm_t *pool = baton;
        size_t next_size = array_next_count(elm_size, want, *have);
        void *mem_new = mm_alloc(pool, next_size * elm_size);
        if (mem_new != NULL) {
	    if (*mem) { /* 0-length memcpy from NULL isn't technically OK */
		memcpy(mem_new, *mem, (*have)*(elm_size));
		mm_free(pool, *mem);
	    }
            *mem = mem_new;
            *have = next_size;
            return 0;
        }
    }
    return -1;
}

static int pkt_recycle(knot_pkt_t *pkt, bool keep_question)
{
	/* The maximum size of a header + query name + (class, type) */
	uint8_t buf[KNOT_WIRE_HEADER_SIZE + KNOT_DNAME_MAXLEN + 2 * sizeof(uint16_t)];

	/* Save header and the question section */
	size_t base_size = KNOT_WIRE_HEADER_SIZE;
	if (keep_question) {
		base_size += knot_pkt_question_size(pkt);
	}
	if (kr_fails_assert(base_size <= sizeof(buf))) return kr_error(EINVAL);
	memcpy(buf, pkt->wire, base_size);

	/* Clear the packet and its auxiliary structures */
	knot_pkt_clear(pkt);

	/* Restore header and question section and clear counters */
	pkt->size = base_size;
	memcpy(pkt->wire, buf, base_size);
	knot_wire_set_qdcount(pkt->wire, keep_question);
	knot_wire_set_ancount(pkt->wire, 0);
	knot_wire_set_nscount(pkt->wire, 0);
	knot_wire_set_arcount(pkt->wire, 0);

	/* Reparse question */
	knot_pkt_begin(pkt, KNOT_ANSWER);
	return knot_pkt_parse_question(pkt);
}

int kr_pkt_recycle(knot_pkt_t *pkt)
{
	return pkt_recycle(pkt, false);
}

int kr_pkt_clear_payload(knot_pkt_t *pkt)
{
	return pkt_recycle(pkt, knot_wire_get_qdcount(pkt->wire));
}

int kr_pkt_put(knot_pkt_t *pkt, const knot_dname_t *name, uint32_t ttl,
               uint16_t rclass, uint16_t rtype, const uint8_t *rdata, uint16_t rdlen)
{
	/* LATER(opt.): there's relatively lots of copying, but ATM kr_pkt_put()
	 * isn't considered to be used in any performance-critical parts (just lua). */
	if (!pkt || !name)  {
		return kr_error(EINVAL);
	}
	/* Create empty RR */
	knot_rrset_t rr;
	knot_rrset_init(&rr, knot_dname_copy(name, &pkt->mm), rtype, rclass, ttl);
	/* Create RDATA */
	knot_rdata_t *rdata_tmp = mm_alloc(&pkt->mm, offsetof(knot_rdata_t, data) + rdlen);
	knot_rdata_init(rdata_tmp, rdlen, rdata);
	knot_rdataset_add(&rr.rrs, rdata_tmp, &pkt->mm);
	mm_free(&pkt->mm, rdata_tmp); /* we're always on mempool for now, but whatever */
	/* Append RR */
	return knot_pkt_put(pkt, 0, &rr, KNOT_PF_FREE);
}

void kr_pkt_make_auth_header(knot_pkt_t *pkt)
{
	if (kr_fails_assert(pkt && pkt->wire)) return;
	knot_wire_clear_ad(pkt->wire);
	knot_wire_set_aa(pkt->wire);
}

const char *kr_inaddr(const struct sockaddr *addr)
{
	if (!addr) {
		return NULL;
	}
	switch (addr->sa_family) {
	case AF_INET:  return (const char *)&(((const struct sockaddr_in *)addr)->sin_addr);
	case AF_INET6: return (const char *)&(((const struct sockaddr_in6 *)addr)->sin6_addr);
	default:       return NULL;
	}
}

int kr_inaddr_family(const struct sockaddr *addr)
{
	if (!addr)
		return AF_UNSPEC;
	return addr->sa_family;
}

int kr_inaddr_len(const struct sockaddr *addr)
{
	if (!addr) {
		return kr_error(EINVAL);
	}
	return kr_family_len(addr->sa_family);
}

int kr_sockaddr_len(const struct sockaddr *addr)
{
	if (!addr) {
		return kr_error(EINVAL);
	}
	switch (addr->sa_family) {
	case AF_INET:  return sizeof(struct sockaddr_in);
	case AF_INET6: return sizeof(struct sockaddr_in6);
	case AF_UNIX:  return sizeof(struct sockaddr_un);
	default:       return kr_error(EINVAL);
	}
}

ssize_t kr_sockaddr_key(struct kr_sockaddr_key_storage *dst,
                        const struct sockaddr *addr)
{
	kr_require(addr);

	switch (addr->sa_family) {
	case AF_INET:;
		const struct sockaddr_in *addr_in = (const struct sockaddr_in *) addr;
		struct kr_sockaddr_in_key *inkey = (struct kr_sockaddr_in_key *) dst;
		inkey->family = AF_INET;
		memcpy(&inkey->address, &addr_in->sin_addr, sizeof(inkey->address));
		memcpy(&inkey->port, &addr_in->sin_port, sizeof(inkey->port));
		return sizeof(*inkey);

