summaryrefslogtreecommitdiffstats
path: root/sc/source/core/tool/scmatrix.cxx
diff options
context:
space:
mode:
Diffstat (limited to 'sc/source/core/tool/scmatrix.cxx')
-rw-r--r--sc/source/core/tool/scmatrix.cxx3420
1 files changed, 3420 insertions, 0 deletions
diff --git a/sc/source/core/tool/scmatrix.cxx b/sc/source/core/tool/scmatrix.cxx
new file mode 100644
index 000000000..cb04dd315
--- /dev/null
+++ b/sc/source/core/tool/scmatrix.cxx
@@ -0,0 +1,3420 @@
+/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
+/*
+ * This file is part of the LibreOffice project.
+ *
+ * This Source Code Form is subject to the terms of the Mozilla Public
+ * License, v. 2.0. If a copy of the MPL was not distributed with this
+ * file, You can obtain one at http://mozilla.org/MPL/2.0/.
+ *
+ * This file incorporates work covered by the following license notice:
+ *
+ * Licensed to the Apache Software Foundation (ASF) under one or more
+ * contributor license agreements. See the NOTICE file distributed
+ * with this work for additional information regarding copyright
+ * ownership. The ASF licenses this file to you under the Apache
+ * License, Version 2.0 (the "License"); you may not use this file
+ * except in compliance with the License. You may obtain a copy of
+ * the License at http://www.apache.org/licenses/LICENSE-2.0 .
+ */
+
+#include <scmatrix.hxx>
+#include <global.hxx>
+#include <address.hxx>
+#include <formula/errorcodes.hxx>
+#include <interpre.hxx>
+#include <mtvelements.hxx>
+#include <compare.hxx>
+#include <matrixoperators.hxx>
+#include <math.hxx>
+
+#include <svl/numformat.hxx>
+#include <svl/zforlist.hxx>
+#include <svl/sharedstring.hxx>
+#include <rtl/math.hxx>
+#include <sal/log.hxx>
+#include <osl/diagnose.h>
+
+#include <memory>
+#include <vector>
+#include <limits>
+
+#include <mdds/multi_type_matrix.hpp>
+#include <mdds/multi_type_vector/types.hpp>
+
+#if DEBUG_MATRIX
+#include <iostream>
+using std::cout;
+using std::endl;
+#endif
+
+using ::std::pair;
+using ::std::advance;
+
+namespace {
+
+/**
+ * Custom string trait struct to tell mdds::multi_type_matrix about the
+ * custom string type and how to handle blocks storing them.
+ */
+struct matrix_trait
+{
+ typedef sc::string_block string_element_block;
+ typedef sc::uint16_block integer_element_block;
+
+ typedef mdds::mtv::custom_block_func1<sc::string_block> element_block_func;
+};
+
+}
+
+typedef mdds::multi_type_matrix<matrix_trait> MatrixImplType;
+
+namespace {
+
+double convertStringToValue( ScInterpreter* pErrorInterpreter, const OUString& rStr )
+{
+ if (pErrorInterpreter)
+ {
+ FormulaError nError = FormulaError::NONE;
+ SvNumFormatType nCurFmtType = SvNumFormatType::ALL;
+ double fValue = pErrorInterpreter->ConvertStringToValue( rStr, nError, nCurFmtType);
+ if (nError != FormulaError::NONE)
+ {
+ pErrorInterpreter->SetError( nError);
+ return CreateDoubleError( nError);
+ }
+ return fValue;
+ }
+ return CreateDoubleError( FormulaError::NoValue);
+}
+
+struct ElemEqualZero
+{
+ double operator() (double val) const
+ {
+ if (!std::isfinite(val))
+ return val;
+ return val == 0.0 ? 1.0 : 0.0;
+ }
+};
+
+struct ElemNotEqualZero
+{
+ double operator() (double val) const
+ {
+ if (!std::isfinite(val))
+ return val;
+ return val != 0.0 ? 1.0 : 0.0;
+ }
+};
+
+struct ElemGreaterZero
+{
+ double operator() (double val) const
+ {
+ if (!std::isfinite(val))
+ return val;
+ return val > 0.0 ? 1.0 : 0.0;
+ }
+};
+
+struct ElemLessZero
+{
+ double operator() (double val) const
+ {
+ if (!std::isfinite(val))
+ return val;
+ return val < 0.0 ? 1.0 : 0.0;
+ }
+};
+
+struct ElemGreaterEqualZero
+{
+ double operator() (double val) const
+ {
+ if (!std::isfinite(val))
+ return val;
+ return val >= 0.0 ? 1.0 : 0.0;
+ }
+};
+
+struct ElemLessEqualZero
+{
+ double operator() (double val) const
+ {
+ if (!std::isfinite(val))
+ return val;
+ return val <= 0.0 ? 1.0 : 0.0;
+ }
+};
+
+template<typename Comp>
+class CompareMatrixElemFunc
+{
+ static Comp maComp;
+
+ std::vector<double> maNewMatValues; // double instead of bool to transport error values
+ size_t mnRow;
+ size_t mnCol;
+public:
+ CompareMatrixElemFunc( size_t nRow, size_t nCol ) : mnRow(nRow), mnCol(nCol)
+ {
+ maNewMatValues.reserve(nRow*nCol);
+ }
+
+ CompareMatrixElemFunc( const CompareMatrixElemFunc& ) = delete;
+ CompareMatrixElemFunc& operator= ( const CompareMatrixElemFunc& ) = delete;
+
+ CompareMatrixElemFunc( CompareMatrixElemFunc&& ) = default;
+ CompareMatrixElemFunc& operator= ( CompareMatrixElemFunc&& ) = default;
+
+ void operator() (const MatrixImplType::element_block_node_type& node)
+ {
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ {
+ typedef MatrixImplType::numeric_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ {
+ double fVal = *it;
+ maNewMatValues.push_back(maComp(fVal));
+ }
+ }
+ break;
+ case mdds::mtm::element_boolean:
+ {
+ typedef MatrixImplType::boolean_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ {
+ double fVal = *it ? 1.0 : 0.0;
+ maNewMatValues.push_back(maComp(fVal));
+ }
+ }
+ break;
+ case mdds::mtm::element_string:
+ case mdds::mtm::element_empty:
+ default:
+ // Fill it with false.
+ maNewMatValues.resize(maNewMatValues.size() + node.size, 0.0);
+ }
+ }
+
+ void swap( MatrixImplType& rMat )
+ {
+ MatrixImplType aNewMat(mnRow, mnCol, maNewMatValues.begin(), maNewMatValues.end());
+ rMat.swap(aNewMat);
+ }
+};
+
+template<typename Comp>
+Comp CompareMatrixElemFunc<Comp>::maComp;
+
+}
+
+/* TODO: it would be good if mdds had get/set<sal_uInt8> additionally to
+ * get/set<bool>, we're abusing double here. */
+typedef double TMatFlag;
+const TMatFlag SC_MATFLAG_EMPTYRESULT = 1.0;
+const TMatFlag SC_MATFLAG_EMPTYPATH = 2.0;
+
+class ScMatrixImpl
+{
+ MatrixImplType maMat;
+ MatrixImplType maMatFlag;
+ ScInterpreter* pErrorInterpreter;
+
+public:
+ ScMatrixImpl(const ScMatrixImpl&) = delete;
+ const ScMatrixImpl& operator=(const ScMatrixImpl&) = delete;
+
+ ScMatrixImpl(SCSIZE nC, SCSIZE nR);
+ ScMatrixImpl(SCSIZE nC, SCSIZE nR, double fInitVal);
+
+ ScMatrixImpl( size_t nC, size_t nR, const std::vector<double>& rInitVals );
+
+ ~ScMatrixImpl() COVERITY_NOEXCEPT_FALSE;
+
+ void Clear();
+ void Resize(SCSIZE nC, SCSIZE nR);
+ void Resize(SCSIZE nC, SCSIZE nR, double fVal);
+ void SetErrorInterpreter( ScInterpreter* p);
+ ScInterpreter* GetErrorInterpreter() const { return pErrorInterpreter; }
+
+ void GetDimensions( SCSIZE& rC, SCSIZE& rR) const;
+ SCSIZE GetElementCount() const;
+ bool ValidColRow( SCSIZE nC, SCSIZE nR) const;
+ bool ValidColRowReplicated( SCSIZE & rC, SCSIZE & rR ) const;
+ bool ValidColRowOrReplicated( SCSIZE & rC, SCSIZE & rR ) const;
+ void SetErrorAtInterpreter( FormulaError nError ) const;
+
+ void PutDouble(double fVal, SCSIZE nC, SCSIZE nR);
+ void PutDouble( double fVal, SCSIZE nIndex);
+ void PutDouble(const double* pArray, size_t nLen, SCSIZE nC, SCSIZE nR);
+
+ void PutString(const svl::SharedString& rStr, SCSIZE nC, SCSIZE nR);
+ void PutString(const svl::SharedString& rStr, SCSIZE nIndex);
+ void PutString(const svl::SharedString* pArray, size_t nLen, SCSIZE nC, SCSIZE nR);
+
+ void PutEmpty(SCSIZE nC, SCSIZE nR);
+ void PutEmptyPath(SCSIZE nC, SCSIZE nR);
+ void PutError( FormulaError nErrorCode, SCSIZE nC, SCSIZE nR );
