diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:06:44 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 09:06:44 +0000 |
commit | ed5640d8b587fbcfed7dd7967f3de04b37a76f26 (patch) | |
tree | 7a5f7c6c9d02226d7471cb3cc8fbbf631b415303 /sccomp/source/solver/CoinMPSolver.cxx | |
parent | Initial commit. (diff) | |
download | libreoffice-upstream.tar.xz libreoffice-upstream.zip |
Adding upstream version 4:7.4.7.upstream/4%7.4.7upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'sccomp/source/solver/CoinMPSolver.cxx')
-rw-r--r-- | sccomp/source/solver/CoinMPSolver.cxx | 365 |
1 files changed, 365 insertions, 0 deletions
diff --git a/sccomp/source/solver/CoinMPSolver.cxx b/sccomp/source/solver/CoinMPSolver.cxx new file mode 100644 index 000000000..a6b423d2d --- /dev/null +++ b/sccomp/source/solver/CoinMPSolver.cxx @@ -0,0 +1,365 @@ +/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */ +/* + * This file is part of the LibreOffice project. + * + * This Source Code Form is subject to the terms of the Mozilla Public + * License, v. 2.0. If a copy of the MPL was not distributed with this + * file, You can obtain one at http://mozilla.org/MPL/2.0/. + * + * This file incorporates work covered by the following license notice: + * + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed + * with this work for additional information regarding copyright + * ownership. The ASF licenses this file to you under the Apache + * License, Version 2.0 (the "License"); you may not use this file + * except in compliance with the License. You may obtain a copy of + * the License at http://www.apache.org/licenses/LICENSE-2.0 . + */ + +#include <CoinMP.h> +#include <CoinError.hpp> + +#include "SolverComponent.hxx" +#include <strings.hrc> + +#include <com/sun/star/frame/XModel.hpp> +#include <com/sun/star/table/CellAddress.hpp> + +#include <rtl/math.hxx> +#include <stdexcept> +#include <vector> +#include <float.h> + +namespace com::sun::star::uno { class XComponentContext; } + +using namespace com::sun::star; + +namespace { + +class CoinMPSolver : public SolverComponent +{ +public: + CoinMPSolver() {} + +private: + virtual void SAL_CALL solve() override; + virtual OUString SAL_CALL getImplementationName() override + { + return "com.sun.star.comp.Calc.CoinMPSolver"; + } + virtual OUString SAL_CALL getComponentDescription() override + { + return SolverComponent::GetResourceString( RID_COINMP_SOLVER_COMPONENT ); + } +}; + +} + +void SAL_CALL CoinMPSolver::solve() +{ + uno::Reference<frame::XModel> xModel( mxDoc, uno::UNO_QUERY_THROW ); + + maStatus.clear(); + mbSuccess = false; + + xModel->lockControllers(); + + // collect variables in vector (?) + + const auto & aVariableCells = maVariables; + size_t nVariables = aVariableCells.size(); + size_t nVar = 0; + + // collect all dependent cells + + ScSolverCellHashMap aCellsHash; + aCellsHash[maObjective].reserve( nVariables + 1 ); // objective function + + for (const auto& rConstr : std::as_const(maConstraints)) + { + table::CellAddress aCellAddr = rConstr.Left; + aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: left hand side + + if ( rConstr.Right >>= aCellAddr ) + aCellsHash[aCellAddr].reserve( nVariables + 1 ); // constraints: right hand side + } + + // set all variables to zero + //! store old values? + //! use old values as initial values? + for ( const auto& rVarCell : aVariableCells ) + { + SolverComponent::SetValue( mxDoc, rVarCell, 0.0 ); + } + + // read initial values from all dependent cells + for ( auto& rEntry : aCellsHash ) + { + double fValue = SolverComponent::GetValue( mxDoc, rEntry.first ); + rEntry.second.push_back( fValue ); // store as first element, as-is + } + + // loop through variables + for ( const auto& rVarCell : aVariableCells ) + { + SolverComponent::SetValue( mxDoc, rVarCell, 1.0 ); // set to 1 to examine influence + + // read value change from all dependent