	case AF_INET6:;
		const struct sockaddr_in6 *addr_in6 = (const struct sockaddr_in6 *) addr;
		struct kr_sockaddr_in6_key *in6key = (struct kr_sockaddr_in6_key *) dst;
		in6key->family = AF_INET6;
		memcpy(&in6key->address, &addr_in6->sin6_addr, sizeof(in6key->address));
		memcpy(&in6key->port, &addr_in6->sin6_port, sizeof(in6key->port));
		if (kr_sockaddr_link_local(addr))
			memcpy(&in6key->scope, &addr_in6->sin6_scope_id, sizeof(in6key->scope));
		else
			in6key->scope = 0;
		return sizeof(*in6key);

	case AF_UNIX:;
		const struct sockaddr_un *addr_un = (const struct sockaddr_un *) addr;
		struct kr_sockaddr_un_key *unkey = (struct kr_sockaddr_un_key *) dst;
		unkey->family = AF_UNIX;
		size_t pathlen = strnlen(addr_un->sun_path, sizeof(unkey->path));
		if (pathlen == 0 || pathlen >= sizeof(unkey->path)) {
			/* Abstract sockets are not supported - we would need
			 * to also supply a length value for the abstract
			 * pathname.
			 *
			 * UNIX socket path should be null-terminated.
			 *
			 * See unix(7). */
			return kr_error(EINVAL);
		}

		pathlen += 1; /* Include null-terminator */
		strncpy(unkey->path, addr_un->sun_path, pathlen);
		return offsetof(struct kr_sockaddr_un_key, path) + pathlen;

	default:
		return kr_error(EAFNOSUPPORT);
	}
}

struct sockaddr *kr_sockaddr_from_key(struct sockaddr_storage *dst,
                                      const char *key)
{
	kr_require(key);

	switch (((struct kr_sockaddr_key *) key)->family) {
	case AF_INET:;
		const struct kr_sockaddr_in_key *inkey = (struct kr_sockaddr_in_key *) key;
		struct sockaddr_in *addr_in = (struct sockaddr_in *) dst;
		addr_in->sin_family = AF_INET;
		memcpy(&addr_in->sin_addr, &inkey->address, sizeof(inkey->address));
		memcpy(&addr_in->sin_port, &inkey->port, sizeof(inkey->port));
		return (struct sockaddr *) addr_in;

	case AF_INET6:;
		const struct kr_sockaddr_in6_key *in6key = (struct kr_sockaddr_in6_key *) key;
		struct sockaddr_in6 *addr_in6 = (struct sockaddr_in6 *) dst;
		addr_in6->sin6_family = AF_INET6;
		memcpy(&addr_in6->sin6_addr, &in6key->address, sizeof(in6key->address));
		memcpy(&addr_in6->sin6_port, &in6key->port, sizeof(in6key->port));
		memcpy(&addr_in6->sin6_scope_id, &in6key->scope, sizeof(in6key->scope));
		return (struct sockaddr *) addr_in6;

	case AF_UNIX:;
		const struct kr_sockaddr_un_key *unkey = (struct kr_sockaddr_un_key *) key;
		struct sockaddr_un *addr_un = (struct sockaddr_un *) dst;
		addr_un->sun_family = AF_UNIX;
		strncpy(addr_un->sun_path, unkey->path, sizeof(unkey->path));
		return (struct sockaddr *) addr_un;

	default:
		kr_assert(false);
		return NULL;
	}
}

bool kr_sockaddr_key_same_addr(const char *key_a, const char *key_b)
{
	const struct kr_sockaddr_in6_key *kkey_a = (struct kr_sockaddr_in6_key *) key_a;
	const struct kr_sockaddr_in6_key *kkey_b = (struct kr_sockaddr_in6_key *) key_b;

	if (kkey_a->family != kkey_b->family)
		return false;

	ptrdiff_t offset;
	switch (kkey_a->family) {
		case AF_INET:
			offset = offsetof(struct kr_sockaddr_in_key, address);
			break;
		case AF_INET6:
			if (unlikely(kkey_a->scope != kkey_b->scope))
				return false;
			offset = offsetof(struct kr_sockaddr_in6_key, address);
			break;

		case AF_UNIX:;
			const struct kr_sockaddr_un_key *unkey_a =
				(struct kr_sockaddr_un_key *) key_a;
			const struct kr_sockaddr_un_key *unkey_b =
				(struct kr_sockaddr_un_key *) key_b;

			return strncmp(unkey_a->path, unkey_b->path,
			               sizeof(unkey_a->path)) == 0;

		default:
			kr_assert(false);
			return false;
	}

	size_t len = kr_family_len(kkey_a->family);
	return memcmp(key_a + offset, key_b + offset, len) == 0;
}

int kr_sockaddr_cmp(const struct sockaddr *left, const struct sockaddr *right)
{
	if (!left || !right) {
		return kr_error(EINVAL);
	}
	if (left->sa_family != right->sa_family) {
		return kr_error(EFAULT);
	}
	if (left->sa_family == AF_INET) {
		struct sockaddr_in *left_in = (struct sockaddr_in *)left;
		struct sockaddr_in *right_in = (struct sockaddr_in *)right;
		if (left_in->sin_addr.s_addr != right_in->sin_addr.s_addr) {
			return kr_error(EFAULT);
		}
		if (left_in->sin_port != right_in->sin_port) {
			return kr_error(EFAULT);
		}
	} else if (left->sa_family == AF_INET6) {
		struct sockaddr_in6 *left_in6 = (struct sockaddr_in6 *)left;
		struct sockaddr_in6 *right_in6 = (struct sockaddr_in6 *)right;
		if (memcmp(&left_in6->sin6_addr, &right_in6->sin6_addr,
			   sizeof(struct in6_addr)) != 0) {
			return kr_error(EFAULT);
		}
		if (left_in6->sin6_port != right_in6->sin6_port) {
			return kr_error(EFAULT);
		}
	} else {
		return kr_error(ENOENT);
	}
	return kr_ok();
}

