summaryrefslogtreecommitdiffstats
path: root/sc/inc/kahan.hxx
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:06:44 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 09:06:44 +0000
commited5640d8b587fbcfed7dd7967f3de04b37a76f26 (patch)
tree7a5f7c6c9d02226d7471cb3cc8fbbf631b415303 /sc/inc/kahan.hxx
parentInitial commit. (diff)
downloadlibreoffice-upstream.tar.xz
libreoffice-upstream.zip
Adding upstream version 4:7.4.7.upstream/4%7.4.7upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'sc/inc/kahan.hxx')
-rw-r--r--sc/inc/kahan.hxx240
1 files changed, 240 insertions, 0 deletions
diff --git a/sc/inc/kahan.hxx b/sc/inc/kahan.hxx
new file mode 100644
index 000000000..6c84f6eee
--- /dev/null
+++ b/sc/inc/kahan.hxx
@@ -0,0 +1,240 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4; fill-column: 100 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ */
+
+#pragma once
+
+#include <rtl/math.hxx>
+#include <cmath>
+
+/**
+ * This class provides LO with Kahan summation algorithm
+ * About this algorithm: https://en.wikipedia.org/wiki/Kahan_summation_algorithm
+ * For general purpose software we assume first order error is enough.
+ *
+ * Additionally queue and remember the last recent non-zero value and add it
+ * similar to approxAdd() when obtaining the final result to further eliminate
+ * accuracy errors. (e.g. for the dreaded 0.1 + 0.2 - 0.3 != 0.0)
+ */
+
+class KahanSum
+{
+public:
+ constexpr KahanSum() = default;
+
+ constexpr KahanSum(double x_0)
+ : m_fSum(x_0)
+ {
+ }
+
+ constexpr KahanSum(double x_0, double err_0)
+ : m_fSum(x_0)
+ , m_fError(err_0)
+ {
+ }
+
+ constexpr KahanSum(const KahanSum& fSum) = default;
+
+public:
+ /**
+ * Adds a value to the sum using Kahan summation.
+ * @param x_i
+ */
+ void add(double x_i)
+ {
+ if (x_i == 0.0)
+ return;
+
+ if (!m_fMem)
+ {
+ m_fMem = x_i;
+ return;
+ }
+
+ double t = m_fSum + m_fMem;
+ if (std::abs(m_fSum) >= std::abs(m_fMem))
+ m_fError += (m_fSum - t) + m_fMem;
+ else
+ m_fError += (m_fMem - t) + m_fSum;
+ m_fSum = t;
+ m_fMem = x_i;
+ }
+
+ /**
+ * Adds a value to the sum using Kahan summation.
+ * @param fSum
+ */
+ inline void add(const KahanSum& fSum)
+ {
+ add(fSum.m_fSum);
+ add(fSum.m_fError);
+ add(fSum.m_fMem);
+ }
+
+ /**
+ * Substracts a value to the sum using Kahan summation.
+ * @param fSum
+ */
+ inline void subtract(const KahanSum& fSum)
+ {
+ add(-fSum.m_fSum);
+ add(-fSum.m_fError);
+ add(-fSum.m_fMem);
+ }
+
+public:
+ constexpr KahanSum operator-() const
+ {
+ KahanSum fKahanSum;
+ fKahanSum.m_fSum = -m_fSum;
+ fKahanSum.m_fError = -m_fError;
+ fKahanSum.m_fMem = -m_fMem;
+ return fKahanSum;
+ }
+
+ constexpr KahanSum& operator=(double fSum)
+ {
+ m_fSum = fSum;
+ m_fError = 0;
+ m_fMem = 0;
+ return *this;
+ }
+
+ constexpr KahanSum& operator=(const KahanSum& fSum) = default;
+
+ inline void operator+=(const KahanSum& fSum) { add(fSum); }
+
+ inline void operator+=(double fSum) { add(fSum); }
+
+ inline void operator-=(const KahanSum& fSum) { subtract(fSum); }
+
+ inline void operator-=(double fSum) { add(-fSum); }
+
+ inline KahanSum operator+(double fSum) const
+ {
+ KahanSum fNSum(*this);
+ fNSum.add(fSum);
+ return fNSum;
+ }
+
+ inline KahanSum operator+(const KahanSum& fSum) const
+ {
+ KahanSum fNSum(*this);
+ fNSum += fSum;
+ return fNSum;
+ }
+
+ inline KahanSum operator-(double fSum) const
+ {
+ KahanSum fNSum(*this);
+ fNSum.add(-fSum);
+ return fNSum;
+ }
+
+ inline KahanSum operator-(const KahanSum& fSum) const
+ {
+ KahanSum fNSum(*this);
+ fNSum -= fSum;
+ return fNSum;
+ }
+
+ /**
+ * In some parts of the code of interpr_.cxx this may be used for
+ * product instead of sum. This operator shall be used for that task.