cells + for ( auto& rEntry : aCellsHash ) + { + double fChanged = SolverComponent::GetValue( mxDoc, rEntry.first ); + double fInitial = rEntry.second.front(); + rEntry.second.push_back( fChanged - fInitial ); + } + + SolverComponent::SetValue( mxDoc, rVarCell, 2.0 ); // minimal test for linearity + + for ( const auto& rEntry : aCellsHash ) + { + double fInitial = rEntry.second.front(); + double fCoeff = rEntry.second.back(); // last appended: coefficient for this variable + double fTwo = SolverComponent::GetValue( mxDoc, rEntry.first ); + + bool bLinear = rtl::math::approxEqual( fTwo, fInitial + 2.0 * fCoeff ) || + rtl::math::approxEqual( fInitial, fTwo - 2.0 * fCoeff ); + // second comparison is needed in case fTwo is zero + if ( !bLinear ) + maStatus = SolverComponent::GetResourceString( RID_ERROR_NONLINEAR ); + } + + SolverComponent::SetValue( mxDoc, rVarCell, 0.0 ); // set back to zero for examining next variable + } + + xModel->unlockControllers(); + + if ( !maStatus.isEmpty() ) + return; + + // + // build parameter arrays for CoinMP + // + + // set objective function + + const std::vector<double>& rObjCoeff = aCellsHash[maObjective]; + std::unique_ptr<double[]> pObjectCoeffs(new double[nVariables]); + for (nVar=0; nVar<nVariables; nVar++) + pObjectCoeffs[nVar] = rObjCoeff[nVar+1]; + double nObjectConst = rObjCoeff[0]; // constant term of objective + + // add rows + + size_t nRows = maConstraints.getLength(); + size_t nCompSize = nVariables * nRows; + std::unique_ptr<double[]> pCompMatrix(new double[nCompSize]); // first collect all coefficients, row-wise + for (size_t i=0; i<nCompSize; i++) + pCompMatrix[i] = 0.0; + + std::unique_ptr<double[]> pRHS(new double[nRows]); + std::unique_ptr<char[]> pRowType(new char[nRows]); + for (size_t i=0; i<nRows; i++) + { + pRHS[i] = 0.0; + pRowType[i] = 'N'; + } + + for (sal_Int32 nConstrPos = 0; nConstrPos < maConstraints.getLength(); ++nConstrPos) + { + // integer constraints are set later + sheet::SolverConstraintOperator eOp = maConstraints[nConstrPos].Operator; + if ( eOp == sheet::SolverConstraintOperator_LESS_EQUAL || + eOp == sheet::SolverConstraintOperator_GREATER_EQUAL || + eOp == sheet::SolverConstraintOperator_EQUAL ) + { + double fDirectValue = 0.0; + bool bRightCell = false; + table::CellAddress aRightAddr; + const uno::Any& rRightAny = maConstraints[nConstrPos].Right; + if ( rRightAny >>= aRightAddr ) + bRightCell = true; // cell specified as right-hand side + else + rRightAny >>= fDirectValue; // constant value + + table::CellAddress aLeftAddr = maConstraints[nConstrPos].Left; + + const std::vector<double>& rLeftCoeff = aCellsHash[aLeftAddr]; + double* pValues = &pCompMatrix[nConstrPos * nVariables]; + for (nVar=0; nVar<nVariables; nVar++) + pValues[nVar] = rLeftCoeff[nVar+1]; + + // if left hand cell has a constant term, put into rhs value + double fRightValue = -rLeftCoeff[0]; + + if ( bRightCell ) + { + const std::vector<double>& rRightCoeff = aCellsHash[aRightAddr]; + // modify pValues with rhs coefficients + for (nVar=0; nVar<nVariables; nVar++) + pValues[nVar] -= rRightCoeff[nVar+1]; + + fRightValue += rRightCoeff[0]; // constant term + } + else + fRightValue += fDirectValue; + + switch ( eOp ) + { + case sheet::SolverConstraintOperator_LESS_EQUAL: pRowType[nConstrPos] = 'L'; break; + case sheet::SolverConstraintOperator_GREATER_EQUAL: pRowType[nConstrPos] = 'G'; break; + case sheet::SolverConstraintOperator_EQUAL: pRowType[nConstrPos] = 'E'; break; + default: + OSL_ENSURE( false, "unexpected enum type" ); + } + pRHS[nConstrPos] = fRightValue; + } + } + + // Find non-zero coefficients, column-wise + + std::unique_ptr<int[]> pMatrixBegin(new int[nVariables+1]); + std::unique_ptr<int[]> pMatrixCount(new int[nVariables]); + std::unique_ptr<double[]> pMatrix(new double[nCompSize]); // not always completely used + std::unique_ptr<int[]> pMatrixIndex(new