uint16_t kr_inaddr_port(const struct sockaddr *addr)
{
	if (!addr) {
		return 0;
	}
	switch (addr->sa_family) {
	case AF_INET:  return ntohs(((const struct sockaddr_in *)addr)->sin_port);
	case AF_INET6: return ntohs(((const struct sockaddr_in6 *)addr)->sin6_port);
	default:       return 0;
	}
}

void kr_inaddr_set_port(struct sockaddr *addr, uint16_t port)
{
	if (!addr) {
		return;
	}
	switch (addr->sa_family) {
	case AF_INET:
		((struct sockaddr_in *)addr)->sin_port = htons(port);
		break;
	case AF_INET6:
		((struct sockaddr_in6 *)addr)->sin6_port = htons(port);
		break;
	default:
		break;
	}
}

int kr_inaddr_str(const struct sockaddr *addr, char *buf, size_t *buflen)
{
	if (!addr) {
		return kr_error(EINVAL);
	}
	return kr_ntop_str(addr->sa_family, kr_inaddr(addr), kr_inaddr_port(addr),
			   buf, buflen);
}

int kr_ntop_str(int family, const void *src, uint16_t port, char *buf, size_t *buflen)
{
	if (!src || !buf || !buflen) {
		return kr_error(EINVAL);
	}

	if (!inet_ntop(family, src, buf, *buflen)) {
		return kr_error(errno);
	}
	const int len = strlen(buf);
	const int len_need = len + 1 + 5 + 1;
	if (len_need > *buflen) {
		*buflen = len_need;
		return kr_error(ENOSPC);
	}
	*buflen = len_need;
	buf[len] = '#';
	u16tostr((uint8_t *)&buf[len + 1], port);
	buf[len_need - 1] = 0;
	return kr_ok();
}

char *kr_straddr(const struct sockaddr *addr)
{
	if (kr_fails_assert(addr)) return NULL;
	static char str[KR_STRADDR_MAXLEN + 1] = {0};
	if (addr->sa_family == AF_UNIX) {
		strncpy(str, ((struct sockaddr_un *)addr)->sun_path, sizeof(str) - 1);
		return str;
	}
	size_t len = KR_STRADDR_MAXLEN;
	int ret = kr_inaddr_str(addr, str, &len);
	return ret != kr_ok() || len == 0 ? NULL : str;
}

int kr_straddr_family(const char *addr)
{
	if (!addr) {
		return kr_error(EINVAL);
	}
	if (addr[0] == '/') {
		return AF_UNIX;
	}
	if (strchr(addr, ':')) {
		return AF_INET6;
	}
	if (strchr(addr, '.')) {
		return AF_INET;
	}
	return kr_error(EINVAL);
}

int kr_family_len(int family)
{
	switch (family) {
	case AF_INET:  return sizeof(struct in_addr);
	case AF_INET6: return sizeof(struct in6_addr);
	default:       return kr_error(EINVAL);
	}
}

struct sockaddr * kr_straddr_socket(const char *addr, int port, knot_mm_t *pool)
{
	switch (kr_straddr_family(addr)) {
	case AF_INET: {
		struct sockaddr_in *res = mm_alloc(pool, sizeof(*res));
		if (uv_ip4_addr(addr, port, res) >= 0) {
			return (struct sockaddr *)res;
		} else {
			mm_free(pool, res);
			return NULL;
		}
	}
	case AF_INET6: {
		struct sockaddr_in6 *res = mm_alloc(pool, sizeof(*res));
		if (uv_ip6_addr(addr, port, res) >= 0) {
			return (struct sockaddr *)res;
		} else {
			mm_free(pool, res);
			return NULL;
		}
	}
	case AF_UNIX: {
		struct sockaddr_un *res;
		const size_t alen = strlen(addr) + 1;
		if (alen > sizeof(res->sun_path)) {
			return NULL;
		}
		res = mm_alloc(pool, sizeof(*res));
		res->sun_family = AF_UNIX;
		memcpy(res->sun_path, addr, alen);
		return (struct sockaddr *)res;
	}
	default:
		return NULL;
	}
}

int kr_straddr_subnet(void *dst, const char *addr)
{
	if (!dst || !addr) {
		return kr_error(EINVAL);
	}
	/* Parse subnet */
	int bit_len = 0;
	int family = kr_straddr_family(addr);
	if (family != AF_INET && family != AF_INET6)
		return kr_error(EINVAL);
	const int max_len = (family == AF_INET6) ? 128 : 32;
	auto_free char *addr_str = strdup(addr);
	char *subnet = strchr(addr_str, '/');
	if (subnet) {
		*subnet = '\0';
		subnet += 1;
		bit_len = strtol(subnet, NULL, 10);
		/* Check client subnet length */
		if (bit_len < 0 || bit_len > max_len) {
			return kr_error(ERANGE);
		}
	} else {
		/* No subnet, use maximal subnet length. */
		bit_len = max_len;
	}
	/* Parse address */
	int ret = inet_pton(family, addr_str, dst);
	if (ret != 1) {
		return kr_error(EILSEQ);
	}