+ void PutBoolean(bool bVal, SCSIZE nC, SCSIZE nR);
+ FormulaError GetError( SCSIZE nC, SCSIZE nR) const;
+ double GetDouble(SCSIZE nC, SCSIZE nR) const;
+ double GetDouble( SCSIZE nIndex) const;
+ double GetDoubleWithStringConversion(SCSIZE nC, SCSIZE nR) const;
+ svl::SharedString GetString(SCSIZE nC, SCSIZE nR) const;
+ svl::SharedString GetString( SCSIZE nIndex) const;
+ svl::SharedString GetString( SvNumberFormatter& rFormatter, SCSIZE nC, SCSIZE nR) const;
+ ScMatrixValue Get(SCSIZE nC, SCSIZE nR) const;
+ bool IsStringOrEmpty( SCSIZE nIndex ) const;
+ bool IsStringOrEmpty( SCSIZE nC, SCSIZE nR ) const;
+ bool IsEmpty( SCSIZE nC, SCSIZE nR ) const;
+ bool IsEmptyCell( SCSIZE nC, SCSIZE nR ) const;
+ bool IsEmptyResult( SCSIZE nC, SCSIZE nR ) const;
+ bool IsEmptyPath( SCSIZE nC, SCSIZE nR ) const;
+ bool IsValue( SCSIZE nIndex ) const;
+ bool IsValue( SCSIZE nC, SCSIZE nR ) const;
+ bool IsValueOrEmpty( SCSIZE nC, SCSIZE nR ) const;
+ bool IsBoolean( SCSIZE nC, SCSIZE nR ) const;
+ bool IsNumeric() const;
+
+ void MatCopy(ScMatrixImpl& mRes) const;
+ void MatTrans(ScMatrixImpl& mRes) const;
+ void FillDouble( double fVal, SCSIZE nC1, SCSIZE nR1, SCSIZE nC2, SCSIZE nR2 );
+ void PutDoubleVector( const ::std::vector< double > & rVec, SCSIZE nC, SCSIZE nR );
+ void PutStringVector( const ::std::vector< svl::SharedString > & rVec, SCSIZE nC, SCSIZE nR );
+ void PutEmptyVector( SCSIZE nCount, SCSIZE nC, SCSIZE nR );
+ void PutEmptyResultVector( SCSIZE nCount, SCSIZE nC, SCSIZE nR );
+ void PutEmptyPathVector( SCSIZE nCount, SCSIZE nC, SCSIZE nR );
+ void CompareEqual();
+ void CompareNotEqual();
+ void CompareLess();
+ void CompareGreater();
+ void CompareLessEqual();
+ void CompareGreaterEqual();
+ double And() const;
+ double Or() const;
+ double Xor() const;
+
+ ScMatrix::KahanIterateResult Sum( bool bTextAsZero, bool bIgnoreErrorValues ) const;
+ ScMatrix::KahanIterateResult SumSquare( bool bTextAsZero, bool bIgnoreErrorValues ) const;
+ ScMatrix::DoubleIterateResult Product( bool bTextAsZero, bool bIgnoreErrorValues ) const;
+ size_t Count(bool bCountStrings, bool bCountErrors, bool bIgnoreEmptyStrings) const;
+ size_t MatchDoubleInColumns(double fValue, size_t nCol1, size_t nCol2) const;
+ size_t MatchStringInColumns(const svl::SharedString& rStr, size_t nCol1, size_t nCol2) const;
+
+ double GetMaxValue( bool bTextAsZero, bool bIgnoreErrorValues ) const;
+ double GetMinValue( bool bTextAsZero, bool bIgnoreErrorValues ) const;
+ double GetGcd() const;
+ double GetLcm() const;
+
+ ScMatrixRef CompareMatrix( sc::Compare& rComp, size_t nMatPos, sc::CompareOptions* pOptions ) const;
+
+ void GetDoubleArray( std::vector<double>& rArray, bool bEmptyAsZero ) const;
+ void MergeDoubleArrayMultiply( std::vector<double>& rArray ) const;
+
+ template<typename T>
+ void ApplyOperation(T aOp, ScMatrixImpl& rMat);
+
+ void ExecuteOperation(const std::pair<size_t, size_t>& rStartPos,
+ const std::pair<size_t, size_t>& rEndPos, const ScMatrix::DoubleOpFunction& aDoubleFunc,
+ const ScMatrix::BoolOpFunction& aBoolFunc, const ScMatrix::StringOpFunction& aStringFunc,
+ const ScMatrix::EmptyOpFunction& aEmptyFunc) const;
+
+ template<typename T, typename tRes>
+ ScMatrix::IterateResultMultiple<tRes> ApplyCollectOperation(const std::vector<T>& aOp);
+
+ void MatConcat(SCSIZE nMaxCol, SCSIZE nMaxRow, const ScMatrixRef& xMat1, const ScMatrixRef& xMat2,
+ SvNumberFormatter& rFormatter, svl::SharedStringPool& rPool);
+
+#if DEBUG_MATRIX
+ void Dump() const;
+#endif
+
+private:
+ void CalcPosition(SCSIZE nIndex, SCSIZE& rC, SCSIZE& rR) const;
+};
+
+static bool bElementsMaxFetched;
+static size_t nElementsMax;
+
+/** The maximum number of elements a matrix or the pool may have at runtime.
+
+ @param nMemory
+ If 0, the arbitrary limit of one matrix is returned.
+ If >0, the given memory pool divided by the average size of a
+ matrix element is returned, which is used to initialize
+ nElementsMax.
+ */
+static size_t GetElementsMax( size_t nMemory )
+{
+ // Arbitrarily assuming 12 bytes per element, 8 bytes double plus
+ // overhead. Stored as an array in an mdds container it's less, but for
+ // strings or mixed matrix it can be much more...
+ constexpr size_t nPerElem = 12;
+ if (nMemory)
+ return nMemory / nPerElem;
+
+ // Arbitrarily assuming 1GB memory. Could be dynamic at some point.
+ constexpr size_t nMemMax = 0x40000000;
+ // With 1GB that's ~85M elements, or 85 whole columns.
+ constexpr size_t nElemMax = nMemMax / nPerElem;
+ // With MAXROWCOUNT==1048576 and 128 columns => 128M elements, 1.5GB
+ constexpr size_t nArbitraryLimit = size_t(MAXROWCOUNT) * 128;
+ // With the constant 1GB from above that's the actual value.
+ return std::min(nElemMax, nArbitraryLimit);
+}
+
+ScMatrixImpl::ScMatrixImpl(SCSIZE nC, SCSIZE nR) :
+ maMat(nR, nC), maMatFlag(nR, nC), pErrorInterpreter(nullptr)
+{
+ nElementsMax -= GetElementCount();
+}
+
+ScMatrixImpl::ScMatrixImpl(SCSIZE nC, SCSIZE nR, double fInitVal) :
+ maMat(nR, nC, fInitVal), maMatFlag(nR, nC), pErrorInterpreter(nullptr)
+{
+ nElementsMax -= GetElementCount();
+}
+
+ScMatrixImpl::ScMatrixImpl( size_t nC, size_t nR, const std::vector<double>& rInitVals ) :
+ maMat(nR, nC, rInitVals.begin(), rInitVals.end()), maMatFlag(nR, nC), pErrorInterpreter(nullptr)
+{
+ nElementsMax -= GetElementCount();
+}
+
+ScMatrixImpl::~ScMatrixImpl() COVERITY_NOEXCEPT_FALSE
+{
+ nElementsMax += GetElementCount();
+ Clear();
+}
+
+void ScMatrixImpl::Clear()
+{
+ maMat.clear();
+ maMatFlag.clear();
+}
+
+void ScMatrixImpl::Resize(SCSIZE nC, SCSIZE nR)
+{
+ nElementsMax += GetElementCount();
+ if (ScMatrix::IsSizeAllocatable( nC, nR))
+ {
+ maMat.resize(nR, nC);
+ maMatFlag.resize(nR, nC);
+ }
+ else
+ {
+ // Invalid matrix size, allocate 1x1 matrix with error value.
+ maMat.resize(1, 1, CreateDoubleError( FormulaError::MatrixSize));
+ maMatFlag.resize(1, 1);
+ }
+ nElementsMax -= GetElementCount();
+}
+
+void ScMatrixImpl::Resize(SCSIZE nC, SCSIZE nR, double fVal)
+{
+ nElementsMax += GetElementCount();
+ if (ScMatrix::IsSizeAllocatable( nC, nR))
+ {
+ maMat.resize(nR, nC, fVal);
+ maMatFlag.resize(nR, nC);
+ }
+ else
+ {
+ // Invalid matrix size, allocate 1x1 matrix with error value.
+ maMat.resize(1, 1, CreateDoubleError( FormulaError::StackOverflow));
+ maMatFlag.resize(1, 1);
+ }
+ nElementsMax -= GetElementCount();
+}
+
+void ScMatrixImpl::SetErrorInterpreter( ScInterpreter* p)
+{
+ pErrorInterpreter = p;
+}
+
+void ScMatrixImpl::GetDimensions( SCSIZE& rC, SCSIZE& rR) const
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ rR = aSize.row;
+ rC = aSize.column;
+}
+
+SCSIZE ScMatrixImpl::GetElementCount() const
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ return aSize.row * aSize.column;
+}
+
+bool ScMatrixImpl::ValidColRow( SCSIZE nC, SCSIZE nR) const
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ return nR < aSize.row && nC < aSize.column;
+}
+
+bool ScMatrixImpl::ValidColRowReplicated( SCSIZE & rC, SCSIZE & rR ) const
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ if (aSize.column == 1 && aSize.row == 1)
+ {
+ rC = 0;
+ rR = 0;
+ return true;
+ }
+ else if (aSize.column == 1 && rR < aSize.row)
+ {
+ // single column matrix.
+ rC = 0;
+ return true;
+ }
+ else if (aSize.row == 1 && rC < aSize.column)
+ {
+ // single row matrix.