int[nCompSize]); + int nMatrixPos = 0; + for (nVar=0; nVar<nVariables; nVar++) + { + int nBegin = nMatrixPos; + for (size_t nRow=0; nRow<nRows; nRow++) + { + double fCoeff = pCompMatrix[ nRow * nVariables + nVar ]; // row-wise + if ( fCoeff != 0.0 ) + { + pMatrix[nMatrixPos] = fCoeff; + pMatrixIndex[nMatrixPos] = nRow; + ++nMatrixPos; + } + } + pMatrixBegin[nVar] = nBegin; + pMatrixCount[nVar] = nMatrixPos - nBegin; + } + pMatrixBegin[nVariables] = nMatrixPos; + pCompMatrix.reset(); + + // apply settings to all variables + + std::unique_ptr<double[]> pLowerBounds(new double[nVariables]); + std::unique_ptr<double[]> pUpperBounds(new double[nVariables]); + for (nVar=0; nVar<nVariables; nVar++) + { + pLowerBounds[nVar] = mbNonNegative ? 0.0 : -DBL_MAX; + pUpperBounds[nVar] = DBL_MAX; + + // bounds could possibly be further restricted from single-cell constraints + } + + std::unique_ptr<char[]> pColType(new char[nVariables]); + for (nVar=0; nVar<nVariables; nVar++) + pColType[nVar] = mbInteger ? 'I' : 'C'; + + // apply single-var integer constraints + + for (const auto& rConstr : std::as_const(maConstraints)) + { + sheet::SolverConstraintOperator eOp = rConstr.Operator; + if ( eOp == sheet::SolverConstraintOperator_INTEGER || + eOp == sheet::SolverConstraintOperator_BINARY ) + { + table::CellAddress aLeftAddr = rConstr.Left; + // find variable index for cell + for (nVar=0; nVar<nVariables; nVar++) + if ( AddressEqual( aVariableCells[nVar], aLeftAddr ) ) + { + if ( eOp == sheet::SolverConstraintOperator_INTEGER ) + pColType[nVar] = 'I'; + else + { + pColType[nVar] = 'B'; + pLowerBounds[nVar] = 0.0; + pUpperBounds[nVar] = 1.0; + } + } + } + } + + int nObjectSense = mbMaximize ? SOLV_OBJSENS_MAX : SOLV_OBJSENS_MIN; + + HPROB hProb = CoinCreateProblem(""); + int nResult = CoinLoadProblem( hProb, nVariables, nRows, nMatrixPos, 0, + nObjectSense, nObjectConst, pObjectCoeffs.get(), + pLowerBounds.get(), pUpperBounds.get(), pRowType.get(), pRHS.get(), nullptr, + pMatrixBegin.get(), pMatrixCount.get(), pMatrixIndex.get(), pMatrix.get(), + nullptr, nullptr, nullptr ); + if (nResult == SOLV_CALL_SUCCESS) + { + nResult = CoinLoadInteger( hProb, pColType.get() ); + } + + pColType.reset(); + pMatrixIndex.reset(); + pMatrix.reset(); + pMatrixCount.reset(); + pMatrixBegin.reset(); + pUpperBounds.reset(); + pLowerBounds.reset(); + pRowType.reset(); + pRHS.reset(); + pObjectCoeffs.reset(); + + CoinSetRealOption( hProb, COIN_REAL_MAXSECONDS, mnTimeout ); + CoinSetRealOption( hProb, COIN_REAL_MIPMAXSEC, mnTimeout ); + + // TODO: handle (or remove) settings: epsilon, B&B depth + + // solve model + + if (nResult == SOLV_CALL_SUCCESS) + { + nResult = CoinCheckProblem( hProb ); + } + + if (nResult == SOLV_CALL_SUCCESS) + { + try + { + nResult = CoinOptimizeProblem( hProb, 0 ); + } + catch (const CoinError& e) + { + CoinUnloadProblem(hProb); + throw std::runtime_error(e.message()); + } + } + + mbSuccess = ( nResult == SOLV_CALL_SUCCESS ); + if ( mbSuccess ) + { + // get solution + + maSolution.realloc( nVariables ); + CoinGetSolutionValues( hProb, maSolution.getArray(), nullptr, nullptr, nullptr ); + mfResultValue = CoinGetObjectValue( hProb ); + } + else + { + int nSolutionStatus = CoinGetSolutionStatus( hProb ); + if ( nSolutionStatus == 1 ) + maStatus = SolverComponent::GetResourceString( RID_ERROR_INFEASIBLE ); + else if ( nSolutionStatus == 2 ) + maStatus = SolverComponent::GetResourceString( RID_ERROR_UNBOUNDED ); + // TODO: detect timeout condition and report as RID_ERROR_TIMEOUT + // (currently reported as infeasible) + } + + CoinUnloadProblem( hProb ); +} + +extern "C" SAL_DLLPUBLIC_EXPORT css::uno::XInterface * +com_sun_star_comp_Calc_CoinMPSolver_get_implementation( + css::uno::XComponentContext *, + css::uno::Sequence<css::uno::Any> const &) +{ + return cppu::acquire(new CoinMPSolver()); +} + +/* vim:set shiftwidth=4 softtabstop=4 expandtab: */ |