	return bit_len;
}

int kr_straddr_split(const char *instr, char ipaddr[static restrict (INET6_ADDRSTRLEN + 1)],
		     uint16_t *port)
{
	if (kr_fails_assert(instr && ipaddr && port)) return kr_error(EINVAL);
	/* Find where port number starts. */
	const char *p_start = strchr(instr, '@');
	if (!p_start)
		p_start = strchr(instr, '#');
	if (p_start) { /* Get and check the port number. */
		if (p_start[1] == '\0') /* Don't accept empty port string. */
			return kr_error(EILSEQ);
		char *p_end;
		long p = strtol(p_start + 1, &p_end, 10);
		if (*p_end != '\0' || p <= 0 || p > UINT16_MAX)
			return kr_error(EILSEQ);
		*port = p;
	}
	/* Copy the address. */
	const size_t addrlen = p_start ? p_start - instr : strlen(instr);
	if (addrlen > INET6_ADDRSTRLEN)
		return kr_error(EILSEQ);
	memcpy(ipaddr, instr, addrlen);
	ipaddr[addrlen] = '\0';
	return kr_ok();
}

int kr_straddr_join(const char *addr, uint16_t port, char *buf, size_t *buflen)
{
	if (!addr || !buf || !buflen) {
		return kr_error(EINVAL);
	}

	struct sockaddr_storage ss;
	int family = kr_straddr_family(addr);
	if (family == kr_error(EINVAL) || inet_pton(family, addr, &ss) != 1) {
		return kr_error(EINVAL);
	}

	int len = strlen(addr);
	if (len + 6 >= *buflen) {
		return kr_error(ENOSPC);
	}

	memcpy(buf, addr, len + 1);
	buf[len] = '#';
	u16tostr((uint8_t *)&buf[len + 1], port);
	len += 6;
	buf[len] = 0;
	*buflen = len;

	return kr_ok();
}

int kr_bitcmp(const char *a, const char *b, int bits)
{
	/* We're using the function from lua directly, so at least for now
	 * we avoid crashing on bogus inputs.  Meaning: NULL is ordered before
	 * anything else, and negative length is the same as zero.
	 * TODO: review the call sites and probably remove the checks. */
	if (bits <= 0 || (!a && !b)) {
		return 0;
	} else if (!a) {
		return -1;
	} else if (!b) {
		return 1;
	}

	kr_require((a && b && bits >= 0)  ||  bits == 0);
	/* Compare part byte-divisible part. */
	const size_t chunk = bits / 8;
	int ret = memcmp(a, b, chunk);
	if (ret != 0) {
		return ret;
	}
	a += chunk;
	b += chunk;
	bits -= chunk * 8;
	/* Compare last partial byte address block. */
	if (bits > 0) {
		const size_t shift = (8 - bits);
		ret = ((uint8_t)(*a >> shift) - (uint8_t)(*b >> shift));
	}
	return ret;
}

void kr_bitmask(unsigned char *a, size_t a_len, int bits)
{
	if (bits < 0 || !a || !a_len) {
		return;
	}

	size_t i = bits / 8;
	const size_t mid_bits = 8 - (bits % 8);
	const unsigned char mask = 0xFF << mid_bits;
	if (i < a_len)
		a[i] &= mask;

	for (++i; i < a_len; ++i)
		a[i] = 0;
}

int kr_rrkey(char *key, uint16_t class, const knot_dname_t *owner,
	     uint16_t type, uint16_t additional)
{
	if (!key || !owner) {
		return kr_error(EINVAL);
	}
	uint8_t *key_buf = (uint8_t *)key;
	int ret = u16tostr(key_buf, class);
	if (ret <= 0) {
		return ret;
	}
	key_buf += ret;
	ret = knot_dname_to_wire(key_buf, owner, KNOT_DNAME_MAXLEN);
	if (ret <= 0) {
		return ret;
	}
	knot_dname_to_lower(key_buf);
	key_buf += ret - 1;
	ret = u16tostr(key_buf, type);
	if (ret <= 0) {
		return ret;
	}
	key_buf += ret;
	ret = u16tostr(key_buf, additional);
	if (ret <= 0) {
		return ret;
	}
	key_buf[ret] = '\0';
	return (char *)&key_buf[ret] - key;
}

/** Return whether two RRsets match, i.e. would form the same set; see ranked_rr_array_t */
static inline bool rrsets_match(const knot_rrset_t *rr1, const knot_rrset_t *rr2)
{
	bool match = rr1->type == rr2->type && rr1->rclass == rr2->rclass;
	if (match && rr2->type == KNOT_RRTYPE_RRSIG) {
		match = match && knot_rrsig_type_covered(rr1->rrs.rdata)
				  == knot_rrsig_type_covered(rr2->rrs.rdata);
	}
	match = match && knot_dname_is_equal(rr1->owner, rr2->owner);
	return match;
}