+ rR = 0;
+ return true;
+ }
+ return false;
+}
+
+bool ScMatrixImpl::ValidColRowOrReplicated( SCSIZE & rC, SCSIZE & rR ) const
+{
+ return ValidColRow( rC, rR) || ValidColRowReplicated( rC, rR);
+}
+
+void ScMatrixImpl::SetErrorAtInterpreter( FormulaError nError ) const
+{
+ if ( pErrorInterpreter )
+ pErrorInterpreter->SetError( nError);
+}
+
+void ScMatrixImpl::PutDouble(double fVal, SCSIZE nC, SCSIZE nR)
+{
+ if (ValidColRow( nC, nR))
+ maMat.set(nR, nC, fVal);
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::PutDouble: dimension error");
+ }
+}
+
+void ScMatrixImpl::PutDouble(const double* pArray, size_t nLen, SCSIZE nC, SCSIZE nR)
+{
+ if (ValidColRow( nC, nR))
+ maMat.set(nR, nC, pArray, pArray + nLen);
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::PutDouble: dimension error");
+ }
+}
+
+void ScMatrixImpl::PutDouble( double fVal, SCSIZE nIndex)
+{
+ SCSIZE nC, nR;
+ CalcPosition(nIndex, nC, nR);
+ PutDouble(fVal, nC, nR);
+}
+
+void ScMatrixImpl::PutString(const svl::SharedString& rStr, SCSIZE nC, SCSIZE nR)
+{
+ if (ValidColRow( nC, nR))
+ maMat.set(nR, nC, rStr);
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::PutString: dimension error");
+ }
+}
+
+void ScMatrixImpl::PutString(const svl::SharedString* pArray, size_t nLen, SCSIZE nC, SCSIZE nR)
+{
+ if (ValidColRow( nC, nR))
+ maMat.set(nR, nC, pArray, pArray + nLen);
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::PutString: dimension error");
+ }
+}
+
+void ScMatrixImpl::PutString(const svl::SharedString& rStr, SCSIZE nIndex)
+{
+ SCSIZE nC, nR;
+ CalcPosition(nIndex, nC, nR);
+ PutString(rStr, nC, nR);
+}
+
+void ScMatrixImpl::PutEmpty(SCSIZE nC, SCSIZE nR)
+{
+ if (ValidColRow( nC, nR))
+ {
+ maMat.set_empty(nR, nC);
+ maMatFlag.set_empty(nR, nC);
+ }
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::PutEmpty: dimension error");
+ }
+}
+
+void ScMatrixImpl::PutEmptyPath(SCSIZE nC, SCSIZE nR)
+{
+ if (ValidColRow( nC, nR))
+ {
+ maMat.set_empty(nR, nC);
+ maMatFlag.set(nR, nC, SC_MATFLAG_EMPTYPATH);
+ }
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::PutEmptyPath: dimension error");
+ }
+}
+
+void ScMatrixImpl::PutError( FormulaError nErrorCode, SCSIZE nC, SCSIZE nR )
+{
+ maMat.set(nR, nC, CreateDoubleError(nErrorCode));
+}
+
+void ScMatrixImpl::PutBoolean(bool bVal, SCSIZE nC, SCSIZE nR)
+{
+ if (ValidColRow( nC, nR))
+ maMat.set(nR, nC, bVal);
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::PutBoolean: dimension error");
+ }
+}
+
+FormulaError ScMatrixImpl::GetError( SCSIZE nC, SCSIZE nR) const
+{
+ if (ValidColRowOrReplicated( nC, nR ))
+ {
+ double fVal = maMat.get_numeric(nR, nC);
+ return GetDoubleErrorValue(fVal);
+ }
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::GetError: dimension error");
+ return FormulaError::NoValue;
+ }
+}
+
+double ScMatrixImpl::GetDouble(SCSIZE nC, SCSIZE nR) const
+{
+ if (ValidColRowOrReplicated( nC, nR ))
+ {
+ double fVal = maMat.get_numeric(nR, nC);
+ if ( pErrorInterpreter )
+ {
+ FormulaError nError = GetDoubleErrorValue(fVal);
+ if ( nError != FormulaError::NONE )
+ SetErrorAtInterpreter( nError);
+ }
+ return fVal;
+ }
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::GetDouble: dimension error");
+ return CreateDoubleError( FormulaError::NoValue);
+ }
+}
+
+double ScMatrixImpl::GetDouble( SCSIZE nIndex) const
+{
+ SCSIZE nC, nR;
+ CalcPosition(nIndex, nC, nR);
+ return GetDouble(nC, nR);
+}
+
+double ScMatrixImpl::GetDoubleWithStringConversion(SCSIZE nC, SCSIZE nR) const
+{
+ ScMatrixValue aMatVal = Get(nC, nR);
+ if (aMatVal.nType == ScMatValType::String)
+ return convertStringToValue( pErrorInterpreter, aMatVal.aStr.getString());
+ return aMatVal.fVal;
+}
+
+svl::SharedString ScMatrixImpl::GetString(SCSIZE nC, SCSIZE nR) const
+{
+ if (ValidColRowOrReplicated( nC, nR ))
+ {
+ double fErr = 0.0;
+ MatrixImplType::const_position_type aPos = maMat.position(nR, nC);
+ switch (maMat.get_type(aPos))
+ {
+ case mdds::mtm::element_string:
+ return maMat.get_string(aPos);
+ case mdds::mtm::element_empty:
+ return svl::SharedString::getEmptyString();
+ case mdds::mtm::element_numeric:
+ case mdds::mtm::element_boolean:
+ fErr = maMat.get_numeric(aPos);
+ [[fallthrough]];
+ default:
+ OSL_FAIL("ScMatrixImpl::GetString: access error, no string");
+ }
+ SetErrorAtInterpreter(GetDoubleErrorValue(fErr));
+ }
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::GetString: dimension error");
+ }
+ return svl::SharedString::getEmptyString();
+}
+
+svl::SharedString ScMatrixImpl::GetString( SCSIZE nIndex) const
+{
+ SCSIZE nC, nR;
+ CalcPosition(nIndex, nC, nR);
+ return GetString(nC, nR);
+}
+
+svl::SharedString ScMatrixImpl::GetString( SvNumberFormatter& rFormatter, SCSIZE nC, SCSIZE nR) const
+{
+ if (!ValidColRowOrReplicated( nC, nR ))
+ {
+ OSL_FAIL("ScMatrixImpl::GetString: dimension error");
+ return svl::SharedString::getEmptyString();
+ }
+
+ double fVal = 0.0;
+ MatrixImplType::const_position_type aPos = maMat.position(nR, nC);
+ switch (maMat.get_type(aPos))
+ {
+ case mdds::mtm::element_string:
+ return maMat.get_string(aPos);
+ case mdds::mtm::element_empty:
+ {
+ if (maMatFlag.get_numeric(nR, nC) != SC_MATFLAG_EMPTYPATH)
+ // not an empty path.
+ return svl::SharedString::getEmptyString();
+
+ // result of empty FALSE jump path
+ sal_uInt32 nKey = rFormatter.GetStandardFormat( SvNumFormatType::LOGICAL,
+ ScGlobal::eLnge);
+ OUString aStr;
+ const Color* pColor = nullptr;
+ rFormatter.GetOutputString( 0.0, nKey, aStr, &pColor);
+ return svl::SharedString( aStr); // string not interned
+ }
+ case mdds::mtm::element_numeric:
+ case mdds::mtm::element_boolean:
+ fVal = maMat.get_numeric(aPos);
+ break;
+ default:
+ ;
+ }
+
+ FormulaError nError = GetDoubleErrorValue(fVal);
+ if (nError != FormulaError::NONE)
+ {
+ SetErrorAtInterpreter( nError);
+ return svl::SharedString( ScGlobal::GetErrorString( nError)); // string not interned
+ }
+
+ sal_uInt32 nKey = rFormatter.GetStandardFormat( SvNumFormatType::NUMBER,
+ ScGlobal::eLnge);
+ OUString aStr;
+ rFormatter.GetInputLineString( fVal, nKey, aStr);
+ return svl::SharedString( aStr); // string not interned
+}
+
+ScMatrixValue ScMatrixImpl::Get(SCSIZE nC, SCSIZE nR) const
+{
+ ScMatrixValue aVal;
+ if (ValidColRowOrReplicated(nC, nR))
+ {
+ MatrixImplType::const_position_type aPos = maMat.position(nR, nC);
+ mdds::mtm::element_t eType = maMat.get_type(aPos);
+ switch (eType)
+ {
+ case mdds::mtm::element_boolean:
+ aVal.nType = ScMatValType::Boolean;
+ aVal.fVal = double(maMat.get_boolean(aPos));
+ break;
+ case mdds::mtm::element_numeric:
+ aVal.nType = ScMatValType::Value;
+ aVal.fVal = maMat.get_numeric(aPos);
+ break;
+ case mdds::mtm::element_string:
+ aVal.nType = ScMatValType::String;
+ aVal.aStr = maMat.get_string(aPos);
+ break;
+ case mdds::mtm::element_empty:
+ /* TODO: do we need to pass the differentiation of 'empty' and
+ * 'empty result' to the outer world anywhere? */
+ switch (maMatFlag.get_type(nR, nC))
+ {
+ case mdds::mtm::element_empty:
+ aVal.nType = ScMatValType::Empty;
+ break;
+ case mdds::mtm::element_numeric:
+ aVal.nType = maMatFlag.get<TMatFlag>(nR, nC)
+ == SC_MATFLAG_EMPTYPATH ? ScMatValType::EmptyPath : ScMatValType::Empty;
+ break;
+ default:
+ assert(false);
+ }
+ aVal.fVal = 0.0;
+ break;
+ default:
+ ;
+ }
+ }
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::Get: dimension error");
+ }
+ return aVal;
+}
+
+bool ScMatrixImpl::IsStringOrEmpty( SCSIZE nIndex ) const
+{
+ SCSIZE nC, nR;
+ CalcPosition(nIndex, nC, nR);
+ return IsStringOrEmpty(nC, nR);
+}
+
+bool ScMatrixImpl::IsStringOrEmpty( SCSIZE nC, SCSIZE nR ) const
+{
+ ValidColRowReplicated( nC, nR );
+ switch (maMat.get_type(nR, nC))
+ {
+ case mdds::mtm::element_empty:
+ case mdds::mtm::element_string:
+ return true;
+ default:
+ ;
+ }
+ return false;
+}
+
+bool ScMatrixImpl::IsEmpty( SCSIZE nC, SCSIZE nR ) const
+{
+ // Flag must indicate an 'empty' or 'empty cell' or 'empty result' element,
+ // but not an 'empty path' element.
+ ValidColRowReplicated( nC, nR );
+ return maMat.get_type(nR, nC) == mdds::mtm::element_empty &&
+ maMatFlag.get_numeric(nR, nC) != SC_MATFLAG_EMPTYPATH;
+}
+
+bool ScMatrixImpl::IsEmptyCell( SCSIZE nC, SCSIZE nR ) const
+{
+ // Flag must indicate an 'empty cell' element instead of an
+ // 'empty' or 'empty result' or 'empty path' element.
+ ValidColRowReplicated( nC, nR );
+ return maMat.get_type(nR, nC) == mdds::mtm::element_empty &&
+ maMatFlag.get_type(nR, nC) == mdds::mtm::element_empty;
+}
+
+bool ScMatrixImpl::IsEmptyResult( SCSIZE nC, SCSIZE nR ) const
+{
+ // Flag must indicate an 'empty result' element instead of an
+ // 'empty' or 'empty cell' or 'empty path' element.
+ ValidColRowReplicated( nC, nR );
+ return maMat.get_type(nR, nC) == mdds::mtm::element_empty &&
+ maMatFlag.get_numeric(nR, nC) == SC_MATFLAG_EMPTYRESULT;
+}
+
+bool ScMatrixImpl::IsEmptyPath( SCSIZE nC, SCSIZE nR ) const
+{
+ // Flag must indicate an 'empty path' element.
+ if (ValidColRowOrReplicated( nC, nR ))
+ return maMat.get_type(nR, nC) == mdds::mtm::element_empty &&
+ maMatFlag.get_numeric(nR, nC) == SC_MATFLAG_EMPTYPATH;
+ else
+ return true;
+}
+
+bool ScMatrixImpl::IsValue( SCSIZE nIndex ) const
+{
+ SCSIZE nC, nR;
+ CalcPosition(nIndex, nC, nR);
+ return IsValue(nC, nR);
+}
+
+bool ScMatrixImpl::IsValue( SCSIZE nC, SCSIZE nR ) const
+{
+ ValidColRowReplicated(nC, nR);
+ switch (maMat.get_type(nR, nC))
+ {
+ case mdds::mtm::element_boolean:
+ case mdds::mtm::element_numeric:
+ return true;
+ default:
+ ;
+ }
+ return false;
+}
+
+bool ScMatrixImpl::IsValueOrEmpty( SCSIZE nC, SCSIZE nR ) const
+{
+ ValidColRowReplicated(nC, nR);
+ switch (maMat.get_type(nR, nC))
+ {
+ case mdds::mtm::element_boolean:
+ case mdds::mtm::element_numeric:
+ case mdds::mtm::element_empty:
+ return true;
+ default:
+ ;
+ }
+ return false;
+}
+
+bool ScMatrixImpl::IsBoolean( SCSIZE nC, SCSIZE nR ) const
+{
+ ValidColRowReplicated( nC, nR );
+ return maMat.get_type(nR, nC) == mdds::mtm::element_boolean;
+}
+
+bool ScMatrixImpl::IsNumeric() const
+{
+ return maMat.numeric();
+}
+
+void ScMatrixImpl::MatCopy(ScMatrixImpl& mRes) const
+{
+ if (maMat.size().row > mRes.maMat.size().row || maMat.size().column > mRes.maMat.size().column)
+ {
+ // destination matrix is not large enough.