+ */
+ constexpr void operator*=(double fTimes)
+ {
+ if (m_fMem)
+ {
+ m_fSum = get() * fTimes;
+ m_fMem = 0.0;
+ }
+ else
+ {
+ m_fSum = (m_fSum + m_fError) * fTimes;
+ }
+ m_fError = 0.0;
+ }
+
+ constexpr void operator/=(double fDivides)
+ {
+ if (m_fMem)
+ {
+ m_fSum = get() / fDivides;
+ m_fMem = 0.0;
+ }
+ else
+ {
+ m_fSum = (m_fSum + m_fError) / fDivides;
+ }
+ m_fError = 0.0;
+ }
+
+ inline KahanSum operator*(const KahanSum& fTimes) const { return get() * fTimes.get(); }
+
+ inline KahanSum operator*(double fTimes) const { return get() * fTimes; }
+
+ inline KahanSum operator/(const KahanSum& fDivides) const { return get() / fDivides.get(); }
+
+ inline KahanSum operator/(double fDivides) const { return get() / fDivides; }
+
+ inline bool operator<(const KahanSum& fSum) const { return get() < fSum.get(); }
+
+ inline bool operator<(double fSum) const { return get() < fSum; }
+
+ inline bool operator>(const KahanSum& fSum) const { return get() > fSum.get(); }
+
+ inline bool operator>(double fSum) const { return get() > fSum; }
+
+ inline bool operator<=(const KahanSum& fSum) const { return get() <= fSum.get(); }
+
+ inline bool operator<=(double fSum) const { return get() <= fSum; }
+
+ inline bool operator>=(const KahanSum& fSum) const { return get() >= fSum.get(); }
+
+ inline bool operator>=(double fSum) const { return get() >= fSum; }
+
+ inline bool operator==(const KahanSum& fSum) const { return get() == fSum.get(); }
+
+ inline bool operator!=(const KahanSum& fSum) const { return get() != fSum.get(); }
+
+public:
+ /**
+ * Returns the final sum.
+ * @return final sum
+ */
+ double get() const
+ {
+ const double fTotal = m_fSum + m_fError;
+ if (!m_fMem)
+ return fTotal;
+
+ // Check the same condition as rtl::math::approxAdd() and if true
+ // return 0.0, if false use another Kahan summation adding m_fMem.
+ if (((m_fMem < 0.0 && fTotal > 0.0) || (fTotal < 0.0 && m_fMem > 0.0))
+ && rtl::math::approxEqual(m_fMem, -fTotal))
+ {
+ /* TODO: should we reset all values to zero here for further
+ * summation, or is it better to keep them as they are? */
+ return 0.0;
+ }
+
+ // The actual argument passed to add() here does not matter as long as
+ // it is not 0, m_fMem is not 0 and will be added anyway, see add().
+ const_cast<KahanSum*>(this)->add(m_fMem);
+ const_cast<KahanSum*>(this)->m_fMem = 0.0;
+ return m_fSum + m_fError;
+ }
+
+private:
+ double m_fSum = 0;
+ double m_fError = 0;
+ double m_fMem = 0;
+};
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab cinoptions=b1,g0,N-s cinkeys+=0=break: */