/** Ensure that an index in a ranked array won't cause "duplicate" RRsets on wire.
 *
 * Other entries that would form the same RRset get to_wire = false.
 * See also rrsets_match.
 */
static int to_wire_ensure_unique(ranked_rr_array_t *array, size_t index)
{
	if (kr_fails_assert(array && index < array->len)) return kr_error(EINVAL);

	const struct ranked_rr_array_entry *e0 = array->at[index];
	if (!e0->to_wire) {
		return kr_ok();
	}

	for (ssize_t i = array->len - 1; i >= 0; --i) {
		/* ^ iterate backwards, as the end is more likely in CPU caches */
		struct ranked_rr_array_entry *ei = array->at[i];
		if (ei->qry_uid == e0->qry_uid /* assumption: no duplicates within qry */
		    || !ei->to_wire /* no use for complex comparison if @to_wire */
		   ) {
			continue;
		}
		if (rrsets_match(ei->rr, e0->rr)) {
			ei->to_wire = false;
		}
	}
	return kr_ok();
}

/* Implementation overview of _add() and _finalize():
 * - for rdata we just maintain a list of pointers (in knot_rrset_t::additional)
 * - we only construct the final rdataset at the end (and thus more efficiently)
 */
typedef array_t(knot_rdata_t *) rdata_array_t;
int kr_ranked_rrarray_add(ranked_rr_array_t *array, const knot_rrset_t *rr,
			  uint8_t rank, bool to_wire, uint32_t qry_uid, knot_mm_t *pool)
{
	/* From normal packet parser we always get RRs one by one,
	 * but cache and prefil modules (also) feed us larger RRsets. */
	kr_assert(rr->rrs.count >= 1);
	/* Check if another rrset with the same
	 * rclass/type/owner combination exists within current query
	 * and merge if needed */
	for (ssize_t i = array->len - 1; i >= 0; --i) {
		ranked_rr_array_entry_t *stashed = array->at[i];
		if (stashed->yielded) {
			break;
		}
		if (stashed->qry_uid != qry_uid) {
			break;
			/* We do not guarantee merging RRs "across" any point that switched
			 * to processing a different upstream packet (i.e. qry_uid).
			 * In particular, iterator never returns KR_STATE_YIELD. */
		}
		if (!rrsets_match(stashed->rr, rr)) {
			continue;
		}
		/* Found the entry to merge with.  Check consistency and merge. */
		if (kr_fails_assert(stashed->rank == rank && !stashed->cached && stashed->in_progress))
			return kr_error(EEXIST);

		/* It may happen that an RRset is first considered useful
		 * (to_wire = false, e.g. due to being part of glue),
		 * and later we may find we also want it in the answer. */
		stashed->to_wire = stashed->to_wire || to_wire;

		/* We just add the reference into this in_progress RRset. */
		rdata_array_t *ra = stashed->rr->additional;
		if (ra == NULL) {
			/* RRset not in array format yet -> convert it. */
			ra = stashed->rr->additional = mm_alloc(pool, sizeof(*ra));
			if (!ra) {
				return kr_error(ENOMEM);
			}
			array_init(*ra);
			int ret = array_reserve_mm(*ra, stashed->rr->rrs.count + rr->rrs.count,
							kr_memreserve, pool);
			if (ret) {
				return kr_error(ret);
			}
			knot_rdata_t *r_it = stashed->rr->rrs.rdata;
			for (int ri = 0; ri < stashed->rr->rrs.count;
					++ri, r_it = knot_rdataset_next(r_it)) {
				kr_require(array_push(*ra, r_it) >= 0);
			}
		} else {
			int ret = array_reserve_mm(*ra, ra->len + rr->rrs.count,
							kr_memreserve, pool);
			if (ret) {
				return kr_error(ret);
			}
		}
		/* Append to the array. */
		knot_rdata_t *r_it = rr->rrs.rdata;
		for (int ri = 0; ri < rr->rrs.count;
				++ri, r_it = knot_rdataset_next(r_it)) {
			kr_require(array_push(*ra, r_it) >= 0);
		}
		return i;
	}

	/* No stashed rrset found, add */
	int ret = array_reserve_mm(*array, array->len + 1, kr_memreserve, pool);
	if (ret) {
		return kr_error(ret);
	}

	ranked_rr_array_entry_t *entry = mm_calloc(pool, 1, sizeof(*entry));
	if (!entry) {
		return kr_error(ENOMEM);
	}

	knot_rrset_t *rr_new = knot_rrset_new(rr->owner, rr->type, rr->rclass, rr->ttl, pool);
	if (!rr_new) {
		mm_free(pool, entry);
		return kr_error(ENOMEM);
	}
	rr_new->rrs = rr->rrs;
	if (kr_fails_assert(rr_new->additional == NULL)) {
		mm_free(pool, entry);
		return kr_error(EINVAL);
	}

	entry->qry_uid = qry_uid;
	entry->rr = rr_new;
	entry->rank = rank;
	entry->to_wire = to_wire;
	entry->in_progress = true;
	if (array_push(*array, entry) < 0) {
		/* Silence coverity.  It shouldn't be possible to happen,
		 * due to the array_reserve_mm call above. */
		mm_free(pool, entry);
		return kr_error(ENOMEM);
	}

	ret = to_wire_ensure_unique(array, array->len - 1);
	if (ret < 0) return ret;
	return array->len - 1;
}