+ OSL_FAIL("ScMatrixImpl::MatCopy: dimension error");
+ return;
+ }
+
+ mRes.maMat.copy(maMat);
+}
+
+void ScMatrixImpl::MatTrans(ScMatrixImpl& mRes) const
+{
+ mRes.maMat = maMat;
+ mRes.maMat.transpose();
+}
+
+void ScMatrixImpl::FillDouble( double fVal, SCSIZE nC1, SCSIZE nR1, SCSIZE nC2, SCSIZE nR2 )
+{
+ if (ValidColRow( nC1, nR1) && ValidColRow( nC2, nR2))
+ {
+ for (SCSIZE j = nC1; j <= nC2; ++j)
+ {
+ // Passing value array is much faster.
+ std::vector<double> aVals(nR2-nR1+1, fVal);
+ maMat.set(nR1, j, aVals.begin(), aVals.end());
+ }
+ }
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::FillDouble: dimension error");
+ }
+}
+
+void ScMatrixImpl::PutDoubleVector( const ::std::vector< double > & rVec, SCSIZE nC, SCSIZE nR )
+{
+ if (!rVec.empty() && ValidColRow( nC, nR) && ValidColRow( nC, nR + rVec.size() - 1))
+ {
+ maMat.set(nR, nC, rVec.begin(), rVec.end());
+ }
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::PutDoubleVector: dimension error");
+ }
+}
+
+void ScMatrixImpl::PutStringVector( const ::std::vector< svl::SharedString > & rVec, SCSIZE nC, SCSIZE nR )
+{
+ if (!rVec.empty() && ValidColRow( nC, nR) && ValidColRow( nC, nR + rVec.size() - 1))
+ {
+ maMat.set(nR, nC, rVec.begin(), rVec.end());
+ }
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::PutStringVector: dimension error");
+ }
+}
+
+void ScMatrixImpl::PutEmptyVector( SCSIZE nCount, SCSIZE nC, SCSIZE nR )
+{
+ if (nCount && ValidColRow( nC, nR) && ValidColRow( nC, nR + nCount - 1))
+ {
+ maMat.set_empty(nR, nC, nCount);
+ // Flag to indicate that this is 'empty', not 'empty result' or 'empty path'.
+ maMatFlag.set_empty(nR, nC, nCount);
+ }
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::PutEmptyVector: dimension error");
+ }
+}
+
+void ScMatrixImpl::PutEmptyResultVector( SCSIZE nCount, SCSIZE nC, SCSIZE nR )
+{
+ if (nCount && ValidColRow( nC, nR) && ValidColRow( nC, nR + nCount - 1))
+ {
+ maMat.set_empty(nR, nC, nCount);
+ // Flag to indicate that this is 'empty result', not 'empty' or 'empty path'.
+ std::vector<TMatFlag> aVals(nCount, SC_MATFLAG_EMPTYRESULT);
+ maMatFlag.set(nR, nC, aVals.begin(), aVals.end());
+ }
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::PutEmptyResultVector: dimension error");
+ }
+}
+
+void ScMatrixImpl::PutEmptyPathVector( SCSIZE nCount, SCSIZE nC, SCSIZE nR )
+{
+ if (nCount && ValidColRow( nC, nR) && ValidColRow( nC, nR + nCount - 1))
+ {
+ maMat.set_empty(nR, nC, nCount);
+ // Flag to indicate 'empty path'.
+ std::vector<TMatFlag> aVals(nCount, SC_MATFLAG_EMPTYPATH);
+ maMatFlag.set(nR, nC, aVals.begin(), aVals.end());
+ }
+ else
+ {
+ OSL_FAIL("ScMatrixImpl::PutEmptyPathVector: dimension error");
+ }
+}
+
+void ScMatrixImpl::CompareEqual()
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ CompareMatrixElemFunc<ElemEqualZero> aFunc(aSize.row, aSize.column);
+ aFunc = maMat.walk(std::move(aFunc));
+ aFunc.swap(maMat);
+}
+
+void ScMatrixImpl::CompareNotEqual()
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ CompareMatrixElemFunc<ElemNotEqualZero> aFunc(aSize.row, aSize.column);
+ aFunc = maMat.walk(std::move(aFunc));
+ aFunc.swap(maMat);
+}
+
+void ScMatrixImpl::CompareLess()
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ CompareMatrixElemFunc<ElemLessZero> aFunc(aSize.row, aSize.column);
+ aFunc = maMat.walk(std::move(aFunc));
+ aFunc.swap(maMat);
+}
+
+void ScMatrixImpl::CompareGreater()
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ CompareMatrixElemFunc<ElemGreaterZero> aFunc(aSize.row, aSize.column);
+ aFunc = maMat.walk(std::move(aFunc));
+ aFunc.swap(maMat);
+}
+
+void ScMatrixImpl::CompareLessEqual()
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ CompareMatrixElemFunc<ElemLessEqualZero> aFunc(aSize.row, aSize.column);
+ aFunc = maMat.walk(std::move(aFunc));
+ aFunc.swap(maMat);
+}
+
+void ScMatrixImpl::CompareGreaterEqual()
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ CompareMatrixElemFunc<ElemGreaterEqualZero> aFunc(aSize.row, aSize.column);
+ aFunc = maMat.walk(std::move(aFunc));
+ aFunc.swap(maMat);
+}
+
+namespace {
+
+struct AndEvaluator
+{
+ bool mbResult;
+ void operate(double fVal) { mbResult &= (fVal != 0.0); }
+ bool result() const { return mbResult; }
+ AndEvaluator() : mbResult(true) {}
+};
+
+struct OrEvaluator
+{
+ bool mbResult;
+ void operate(double fVal) { mbResult |= (fVal != 0.0); }
+ bool result() const { return mbResult; }
+ OrEvaluator() : mbResult(false) {}
+};
+
+struct XorEvaluator
+{
+ bool mbResult;
+ void operate(double fVal) { mbResult ^= (fVal != 0.0); }
+ bool result() const { return mbResult; }
+ XorEvaluator() : mbResult(false) {}
+};
+
+// Do not short circuit logical operations, in case there are error values
+// these need to be propagated even if the result was determined earlier.
+template <typename Evaluator>
+double EvalMatrix(const MatrixImplType& rMat)
+{
+ Evaluator aEval;
+ size_t nRows = rMat.size().row, nCols = rMat.size().column;
+ for (size_t i = 0; i < nRows; ++i)
+ {
+ for (size_t j = 0; j < nCols; ++j)
+ {
+ MatrixImplType::const_position_type aPos = rMat.position(i, j);
+ mdds::mtm::element_t eType = rMat.get_type(aPos);
+ if (eType != mdds::mtm::element_numeric && eType != mdds::mtm::element_boolean)
+ // assuming a CompareMat this is an error
+ return CreateDoubleError(FormulaError::IllegalArgument);
+
+ double fVal = rMat.get_numeric(aPos);
+ if (!std::isfinite(fVal))
+ // DoubleError
+ return fVal;
+
+ aEval.operate(fVal);
+ }
+ }
+ return aEval.result();
+}
+
+}
+
+double ScMatrixImpl::And() const
+{
+ // All elements must be of value type.
+ // True only if all the elements have non-zero values.
+ return EvalMatrix<AndEvaluator>(maMat);
+}
+
+double ScMatrixImpl::Or() const
+{
+ // All elements must be of value type.
+ // True if at least one element has a non-zero value.
+ return EvalMatrix<OrEvaluator>(maMat);
+}
+
+double ScMatrixImpl::Xor() const
+{
+ // All elements must be of value type.
+ // True if an odd number of elements have a non-zero value.
+ return EvalMatrix<XorEvaluator>(maMat);
+}
+
+namespace {
+
+template<typename Op, typename tRes>
+class WalkElementBlocks
+{
+ Op maOp;
+ ScMatrix::IterateResult<tRes> maRes;
+ bool mbTextAsZero:1;
+ bool mbIgnoreErrorValues:1;
+public:
+ WalkElementBlocks(bool bTextAsZero, bool bIgnoreErrorValues) :
+ maRes(Op::InitVal, 0),
+ mbTextAsZero(bTextAsZero), mbIgnoreErrorValues(bIgnoreErrorValues)
+ {}
+
+ const ScMatrix::IterateResult<tRes>& getResult() const { return maRes; }
+
+ void operator() (const MatrixImplType::element_block_node_type& node)
+ {
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ {
+ typedef MatrixImplType::numeric_block_type block_type;
+
+ size_t nIgnored = 0;
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ {
+ if (mbIgnoreErrorValues && !std::isfinite(*it))
+ {
+ ++nIgnored;
+ continue;
+ }
+ maOp(maRes.maAccumulator, *it);
+ }
+ maRes.mnCount += node.size - nIgnored;
+ }
+ break;
+ case mdds::mtm::element_boolean:
+ {
+ typedef MatrixImplType::boolean_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ {
+ maOp(maRes.maAccumulator, *it);
+ }
+ maRes.mnCount += node.size;
+ }
+ break;
+ case mdds::mtm::element_string:
+ if (mbTextAsZero)
+ maRes.mnCount += node.size;
+ break;
+ case mdds::mtm::element_empty:
+ default:
+ ;
+ }
+ }
+};
+
+template<typename Op, typename tRes>
+class WalkElementBlocksMultipleValues
+{
+ const std::vector<Op>* mpOp;
+ ScMatrix::IterateResultMultiple<tRes> maRes;
+public:
+ WalkElementBlocksMultipleValues(const std::vector<Op>& aOp) :
+ mpOp(&aOp), maRes(0)
+ {
+ for (const auto& rpOp : *mpOp)
+ maRes.maAccumulator.emplace_back(rpOp.mInitVal);
+ }
+
+ WalkElementBlocksMultipleValues( const WalkElementBlocksMultipleValues& ) = delete;
+ WalkElementBlocksMultipleValues& operator= ( const WalkElementBlocksMultipleValues& ) = delete;
+
+ WalkElementBlocksMultipleValues(WalkElementBlocksMultipleValues&& r) noexcept
+ : mpOp(r.mpOp), maRes(r.maRes.mnCount)
+ {
+ maRes.maAccumulator = std::move(r.maRes.maAccumulator);
+ }
+
+ WalkElementBlocksMultipleValues& operator=(WalkElementBlocksMultipleValues&& r) noexcept