/** Comparator for qsort() on an array of knot_data_t pointers. */
static int rdata_p_cmp(const void *rp1, const void *rp2)
{
	/* Just correct types of the parameters and pass them dereferenced. */
	const knot_rdata_t
		*const *r1 = rp1,
		*const *r2 = rp2;
	return knot_rdata_cmp(*r1, *r2);
}
int kr_ranked_rrarray_finalize(ranked_rr_array_t *array, uint32_t qry_uid, knot_mm_t *pool)
{
	for (ssize_t array_i = array->len - 1; array_i >= 0; --array_i) {
		ranked_rr_array_entry_t *stashed = array->at[array_i];
		if (stashed->qry_uid != qry_uid) {
			continue; /* We apparently can't always short-cut the cycle. */
		}
		if (!stashed->in_progress) {
			continue;
		}
		rdata_array_t *ra = stashed->rr->additional;
		if (!ra) {
			/* No array, so we just need to copy the rdataset. */
			knot_rdataset_t *rds = &stashed->rr->rrs;
			knot_rdataset_t tmp = *rds;
			int ret = knot_rdataset_copy(rds, &tmp, pool);
			if (ret) {
				return kr_error(ret);
			}
		} else {
			/* Multiple RRs; first: sort the array. */
			stashed->rr->additional = NULL;
			qsort(ra->at, ra->len, sizeof(ra->at[0]), rdata_p_cmp);
			/* Prune duplicates: NULL all except the last instance. */
			int dup_count = 0;
			for (int i = 0; i + 1 < ra->len; ++i) {
				if (knot_rdata_cmp(ra->at[i], ra->at[i + 1]) == 0) {
					ra->at[i] = NULL;
					++dup_count;
					kr_log_q(NULL, ITERATOR, "deleted duplicate RR\n");
				}
			}
			/* Prepare rdataset, except rdata contents. */
			knot_rdataset_t *rds = &stashed->rr->rrs;
			rds->size = 0;
			for (int i = 0; i < ra->len; ++i) {
				if (ra->at[i]) {
					rds->size += knot_rdata_size(ra->at[i]->len);
				}
			}
			rds->count = ra->len - dup_count;
			if (rds->size) {
				rds->rdata = mm_alloc(pool, rds->size);
				if (!rds->rdata) {
					return kr_error(ENOMEM);
				}
			} else {
				rds->rdata = NULL;
			}
			/* Everything is ready; now just copy all the rdata. */
			uint8_t *raw_it = (uint8_t *)rds->rdata;
			for (int i = 0; i < ra->len; ++i) {
				if (ra->at[i] && rds->size/*linters*/) {
					const int size = knot_rdata_size(ra->at[i]->len);
					memcpy(raw_it, ra->at[i], size);
					raw_it += size;
				}
			}
			if (kr_fails_assert(raw_it == (uint8_t *)rds->rdata + rds->size))
				return kr_error(EINVAL);
		}
		stashed->in_progress = false;
	}
	return kr_ok();
}


int kr_ranked_rrarray_set_wire(ranked_rr_array_t *array, bool to_wire,
			       uint32_t qry_uid, bool check_dups,
			       bool (*extraCheck)(const ranked_rr_array_entry_t *))
{
	for (size_t i = 0; i < array->len; ++i) {
		ranked_rr_array_entry_t *entry = array->at[i];
		if (entry->qry_uid != qry_uid) {
			continue;
		}
		if (extraCheck != NULL && !extraCheck(entry)) {
			continue;
		}
		entry->to_wire = to_wire;
		if (check_dups) {
			int ret = to_wire_ensure_unique(array, i);
			if (ret) return ret;
		}
	}
	return kr_ok();
}


static char *callprop(struct kr_module *module, const char *prop, const char *input, void *env)
{
	if (!module || !module->props || !prop) {
		return NULL;
	}
	for (const struct kr_prop *p = module->props; p && p->name; ++p) {
		if (p->cb != NULL && strcmp(p->name, prop) == 0) {
			return p->cb(env, module, input);
		}
	}
	return NULL;
}

char *kr_module_call(struct kr_context *ctx, const char *module, const char *prop, const char *input)
{
	if (!ctx || !ctx->modules || !module || !prop) {
		return NULL;
	}
	module_array_t *mod_list = ctx->modules;
	for (size_t i = 0; i < mod_list->len; ++i) {
		struct kr_module *mod = mod_list->at[i];
		if (strcmp(mod->name, module) == 0) {
			return callprop(mod, prop, input, ctx);
		}
	}
	return NULL;
}

static void flags_to_str(char *dst, const knot_pkt_t *pkt, size_t maxlen)
{
	int offset = 0;
	int ret = 0;
	struct {
		uint8_t (*get) (const uint8_t *packet);
		char name[3];
	} flag[7] = {
		{knot_wire_get_qr, "qr"},
		{knot_wire_get_aa, "aa"},
		{knot_wire_get_rd, "rd"},
		{knot_wire_get_ra, "ra"},
		{knot_wire_get_tc, "tc"},
		{knot_wire_get_ad, "ad"},
		{knot_wire_get_cd, "cd"}
	};
	for (int i = 0; i < 7; ++i) {
		if (!flag[i].get(pkt->wire)) {
			continue;
		}
		ret = snprintf(dst + offset, maxlen, "%s ", flag[i].name);
		if (ret <= 0 || ret >= maxlen) {
			dst[0] = 0;
			return;
		}
		offset += ret;
		maxlen -= ret;
	}
	dst[offset] = 0;
}

static char *print_section_opt(struct mempool *mp, char *endp, const knot_rrset_t *rr, const uint8_t rcode)
{
	uint8_t errcode = knot_edns_get_ext_rcode(rr);
	uint16_t ext_rcode_id = knot_edns_whole_rcode(errcode, rcode);
	const char *ext_rcode_str = "Unused";
	const knot_lookup_t *ext_rcode;

	if (errcode > 0) {
		ext_rcode = knot_lookup_by_id(knot_rcode_names, ext_rcode_id);
		if (ext_rcode != NULL) {
			ext_rcode_str = ext_rcode->name;
		} else {
			ext_rcode_str = "Unknown";
		}
	}

	return mp_printf_append(mp, endp,
		";; EDNS PSEUDOSECTION:\n;; "
		"Version: %u; flags: %s; UDP size: %u B; ext-rcode: %s\n\n",
		knot_edns_get_version(rr),
		(knot_edns_do(rr) != 0) ? "do" : "",
		knot_edns_get_payload(rr),
		ext_rcode_str);