+ {
+ mpOp = r.mpOp;
+ maRes.maAccumulator = std::move(r.maRes.maAccumulator);
+ maRes.mnCount = r.maRes.mnCount;
+ return *this;
+ }
+
+ const ScMatrix::IterateResultMultiple<tRes>& getResult() const { return maRes; }
+
+ void operator() (const MatrixImplType::element_block_node_type& node)
+ {
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ {
+ typedef MatrixImplType::numeric_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ {
+ for (size_t i = 0u; i < mpOp->size(); ++i)
+ (*mpOp)[i](maRes.maAccumulator[i], *it);
+ }
+ maRes.mnCount += node.size;
+ }
+ break;
+ case mdds::mtm::element_boolean:
+ {
+ typedef MatrixImplType::boolean_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ {
+ for (size_t i = 0u; i < mpOp->size(); ++i)
+ (*mpOp)[i](maRes.maAccumulator[i], *it);
+ }
+ maRes.mnCount += node.size;
+ }
+ break;
+ case mdds::mtm::element_string:
+ case mdds::mtm::element_empty:
+ default:
+ ;
+ }
+ }
+};
+
+class CountElements
+{
+ size_t mnCount;
+ bool mbCountString;
+ bool mbCountErrors;
+ bool mbIgnoreEmptyStrings;
+public:
+ explicit CountElements(bool bCountString, bool bCountErrors, bool bIgnoreEmptyStrings) :
+ mnCount(0), mbCountString(bCountString), mbCountErrors(bCountErrors),
+ mbIgnoreEmptyStrings(bIgnoreEmptyStrings) {}
+
+ size_t getCount() const { return mnCount; }
+
+ void operator() (const MatrixImplType::element_block_node_type& node)
+ {
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ mnCount += node.size;
+ if (!mbCountErrors)
+ {
+ typedef MatrixImplType::numeric_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ {
+ if (!std::isfinite(*it))
+ --mnCount;
+ }
+ }
+ break;
+ case mdds::mtm::element_boolean:
+ mnCount += node.size;
+ break;
+ case mdds::mtm::element_string:
+ if (mbCountString)
+ {
+ mnCount += node.size;
+ if (mbIgnoreEmptyStrings)
+ {
+ typedef MatrixImplType::string_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ {
+ if (it->isEmpty())
+ --mnCount;
+ }
+ }
+ }
+ break;
+ case mdds::mtm::element_empty:
+ default:
+ ;
+ }
+ }
+};
+
+const size_t ResultNotSet = std::numeric_limits<size_t>::max();
+
+template<typename Type>
+class WalkAndMatchElements
+{
+ Type maMatchValue;
+ size_t mnStartIndex;
+ size_t mnStopIndex;
+ size_t mnResult;
+ size_t mnIndex;
+
+public:
+ WalkAndMatchElements(Type aMatchValue, const MatrixImplType::size_pair_type& aSize, size_t nCol1, size_t nCol2) :
+ maMatchValue(aMatchValue),
+ mnStartIndex( nCol1 * aSize.row ),
+ mnStopIndex( (nCol2 + 1) * aSize.row ),
+ mnResult(ResultNotSet),
+ mnIndex(0)
+ {
+ assert( nCol1 < aSize.column && nCol2 < aSize.column);
+ }
+
+ size_t getMatching() const { return mnResult; }
+
+ size_t getRemainingCount() const
+ {
+ return mnIndex < mnStopIndex ? mnStopIndex - mnIndex : 0;
+ }
+
+ size_t compare(const MatrixImplType::element_block_node_type& node) const;
+
+ void operator() (const MatrixImplType::element_block_node_type& node)
+ {
+ // early exit if match already found
+ if (mnResult != ResultNotSet)
+ return;
+
+ // limit lookup to the requested columns
+ if (mnStartIndex <= mnIndex && getRemainingCount() > 0)
+ {
+ mnResult = compare(node);
+ }
+
+ mnIndex += node.size;
+ }
+};
+
+template<>
+size_t WalkAndMatchElements<double>::compare(const MatrixImplType::element_block_node_type& node) const
+{
+ size_t nCount = 0;
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ {
+ typedef MatrixImplType::numeric_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ const size_t nRemaining = getRemainingCount();
+ for (; it != itEnd && nCount < nRemaining; ++it, ++nCount)
+ {
+ if (*it == maMatchValue)
+ {
+ return mnIndex + nCount;
+ }
+ }
+ break;
+ }
+ case mdds::mtm::element_boolean:
+ {
+ typedef MatrixImplType::boolean_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ const size_t nRemaining = getRemainingCount();
+ for (; it != itEnd && nCount < nRemaining; ++it, ++nCount)
+ {
+ if (int(*it) == maMatchValue)
+ {
+ return mnIndex + nCount;
+ }
+ }
+ break;
+ }
+ break;
+ case mdds::mtm::element_string:
+ case mdds::mtm::element_empty:
+ default:
+ ;
+ }
+ return ResultNotSet;
+}
+
+template<>
+size_t WalkAndMatchElements<svl::SharedString>::compare(const MatrixImplType::element_block_node_type& node) const
+{
+ switch (node.type)
+ {
+ case mdds::mtm::element_string:
+ {
+ size_t nCount = 0;
+ typedef MatrixImplType::string_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ const size_t nRemaining = getRemainingCount();
+ for (; it != itEnd && nCount < nRemaining; ++it, ++nCount)
+ {
+ if (it->getDataIgnoreCase() == maMatchValue.getDataIgnoreCase())
+ {
+ return mnIndex + nCount;
+ }
+ }
+ break;
+ }
+ case mdds::mtm::element_boolean:
+ case mdds::mtm::element_numeric:
+ case mdds::mtm::element_empty:
+ default:
+ ;
+ }
+ return ResultNotSet;
+}
+
+struct MaxOp
+{
+ static double init() { return -std::numeric_limits<double>::max(); }
+ static double compare(double left, double right)
+ {
+ if (!std::isfinite(left))
+ return left;
+ if (!std::isfinite(right))
+ return right;
+ return std::max(left, right);
+ }
+
+ static double boolValue(
+ MatrixImplType::boolean_block_type::const_iterator it,
+ const MatrixImplType::boolean_block_type::const_iterator& itEnd)
+ {
+ // If the array has at least one true value, the maximum value is 1.
+ it = std::find(it, itEnd, true);
+ return it == itEnd ? 0.0 : 1.0;
+ }
+};
+
+struct MinOp
+{
+ static double init() { return std::numeric_limits<double>::max(); }
+ static double compare(double left, double right)
+ {
+ if (!std::isfinite(left))
+ return left;
+ if (!std::isfinite(right))
+ return right;
+ return std::min(left, right);
+ }
+
+ static double boolValue(
+ MatrixImplType::boolean_block_type::const_iterator it,
+ const MatrixImplType::boolean_block_type::const_iterator& itEnd)
+ {
+ // If the array has at least one false value, the minimum value is 0.
+ it = std::find(it, itEnd, false);
+ return it == itEnd ? 1.0 : 0.0;
+ }
+};
+
+struct Lcm
+{
+ static double init() { return 1.0; }
+ static double calculate(double fx,double fy)
+ {
+ return (fx*fy)/ScInterpreter::ScGetGCD(fx,fy);
+ }
+
+ static double boolValue(
+ MatrixImplType::boolean_block_type::const_iterator it,
+ const MatrixImplType::boolean_block_type::const_iterator& itEnd)
+ {
+ // If the array has at least one false value, the minimum value is 0.
+ it = std::find(it, itEnd, false);
+ return it == itEnd ? 1.0 : 0.0;
+ }
+};
+
+struct Gcd
+{
+ static double init() { return 0.0; }
+ static double calculate(double fx,double fy)
+ {
+ return ScInterpreter::ScGetGCD(fx,fy);
+ }
+
+ static double boolValue(
+ MatrixImplType::boolean_block_type::const_iterator it,
+ const MatrixImplType::boolean_block_type::const_iterator& itEnd)
+ {
+ // If the array has at least one true value, the gcdResult is 1.
+ it = std::find(it, itEnd, true);
+ return it == itEnd ? 0.0 : 1.0;
+ }
+};
+
+template<typename Op>
+class CalcMaxMinValue
+{
+ double mfVal;
+ bool mbTextAsZero;
+ bool mbIgnoreErrorValues;
+ bool mbHasValue;
+public:
+ CalcMaxMinValue( bool bTextAsZero, bool bIgnoreErrorValues ) :
+ mfVal(Op::init()),
+ mbTextAsZero(bTextAsZero),
+ mbIgnoreErrorValues(bIgnoreErrorValues),
+ mbHasValue(false) {}
+
+ double getValue() const { return mbHasValue ? mfVal : 0.0; }
+
+ void operator() (const MatrixImplType::element_block_node_type& node)
+ {
+
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ {
+ typedef MatrixImplType::numeric_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ if (mbIgnoreErrorValues)
+ {
+ for (; it != itEnd; ++it)
+ {
+ if (std::isfinite(*it))
+ mfVal = Op::compare(mfVal, *it);
+ }
+ }
+ else
+ {
+ for (; it != itEnd; ++it)
+ mfVal = Op::compare(mfVal, *it);
+ }
+
+ mbHasValue = true;
+ }
+ break;
+ case mdds::mtm::element_boolean:
+ {
+ typedef MatrixImplType::boolean_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ double fVal = Op::boolValue(it, itEnd);
+ mfVal = Op::compare(mfVal, fVal);
+ mbHasValue = true;
+ }
+ break;
+ case mdds::mtm::element_string:
+ case mdds::mtm::element_empty:
+ {
+ // empty elements are treated as empty strings.