}

/**
 * Detect if qname contains an uppercase letter.
 */
static bool qname_has_uppercase(const knot_dname_t *qname) {
	const int len = knot_dname_size(qname) - 1;  /* skip root label at the end */
	for (int i = 1; i < len; ++i) {  /* skip first length byte */
		/* Note: this relies on the fact that correct label lengths
		 * can't pass this test by "luck" and that correctness
		 * is checked earlier by packet parser. */
		if (qname[i] >= 'A' && qname[i] <= 'Z')
			return true;
	}
	return false;
}

char *kr_pkt_text(const knot_pkt_t *pkt)
{
	if (!pkt) {
		return NULL;
	}

	struct mempool *mp = mp_new(512);

	static const char * snames[] = {
		";; ANSWER SECTION", ";; AUTHORITY SECTION", ";; ADDITIONAL SECTION"
	};
	char flags[32];
	uint8_t pkt_rcode = knot_wire_get_rcode(pkt->wire);
	uint8_t pkt_opcode = knot_wire_get_opcode(pkt->wire);
	const char *rcode_str = "Unknown";
	const char *opcode_str = "Unknown";
	const knot_lookup_t *rcode = knot_lookup_by_id(knot_rcode_names, pkt_rcode);
	const knot_lookup_t *opcode = knot_lookup_by_id(knot_opcode_names, pkt_opcode);
	uint16_t qry_id = knot_wire_get_id(pkt->wire);
	uint16_t qdcount = knot_wire_get_qdcount(pkt->wire);

	if (rcode != NULL) {
		rcode_str = rcode->name;
	}
	if (opcode != NULL) {
		opcode_str = opcode->name;
	}
	flags_to_str(flags, pkt, sizeof(flags));

	char *ptr = mp_printf(mp,
		";; ->>HEADER<<- opcode: %s; status: %s; id: %hu\n"
		";; Flags: %s QUERY: %hu; ANSWER: %hu; "
		"AUTHORITY: %hu; ADDITIONAL: %hu\n\n",
		opcode_str, rcode_str, qry_id,
		flags,
		qdcount,
		knot_wire_get_ancount(pkt->wire),
		knot_wire_get_nscount(pkt->wire),
		knot_wire_get_arcount(pkt->wire));

	if (knot_pkt_has_edns(pkt)) {
		ptr = print_section_opt(mp, ptr, pkt->opt_rr, knot_wire_get_rcode(pkt->wire));
	}

	if (qdcount == 1) {
		KR_DNAME_GET_STR(qname, knot_pkt_qname(pkt));
		KR_RRTYPE_GET_STR(rrtype, knot_pkt_qtype(pkt));
		const char *qnwarn;
		if (qname_has_uppercase(knot_pkt_qname(pkt)))
			qnwarn = \
"; WARNING! Uppercase letters indicate positions with letter case mismatches!\n"
";          Normally you should see all-lowercase qname here.\n";
		else
			qnwarn = "";
		ptr = mp_printf_append(mp, ptr, ";; QUESTION SECTION\n%s%s\t\t%s\n", qnwarn, qname, rrtype);
	} else if (qdcount > 1) {
		ptr = mp_printf_append(mp, ptr, ";; Warning: unsupported QDCOUNT %hu\n", qdcount);
	}

	for (knot_section_t i = KNOT_ANSWER; i <= KNOT_ADDITIONAL; ++i) {
		const knot_pktsection_t *sec = knot_pkt_section(pkt, i);
		if (sec->count == 0) {
			continue;
		}

		ptr = mp_printf_append(mp, ptr, "\n%s\n", snames[i - KNOT_ANSWER]);
		for (unsigned k = 0; k < sec->count; ++k) {
			const knot_rrset_t *rr = knot_pkt_rr(sec, k);
			if (rr->type == KNOT_RRTYPE_OPT) {
				continue;
			}
			auto_free char *rr_text = kr_rrset_text(rr);
			ptr = mp_printf_append(mp, ptr, "%s", rr_text);
		}
	}

	/* Close growing buffer and duplicate result before deleting */
	char *result = strdup(ptr);
	mp_delete(mp);
	return result;
}

const knot_dump_style_t KR_DUMP_STYLE_DEFAULT = { /* almost all = false, */
	.show_ttl = true,
};

char *kr_rrset_text(const knot_rrset_t *rr)
{
	if (!rr) {
		return NULL;
	}

	/* Note: knot_rrset_txt_dump will double the size until the rrset fits */
	size_t bufsize = 128;
	char *buf = malloc(bufsize);
	int ret = knot_rrset_txt_dump(rr, &buf, &bufsize, &KR_DUMP_STYLE_DEFAULT);
	if (ret < 0) {
		free(buf);
		return NULL;
	}