+ if (mbTextAsZero)
+ {
+ mfVal = Op::compare(mfVal, 0.0);
+ mbHasValue = true;
+ }
+ }
+ break;
+ default:
+ ;
+ }
+ }
+};
+
+template<typename Op>
+class CalcGcdLcm
+{
+ double mfval;
+
+public:
+ CalcGcdLcm() : mfval(Op::init()) {}
+
+ double getResult() const { return mfval; }
+
+ void operator() ( const MatrixImplType::element_block_node_type& node )
+ {
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ {
+ typedef MatrixImplType::numeric_block_type block_type;
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+
+ for ( ; it != itEnd; ++it)
+ {
+ if (*it < 0.0)
+ mfval = CreateDoubleError(FormulaError::IllegalArgument);
+ else
+ mfval = ::rtl::math::approxFloor( Op::calculate(*it,mfval));
+ }
+ }
+ break;
+ case mdds::mtm::element_boolean:
+ {
+ typedef MatrixImplType::boolean_block_type block_type;
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+
+ mfval = Op::boolValue(it, itEnd);
+ }
+ break;
+ case mdds::mtm::element_empty:
+ case mdds::mtm::element_string:
+ {
+ mfval = CreateDoubleError(FormulaError::IllegalArgument);
+ }
+ break;
+ default:
+ ;
+ }
+ }
+};
+
+double evaluate( double fVal, ScQueryOp eOp )
+{
+ if (!std::isfinite(fVal))
+ return fVal;
+
+ switch (eOp)
+ {
+ case SC_EQUAL:
+ return fVal == 0.0 ? 1.0 : 0.0;
+ case SC_LESS:
+ return fVal < 0.0 ? 1.0 : 0.0;
+ case SC_GREATER:
+ return fVal > 0.0 ? 1.0 : 0.0;
+ case SC_LESS_EQUAL:
+ return fVal <= 0.0 ? 1.0 : 0.0;
+ case SC_GREATER_EQUAL:
+ return fVal >= 0.0 ? 1.0 : 0.0;
+ case SC_NOT_EQUAL:
+ return fVal != 0.0 ? 1.0 : 0.0;
+ default:
+ ;
+ }
+
+ SAL_WARN("sc.core", "evaluate: unhandled comparison operator: " << static_cast<int>(eOp));
+ return CreateDoubleError( FormulaError::UnknownState);
+}
+
+class CompareMatrixFunc
+{
+ sc::Compare& mrComp;
+ size_t mnMatPos;
+ sc::CompareOptions* mpOptions;
+ std::vector<double> maResValues; // double instead of bool to transport error values
+
+ void compare()
+ {
+ double fVal = sc::CompareFunc( mrComp, mpOptions);
+ maResValues.push_back(evaluate(fVal, mrComp.meOp));
+ }
+
+public:
+ CompareMatrixFunc( size_t nResSize, sc::Compare& rComp, size_t nMatPos, sc::CompareOptions* pOptions ) :
+ mrComp(rComp), mnMatPos(nMatPos), mpOptions(pOptions)
+ {
+ maResValues.reserve(nResSize);
+ }
+
+ CompareMatrixFunc( const CompareMatrixFunc& ) = delete;
+ CompareMatrixFunc& operator= ( const CompareMatrixFunc& ) = delete;
+
+ CompareMatrixFunc(CompareMatrixFunc&& r) noexcept :
+ mrComp(r.mrComp),
+ mnMatPos(r.mnMatPos),
+ mpOptions(r.mpOptions),
+ maResValues(std::move(r.maResValues)) {}
+
+ CompareMatrixFunc& operator=(CompareMatrixFunc&& r) noexcept
+ {
+ mrComp = r.mrComp;
+ mnMatPos = r.mnMatPos;
+ mpOptions = r.mpOptions;
+ maResValues = std::move(r.maResValues);
+ return *this;
+ }
+
+ void operator() (const MatrixImplType::element_block_node_type& node)
+ {
+ sc::Compare::Cell& rCell = mrComp.maCells[mnMatPos];
+
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ {
+ typedef MatrixImplType::numeric_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ {
+ rCell.mbValue = true;
+ rCell.mbEmpty = false;
+ rCell.mfValue = *it;
+ compare();
+ }
+ }
+ break;
+ case mdds::mtm::element_boolean:
+ {
+ typedef MatrixImplType::boolean_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ {
+ rCell.mbValue = true;
+ rCell.mbEmpty = false;
+ rCell.mfValue = double(*it);
+ compare();
+ }
+ }
+ break;
+ case mdds::mtm::element_string:
+ {
+ typedef MatrixImplType::string_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ {
+ const svl::SharedString& rStr = *it;
+ rCell.mbValue = false;
+ rCell.mbEmpty = false;
+ rCell.maStr = rStr;
+ compare();
+ }
+ }
+ break;
+ case mdds::mtm::element_empty:
+ {
+ rCell.mbValue = false;
+ rCell.mbEmpty = true;
+ rCell.maStr = svl::SharedString::getEmptyString();
+ for (size_t i = 0; i < node.size; ++i)
+ compare();
+ }
+ break;
+ default:
+ ;
+ }
+ }
+
+ const std::vector<double>& getValues() const
+ {
+ return maResValues;
+ }
+};
+
+/**
+ * Left-hand side is a matrix while the right-hand side is a numeric value.
+ */
+class CompareMatrixToNumericFunc
+{
+ sc::Compare& mrComp;
+ double mfRightValue;
+ sc::CompareOptions* mpOptions;
+ std::vector<double> maResValues; // double instead of bool to transport error values
+
+ void compare()
+ {
+ double fVal = sc::CompareFunc(mrComp.maCells[0], mfRightValue, mpOptions);
+ maResValues.push_back(evaluate(fVal, mrComp.meOp));
+ }
+
+ void compareLeftNumeric( double fLeftVal )
+ {
+ double fVal = sc::CompareFunc(fLeftVal, mfRightValue);
+ maResValues.push_back(evaluate(fVal, mrComp.meOp));
+ }
+
+ void compareLeftEmpty( size_t nSize )
+ {
+ double fVal = sc::CompareEmptyToNumericFunc(mfRightValue);
+ bool bRes = evaluate(fVal, mrComp.meOp);
+ maResValues.resize(maResValues.size() + nSize, bRes ? 1.0 : 0.0);
+ }
+
+public:
+ CompareMatrixToNumericFunc( size_t nResSize, sc::Compare& rComp, double fRightValue, sc::CompareOptions* pOptions ) :
+ mrComp(rComp), mfRightValue(fRightValue), mpOptions(pOptions)
+ {
+ maResValues.reserve(nResSize);
+ }
+
+ CompareMatrixToNumericFunc( const CompareMatrixToNumericFunc& ) = delete;
+ CompareMatrixToNumericFunc& operator= ( const CompareMatrixToNumericFunc& ) = delete;
+
+ CompareMatrixToNumericFunc(CompareMatrixToNumericFunc&& r) noexcept :
+ mrComp(r.mrComp),
+ mfRightValue(r.mfRightValue),
+ mpOptions(r.mpOptions),
+ maResValues(std::move(r.maResValues)) {}
+
+ CompareMatrixToNumericFunc& operator=(CompareMatrixToNumericFunc&& r) noexcept
+ {
+ mrComp = r.mrComp;
+ mfRightValue = r.mfRightValue;
+ mpOptions = r.mpOptions;
+ maResValues = std::move(r.maResValues);
+ return *this;
+ }
+
+ void operator() (const MatrixImplType::element_block_node_type& node)
+ {
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ {
+ typedef MatrixImplType::numeric_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ compareLeftNumeric(*it);
+ }
+ break;
+ case mdds::mtm::element_boolean:
+ {
+ typedef MatrixImplType::boolean_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ compareLeftNumeric(double(*it));
+ }
+ break;
+ case mdds::mtm::element_string:
+ {
+ typedef MatrixImplType::string_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ for (; it != itEnd; ++it)
+ {
+ const svl::SharedString& rStr = *it;
+ sc::Compare::Cell& rCell = mrComp.maCells[0];
+ rCell.mbValue = false;
+ rCell.mbEmpty = false;
+ rCell.maStr = rStr;
+ compare();
+ }
+ }
+ break;
+ case mdds::mtm::element_empty:
+ compareLeftEmpty(node.size);
+ break;
+ default:
+ ;
+ }
+ }
+
+ const std::vector<double>& getValues() const
+ {
+ return maResValues;
+ }
+};
+
+class ToDoubleArray
+{
+ std::vector<double> maArray;
+ std::vector<double>::iterator miPos;
+ double mfNaN;
+ bool mbEmptyAsZero;
+
+ void moveArray( ToDoubleArray& r )
+ {
+ // Re-create the iterator from the new array after the array has been
+ // moved, to ensure that the iterator points to a valid array
+ // position.
+ size_t n = std::distance(r.maArray.begin(), r.miPos);
+ maArray = std::move(r.maArray);
+ miPos = maArray.begin();
+ std::advance(miPos, n);
+ }
+
+public:
+ ToDoubleArray( size_t nSize, bool bEmptyAsZero ) :
+ maArray(nSize, 0.0), miPos(maArray.begin()), mbEmptyAsZero(bEmptyAsZero)
+ {
+ mfNaN = CreateDoubleError( FormulaError::ElementNaN);
+ }
+
+ ToDoubleArray( const ToDoubleArray& ) = delete;
+ ToDoubleArray& operator= ( const ToDoubleArray& ) = delete;
+
+ ToDoubleArray(ToDoubleArray&& r) noexcept :
+ mfNaN(r.mfNaN), mbEmptyAsZero(r.mbEmptyAsZero)
+ {
+ moveArray(r);
+ }
+
+ ToDoubleArray& operator=(ToDoubleArray&& r) noexcept
+ {
+ mfNaN = r.mfNaN;
+ mbEmptyAsZero = r.mbEmptyAsZero;
+ moveArray(r);
+ return *this;
+ }
+
+ void operator() (const MatrixImplType::element_block_node_type& node)
+ {
+ using namespace mdds::mtv;
+
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ {
+ double_element_block::const_iterator it = double_element_block::begin(*node.data);
+ double_element_block::const_iterator itEnd = double_element_block::end(*node.data);
+ for (; it != itEnd; ++it, ++miPos)
+ *miPos = *it;
+ }
+ break;
+ case mdds::mtm::element_boolean:
+ {
+ boolean_element_block::const_iterator it = boolean_element_block::begin(*node.data);
+ boolean_element_block::const_iterator itEnd = boolean_element_block::end(*node.data);
+ for (; it != itEnd; ++it, ++miPos)
+ *miPos = *it ? 1.0 : 0.0;
+ }
+ break;
+ case mdds::mtm::element_string:
+ {
+ for (size_t i = 0; i < node.size; ++i, ++miPos)
+ *miPos = mfNaN;
+ }
+ break;
+ case mdds::mtm::element_empty:
+ {
+ if (mbEmptyAsZero)
+ {
+ std::advance(miPos, node.size);
+ return;
+ }
+
+ for (size_t i = 0; i < node.size; ++i, ++miPos)
+ *miPos = mfNaN;
+ }
+ break;
+ default:
+ ;
+ }
+ }
+
+ void swap(std::vector<double>& rOther)
+ {
+ maArray.swap(rOther);
+ }
+};
+
+struct ArrayMul
+{
+ double operator() (const double& lhs, const double& rhs) const
+ {
+ return lhs * rhs;
+ }
+};
+
+template<typename Op>
+class MergeDoubleArrayFunc
+{
+ std::vector<double>::iterator miPos;
+ double mfNaN;
+public:
+ MergeDoubleArrayFunc(std::vector<double>& rArray) : miPos(rArray.begin())
+ {
+ mfNaN = CreateDoubleError( FormulaError::ElementNaN);
+ }
+
+ MergeDoubleArrayFunc( const MergeDoubleArrayFunc& ) = delete;
+ MergeDoubleArrayFunc& operator= ( const MergeDoubleArrayFunc& ) = delete;
+
+ MergeDoubleArrayFunc( MergeDoubleArrayFunc&& ) = default;
+ MergeDoubleArrayFunc& operator= ( MergeDoubleArrayFunc&& ) = default;
+
+ void operator() (const MatrixImplType::element_block_node_type& node)
+ {
+ using namespace mdds::mtv;
+ static const Op op;
+
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ {
+ double_element_block::const_iterator it = double_element_block::begin(*node.data);
+ double_element_block::const_iterator itEnd = double_element_block::end(*node.data);
+ for (; it != itEnd; ++it, ++miPos)
+ {
+ if (GetDoubleErrorValue(*miPos) == FormulaError::ElementNaN)
+ continue;
+
+ *miPos = op(*miPos, *it);
+ }
+ }
+ break;
+ case mdds::mtm::element_boolean:
+ {
+ boolean_element_block::const_iterator it = boolean_element_block::begin(*node.data);
+ boolean_element_block::const_iterator itEnd = boolean_element_block::end(*node.data);
+ for (; it != itEnd; ++it, ++miPos)
+ {
+ if (GetDoubleErrorValue(*miPos) == FormulaError::ElementNaN)
+ continue;
+
+ *miPos = op(*miPos, *it ? 1.0 : 0.0);
+ }
+ }
+ break;
+ case mdds::mtm::element_string:
+ {
+ for (size_t i = 0; i < node.size; ++i, ++miPos)
+ *miPos = mfNaN;
+ }
+ break;
+ case mdds::mtm::element_empty:
+ {
+ // Empty element is equivalent of having a numeric value of 0.0.