	return buf;
}

uint64_t kr_now()
{
	return uv_now(uv_default_loop());
}

void kr_uv_free_cb(uv_handle_t* handle)
{
	free(handle->data);
}

const char *kr_strptime_diff(const char *format, const char *time1_str,
		             const char *time0_str, double *diff) {
	if (kr_fails_assert(format && time1_str && time0_str && diff)) return NULL;

	struct tm time1_tm;
	time_t time1_u;
	struct tm time0_tm;
	time_t time0_u;

	char *err = strptime(time1_str, format, &time1_tm);
	if (err == NULL || err != time1_str + strlen(time1_str))
		return "strptime failed for time1";
	time1_tm.tm_isdst = -1; /* determine if DST is active or not */
	time1_u = mktime(&time1_tm);
	if (time1_u == (time_t)-1)
		return "mktime failed for time1";

	err = strptime(time0_str, format, &time0_tm);
	if (err == NULL || err != time0_str + strlen(time0_str))
		return "strptime failed for time0";
	time0_tm.tm_isdst = -1; /* determine if DST is active or not */
	time0_u = mktime(&time0_tm);
	if (time0_u == (time_t)-1)
		return "mktime failed for time0";
	*diff = difftime(time1_u, time0_u);

	return NULL;
}

int knot_dname_lf2wire(knot_dname_t * const dst, uint8_t len, const uint8_t *lf)
{
	knot_dname_t *d = dst; /* moving "cursor" as we write it out */
	if (kr_fails_assert(d && (len == 0 || lf))) return kr_error(EINVAL);
	/* we allow the final zero byte to be omitted */
	if (!len) {
		goto finish;
	}
	if (lf[len - 1]) {
		++len;
	}
	/* convert the name, one label at a time */
	int label_end = len - 1; /* index of the zero byte after the current label */
	while (label_end >= 0) {
		/* find label_start */
		int i = label_end - 1;
		while (i >= 0 && lf[i])
			--i;
		const int label_start = i + 1; /* index of the first byte of the current label */
		const int label_len = label_end - label_start;
		kr_assert(label_len >= 0);
		if (label_len > 63 || label_len <= 0)
			return kr_error(EILSEQ);
		/* write the label */
		*d = label_len;
		++d;
		memcpy(d, lf + label_start, label_len);
		d += label_len;
		/* next label */
		label_end = label_start - 1;
	}
finish:
	*d = 0; /* the final zero */
	++d;
	return d - dst;
}

static void rnd_noerror(void *data, uint size)
{
	int ret = gnutls_rnd(GNUTLS_RND_NONCE, data, size);
	if (ret) {
		kr_log_error(SYSTEM, "gnutls_rnd(): %s\n", gnutls_strerror(ret));
		abort();
	}
}
void kr_rnd_buffered(void *data, uint size)
{
	/* static circular buffer, from index _begin (inclusive) to _end (exclusive) */
	static uint8_t buf[512/8]; /* gnutls_rnd() works on blocks of 512 bits (chacha) */
	static uint buf_begin = sizeof(buf);

	if (unlikely(size > sizeof(buf))) {
		rnd_noerror(data, size);
		return;
	}
	/* Start with contiguous chunk, possibly until the end of buffer. */
	const uint size1 = MIN(size, sizeof(buf) - buf_begin);
	uint8_t *d = data;
	memcpy(d, buf + buf_begin, size1);
	if (size1 == size) {
		buf_begin += size1;
		return;
	}
	d += size1;
	size -= size1;
	/* Refill the whole buffer, and finish by another contiguous chunk. */
	rnd_noerror(buf, sizeof(buf));
	memcpy(d, buf, size);
	buf_begin = size;
}

void kr_rrset_init(knot_rrset_t *rrset, knot_dname_t *owner,
			uint16_t type, uint16_t rclass, uint32_t ttl)
{
	if (kr_fails_assert(rrset)) return;
	knot_rrset_init(rrset, owner, type, rclass, ttl);
}
bool kr_pkt_has_wire(const knot_pkt_t *pkt)
{
	return pkt->size != KR_PKT_SIZE_NOWIRE;
}
bool kr_pkt_has_dnssec(const knot_pkt_t *pkt)
{
	return knot_pkt_has_dnssec(pkt);
}
uint16_t kr_pkt_qclass(const knot_pkt_t *pkt)
{
	return knot_pkt_qclass(pkt);
}
uint16_t kr_pkt_qtype(const knot_pkt_t *pkt)
{
	return knot_pkt_qtype(pkt);
}
uint32_t kr_rrsig_sig_inception(const knot_rdata_t *rdata)
{
	return knot_rrsig_sig_inception(rdata);
}
uint32_t kr_rrsig_sig_expiration(const knot_rdata_t *rdata)
{
	return knot_rrsig_sig_expiration(rdata);
}
uint16_t kr_rrsig_type_covered(const knot_rdata_t *rdata)
{
	return knot_rrsig_type_covered(rdata);
}

time_t kr_file_mtime (const char* fname) {
	struct stat fstat;

	if (stat(fname, &fstat) != 0) {
		return 0;
	}

	return fstat.st_mtime;
}

long long kr_fssize(const char *path)
{
	if (!path)
		return kr_error(EINVAL);

	struct statvfs buf;
	if (statvfs(path, &buf) != 0)
		return kr_error(errno);

	return buf.f_frsize * buf.f_blocks;
}

const char * kr_dirent_name(const struct dirent *de)
{
	return de ? de->d_name : NULL;
}