+ for (size_t i = 0; i < node.size; ++i, ++miPos)
+ {
+ if (GetDoubleErrorValue(*miPos) == FormulaError::ElementNaN)
+ continue;
+
+ *miPos = op(*miPos, 0.0);
+ }
+ }
+ break;
+ default:
+ ;
+ }
+ }
+};
+
+}
+
+namespace {
+
+template<typename TOp, typename tRes>
+ScMatrix::IterateResult<tRes> GetValueWithCount(bool bTextAsZero, bool bIgnoreErrorValues, const MatrixImplType& maMat)
+{
+ WalkElementBlocks<TOp, tRes> aFunc(bTextAsZero, bIgnoreErrorValues);
+ aFunc = maMat.walk(aFunc);
+ return aFunc.getResult();
+}
+
+}
+
+ScMatrix::KahanIterateResult ScMatrixImpl::Sum(bool bTextAsZero, bool bIgnoreErrorValues) const
+{
+ return GetValueWithCount<sc::op::Sum, KahanSum>(bTextAsZero, bIgnoreErrorValues, maMat);
+}
+
+ScMatrix::KahanIterateResult ScMatrixImpl::SumSquare(bool bTextAsZero, bool bIgnoreErrorValues) const
+{
+ return GetValueWithCount<sc::op::SumSquare, KahanSum>(bTextAsZero, bIgnoreErrorValues, maMat);
+}
+
+ScMatrix::DoubleIterateResult ScMatrixImpl::Product(bool bTextAsZero, bool bIgnoreErrorValues) const
+{
+ return GetValueWithCount<sc::op::Product, double>(bTextAsZero, bIgnoreErrorValues, maMat);
+}
+
+size_t ScMatrixImpl::Count(bool bCountStrings, bool bCountErrors, bool bIgnoreEmptyStrings) const
+{
+ CountElements aFunc(bCountStrings, bCountErrors, bIgnoreEmptyStrings);
+ aFunc = maMat.walk(aFunc);
+ return aFunc.getCount();
+}
+
+size_t ScMatrixImpl::MatchDoubleInColumns(double fValue, size_t nCol1, size_t nCol2) const
+{
+ WalkAndMatchElements<double> aFunc(fValue, maMat.size(), nCol1, nCol2);
+ aFunc = maMat.walk(aFunc);
+ return aFunc.getMatching();
+}
+
+size_t ScMatrixImpl::MatchStringInColumns(const svl::SharedString& rStr, size_t nCol1, size_t nCol2) const
+{
+ WalkAndMatchElements<svl::SharedString> aFunc(rStr, maMat.size(), nCol1, nCol2);
+ aFunc = maMat.walk(aFunc);
+ return aFunc.getMatching();
+}
+
+double ScMatrixImpl::GetMaxValue( bool bTextAsZero, bool bIgnoreErrorValues ) const
+{
+ CalcMaxMinValue<MaxOp> aFunc(bTextAsZero, bIgnoreErrorValues);
+ aFunc = maMat.walk(aFunc);
+ return aFunc.getValue();
+}
+
+double ScMatrixImpl::GetMinValue( bool bTextAsZero, bool bIgnoreErrorValues ) const
+{
+ CalcMaxMinValue<MinOp> aFunc(bTextAsZero, bIgnoreErrorValues);
+ aFunc = maMat.walk(aFunc);
+ return aFunc.getValue();
+}
+
+double ScMatrixImpl::GetGcd() const
+{
+ CalcGcdLcm<Gcd> aFunc;
+ aFunc = maMat.walk(aFunc);
+ return aFunc.getResult();
+}
+
+double ScMatrixImpl::GetLcm() const
+{
+ CalcGcdLcm<Lcm> aFunc;
+ aFunc = maMat.walk(aFunc);
+ return aFunc.getResult();
+}
+
+ScMatrixRef ScMatrixImpl::CompareMatrix(
+ sc::Compare& rComp, size_t nMatPos, sc::CompareOptions* pOptions ) const
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ size_t nSize = aSize.column * aSize.row;
+ if (nMatPos == 0)
+ {
+ if (rComp.maCells[1].mbValue && !rComp.maCells[1].mbEmpty)
+ {
+ // Matrix on the left, and a numeric value on the right. Use a
+ // function object that has much less branching for much better
+ // performance.
+ CompareMatrixToNumericFunc aFunc(nSize, rComp, rComp.maCells[1].mfValue, pOptions);
+ aFunc = maMat.walk(std::move(aFunc));
+
+ // We assume the result matrix has the same dimension as this matrix.
+ const std::vector<double>& rResVal = aFunc.getValues();
+ assert (nSize == rResVal.size());
+ if (nSize != rResVal.size())
+ return ScMatrixRef();
+
+ return ScMatrixRef(new ScMatrix(aSize.column, aSize.row, rResVal));
+ }
+ }
+
+ CompareMatrixFunc aFunc(nSize, rComp, nMatPos, pOptions);
+ aFunc = maMat.walk(std::move(aFunc));
+
+ // We assume the result matrix has the same dimension as this matrix.
+ const std::vector<double>& rResVal = aFunc.getValues();
+ assert (nSize == rResVal.size());
+ if (nSize != rResVal.size())
+ return ScMatrixRef();
+
+ return ScMatrixRef(new ScMatrix(aSize.column, aSize.row, rResVal));
+}
+
+void ScMatrixImpl::GetDoubleArray( std::vector<double>& rArray, bool bEmptyAsZero ) const
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ ToDoubleArray aFunc(aSize.row*aSize.column, bEmptyAsZero);
+ aFunc = maMat.walk(std::move(aFunc));
+ aFunc.swap(rArray);
+}
+
+void ScMatrixImpl::MergeDoubleArrayMultiply( std::vector<double>& rArray ) const
+{
+ MatrixImplType::size_pair_type aSize = maMat.size();
+ size_t nSize = aSize.row*aSize.column;
+ if (nSize != rArray.size())
+ return;
+
+ MergeDoubleArrayFunc<ArrayMul> aFunc(rArray);
+ maMat.walk(std::move(aFunc));
+}
+
+namespace {
+
+template<typename T, typename U, typename return_type>
+struct wrapped_iterator
+{
+ typedef ::std::bidirectional_iterator_tag iterator_category;
+ typedef typename T::const_iterator::value_type old_value_type;
+ typedef return_type value_type;
+ typedef value_type* pointer;
+ typedef value_type& reference;
+ typedef typename T::const_iterator::difference_type difference_type;
+
+ typename T::const_iterator it;
+ mutable value_type val;
+ U maOp;
+
+private:
+
+ value_type calcVal() const
+ {
+ return maOp(*it);
+ }
+
+public:
+
+ wrapped_iterator(typename T::const_iterator const & it_, U const & aOp):
+ it(it_),
+ val(value_type()),
+ maOp(aOp)
+ {
+ }
+
+ wrapped_iterator(const wrapped_iterator& r):
+ it(r.it),
+ val(r.val),
+ maOp(r.maOp)
+ {
+ }
+
+ wrapped_iterator& operator=(const wrapped_iterator& r)
+ {
+ it = r.it;
+ return *this;
+ }
+
+ bool operator==(const wrapped_iterator& r) const
+ {
+ return it == r.it;
+ }
+
+ bool operator!=(const wrapped_iterator& r) const
+ {
+ return !operator==(r);
+ }
+
+ wrapped_iterator& operator++()
+ {
+ ++it;
+
+ return *this;
+ }
+
+ wrapped_iterator& operator--()
+ {
+ --it;
+
+ return *this;
+ }
+
+ value_type& operator*() const
+ {
+ val = calcVal();
+ return val;
+ }
+
+ pointer operator->() const
+ {
+ val = calcVal();
+ return &val;
+ }
+};
+
+template<typename T, typename U, typename return_type>
+struct MatrixIteratorWrapper
+{
+private:
+ typename T::const_iterator m_itBegin;
+ typename T::const_iterator m_itEnd;
+ U maOp;
+public:
+ MatrixIteratorWrapper(typename T::const_iterator const & itBegin, typename T::const_iterator const & itEnd, U const & aOp):
+ m_itBegin(itBegin),
+ m_itEnd(itEnd),
+ maOp(aOp)
+ {
+ }
+
+ wrapped_iterator<T, U, return_type> begin()
+ {
+ return wrapped_iterator<T, U, return_type>(m_itBegin, maOp);
+ }
+
+ wrapped_iterator<T, U, return_type> end()
+ {
+ return wrapped_iterator<T, U, return_type>(m_itEnd, maOp);
+ }
+};
+
+MatrixImplType::position_type increment_position(const MatrixImplType::position_type& pos, size_t n)
+{
+ MatrixImplType::position_type ret = pos;
+ do
+ {
+ if (ret.second + n < ret.first->size)
+ {
+ ret.second += n;
+ break;
+ }
+ else
+ {
+ n -= (ret.first->size - ret.second);
+ ++ret.first;
+ ret.second = 0;
+ }
+ }
+ while (n > 0);
+ return ret;
+}
+
+template<typename T>
+struct MatrixOpWrapper
+{
+private:
+ MatrixImplType& mrMat;
+ MatrixImplType::position_type pos;
+ const T* mpOp;
+
+public:
+ MatrixOpWrapper(MatrixImplType& rMat, const T& aOp):
+ mrMat(rMat),
+ pos(rMat.position(0,0)),
+ mpOp(&aOp)
+ {
+ }
+
+ MatrixOpWrapper( const MatrixOpWrapper& r ) : mrMat(r.mrMat), pos(r.pos), mpOp(r.mpOp) {}
+
+ MatrixOpWrapper& operator= ( const MatrixOpWrapper& r ) = default;
+
+ void operator()(const MatrixImplType::element_block_node_type& node)
+ {
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ {
+ typedef MatrixImplType::numeric_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+ MatrixIteratorWrapper<block_type, T, typename T::number_value_type> aFunc(it, itEnd, *mpOp);
+ pos = mrMat.set(pos,aFunc.begin(), aFunc.end());
+ }
+ break;
+ case mdds::mtm::element_boolean:
+ {
+ typedef MatrixImplType::boolean_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+
+ MatrixIteratorWrapper<block_type, T, typename T::number_value_type> aFunc(it, itEnd, *mpOp);
+ pos = mrMat.set(pos, aFunc.begin(), aFunc.end());
+ }
+ break;
+ case mdds::mtm::element_string:
+ {
+ typedef MatrixImplType::string_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ block_type::const_iterator itEnd = block_type::end(*node.data);
+
+ MatrixIteratorWrapper<block_type, T, typename T::number_value_type> aFunc(it, itEnd, *mpOp);
+ pos = mrMat.set(pos, aFunc.begin(), aFunc.end());
+ }
+ break;
+ case mdds::mtm::element_empty:
+ {
+ if (mpOp->useFunctionForEmpty())
+ {
+ std::vector<char> aVec(node.size);
+ MatrixIteratorWrapper<std::vector<char>, T, typename T::number_value_type>
+ aFunc(aVec.begin(), aVec.end(), *mpOp);
+ pos = mrMat.set(pos, aFunc.begin(), aFunc.end());
+ }
+ }
+ break;
+ default:
+ ;
+ }
+ pos = increment_position(pos, node.size);
+ }
+};
+
+}
+
+template<typename T>
+void ScMatrixImpl::ApplyOperation(T aOp, ScMatrixImpl& rMat)
+{
+ MatrixOpWrapper<T> aFunc(rMat.maMat, aOp);
+ maMat.walk(aFunc);
+}
+
+template<typename T, typename tRes>
+ScMatrix::IterateResultMultiple<tRes> ScMatrixImpl::ApplyCollectOperation(const std::vector<T>& aOp)
+{
+ WalkElementBlocksMultipleValues<T, tRes> aFunc(aOp);
+ aFunc = maMat.walk(std::move(aFunc));
+ return aFunc.getResult();
+}
+
+namespace {
+
+struct ElementBlock
+{
+ ElementBlock(size_t nRowSize,
+ ScMatrix::DoubleOpFunction const & aDoubleFunc,
+ ScMatrix::BoolOpFunction const & aBoolFunc,
+ ScMatrix::StringOpFunction const & aStringFunc,
+ ScMatrix::EmptyOpFunction const & aEmptyFunc):
+ mnRowSize(nRowSize),
+ mnRowPos(0),
+ mnColPos(0),
+ maDoubleFunc(aDoubleFunc),
+ maBoolFunc(aBoolFunc),
+ maStringFunc(aStringFunc),
+ maEmptyFunc(aEmptyFunc)
+ {
+ }
+
+ size_t mnRowSize;
+ size_t mnRowPos;
+ size_t mnColPos;
+
+ ScMatrix::DoubleOpFunction maDoubleFunc;
+ ScMatrix::BoolOpFunction maBoolFunc;
+ ScMatrix::StringOpFunction maStringFunc;
+ ScMatrix::EmptyOpFunction maEmptyFunc;
+};
+
+class WalkElementBlockOperation
+{
+public:
+
+ WalkElementBlockOperation(ElementBlock& rElementBlock)
+ : mrElementBlock(rElementBlock)
+ {
+ }
+
+ void operator()(const MatrixImplType::element_block_node_type& node)
+ {
+ switch (node.type)
+ {
+ case mdds::mtm::element_numeric:
+ {
+ typedef MatrixImplType::numeric_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ std::advance(it, node.offset);
+ block_type::const_iterator itEnd = it;
+ std::advance(itEnd, node.size);
+ for (auto itr = it; itr != itEnd; ++itr)
+ {
+ mrElementBlock.maDoubleFunc(mrElementBlock.mnRowPos, mrElementBlock.mnColPos, *itr);
+ ++mrElementBlock.mnRowPos;
+ if (mrElementBlock.mnRowPos >= mrElementBlock.mnRowSize)
+ {
+ mrElementBlock.mnRowPos = 0;
+ ++mrElementBlock.mnColPos;
+ }
+ }
+ }
+ break;
+ case mdds::mtm::element_string:
+ {
+ typedef MatrixImplType::string_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ std::advance(it, node.offset);
+ block_type::const_iterator itEnd = it;
+ std::advance(itEnd, node.size);
+ for (auto itr = it; itr != itEnd; ++itr)
+ {
+ mrElementBlock.maStringFunc(mrElementBlock.mnRowPos, mrElementBlock.mnColPos, *itr);
+ ++mrElementBlock.mnRowPos;
+ if (mrElementBlock.mnRowPos >= mrElementBlock.mnRowSize)
+ {
+ mrElementBlock.mnRowPos = 0;
+ ++mrElementBlock.mnColPos;
+ }
+ }
+ }
+ break;
+ case mdds::mtm::element_boolean:
+ {
+ typedef MatrixImplType::boolean_block_type block_type;
+
+ block_type::const_iterator it = block_type::begin(*node.data);
+ std::advance(it, node.offset);
+ block_type::const_iterator itEnd = it;
+ std::advance(itEnd, node.size);
+ for (auto itr = it; itr != itEnd; ++itr)
+ {
+ mrElementBlock.maBoolFunc(mrElementBlock.mnRowPos, mrElementBlock.mnColPos, *itr);
+ ++mrElementBlock.mnRowPos;
+ if (mrElementBlock.mnRowPos >= mrElementBlock.mnRowSize)
+ {
+ mrElementBlock.mnRowPos = 0;
+ ++mrElementBlock.mnColPos;
+ }
+ }
+ }
+ break;
+ case mdds::mtm::element_empty:
+ {
+ for (size_t i=0; i < node.size; ++i)
+ {
+ mrElementBlock.maEmptyFunc(mrElementBlock.mnRowPos, mrElementBlock.mnColPos);
+ ++mrElementBlock.mnRowPos;
+ if (mrElementBlock.mnRowPos >= mrElementBlock.mnRowSize)
+ {
+ mrElementBlock.mnRowPos = 0;
+ ++mrElementBlock.mnColPos;
+ }
+ }
+ }
+ break;
+ case mdds::mtm::element_integer:
+ {
+ SAL_WARN("sc.core","WalkElementBlockOperation - unhandled element_integer");
+ // No function (yet?), but advance row and column count.
+ mrElementBlock.mnColPos += node.size / mrElementBlock.mnRowSize;
+ mrElementBlock.mnRowPos += node.size % mrElementBlock.mnRowSize;
+ if (mrElementBlock.mnRowPos >= mrElementBlock.mnRowSize)
+ {
+ mrElementBlock.mnRowPos = 0;
+ ++mrElementBlock.mnColPos;
+ }
+ }
+ break;
+ }
+ }
+
+private:
+
+ ElementBlock& mrElementBlock;
+};
+
+}
+
+void ScMatrixImpl::ExecuteOperation(const std::pair<size_t, size_t>& rStartPos,
+ const std::pair<size_t, size_t>& rEndPos, const ScMatrix::DoubleOpFunction& aDoubleFunc,
+ const ScMatrix::BoolOpFunction& aBoolFunc, const ScMatrix::StringOpFunction& aStringFunc,
+ const ScMatrix::EmptyOpFunction& aEmptyFunc) const
+{
+ ElementBlock aPayload(maMat.size().row, aDoubleFunc, aBoolFunc, aStringFunc, aEmptyFunc);
+ WalkElementBlockOperation aFunc(aPayload);
+ maMat.walk(
+ aFunc,
+ MatrixImplType::size_pair_type(rStartPos.first, rStartPos.second),
+ MatrixImplType::size_pair_type(rEndPos.first, rEndPos.second));
+}
+
+#if DEBUG_MATRIX
+
+void ScMatrixImpl::Dump() const
+{
+ cout << "-- matrix content" << endl;
+ SCSIZE nCols, nRows;
+ GetDimensions(nCols, nRows);
+ for (SCSIZE nRow = 0; nRow < nRows; ++nRow)
+ {
+ for (SCSIZE nCol = 0; nCol < nCols; ++nCol)
+ {
+ cout << " row=" << nRow << ", col=" << nCol << " : ";
+ switch (maMat.get_type(nRow, nCol))
+ {
+ case mdds::mtm::element_string:
+ cout << "string (" << maMat.get_string(nRow, nCol).getString() << ")";
+ break;
+ case mdds::mtm::element_numeric:
+ cout << "numeric (" << maMat.get_numeric(nRow, nCol) << ")";
+ break;
+ case mdds::mtm::element_boolean:
+ cout << "boolean (" << maMat.get_boolean(nRow, nCol) << ")";
+ break;
+ case mdds::mtm::element_empty:
+ cout << "empty";
+ break;
+ default:
+ ;
+ }
+
+ cout << endl;
+ }
+ }
+}
+#endif
+
+void ScMatrixImpl::CalcPosition(SCSIZE nIndex, SCSIZE& rC, SCSIZE& rR) const
+{
+ SCSIZE nRowSize = maMat.size().row;
+ SAL_WARN_IF( !nRowSize, "sc.core", "ScMatrixImpl::CalcPosition: 0 rows!");
+ rC = nRowSize > 1 ? nIndex / nRowSize : nIndex;
+ rR = nIndex - rC*nRowSize;
+}
+
+namespace {
+
+size_t get_index(SCSIZE nMaxRow, size_t nRow, size_t nCol, size_t nRowOffset, size_t nColOffset)
+{
+ return nMaxRow * (nCol + nColOffset) + nRow + nRowOffset;
+}
+
+}
+
+void ScMatrixImpl::MatConcat(SCSIZE nMaxCol, SCSIZE nMaxRow, const ScMatrixRef& xMat1, const ScMatrixRef& xMat2,
+ SvNumberFormatter& rFormatter, svl::SharedStringPool& rStringPool)
+{
+ SCSIZE nC1, nC2;
+ SCSIZE nR1, nR2;
+ xMat1->GetDimensions(nC1, nR1);
+ xMat2->GetDimensions(nC2, nR2);
+
+ sal_uInt32 nKey = rFormatter.GetStandardFormat( SvNumFormatType::NUMBER,
+ ScGlobal::eLnge);
+
+ std::vector<OUString> aString(nMaxCol * nMaxRow);
+ std::vector<bool> aValid(nMaxCol * nMaxRow, true);
+ std::vector<FormulaError> nErrors(nMaxCol * nMaxRow,FormulaError::NONE);
+
+ size_t nRowOffset = 0;
+ size_t nColOffset = 0;
+ std::function<void(size_t, size_t, double)> aDoubleFunc =
+ [&](size_t nRow, size_t nCol, double nVal)
+ {
+ FormulaError nErr = GetDoubleErrorValue(nVal);
+ if (nErr != FormulaError::NONE)
+ {
+ aValid[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] = false;
+ nErrors[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] = nErr;
+ return;
+ }
+ OUString aStr;
+ rFormatter.GetInputLineString( nVal, nKey, aStr);
+ aString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] = aString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] + aStr;
+ };
+
+ std::function<void(size_t, size_t, bool)> aBoolFunc =
+ [&](size_t nRow, size_t nCol, bool nVal)
+ {
+ OUString aStr;
+ rFormatter.GetInputLineString( nVal ? 1.0 : 0.0, nKey, aStr);
+ aString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] = aString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] + aStr;
+ };
+
+ std::function<void(size_t, size_t, const svl::SharedString&)> aStringFunc =
+ [&](size_t nRow, size_t nCol, const svl::SharedString& aStr)
+ {
+ aString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] = aString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] + aStr.getString();
+ };
+
+ std::function<void(size_t, size_t)> aEmptyFunc =
+ [](size_t /*nRow*/, size_t /*nCol*/)
+ {
+ // Nothing. Concatenating an empty string to an existing string.
+ };
+
+
+ if (nC1 == 1 || nR1 == 1)
+ {
+ size_t nRowRep = nR1 == 1 ? nMaxRow : 1;
+ size_t nColRep = nC1 == 1 ? nMaxCol : 1;
+
+ for (size_t i = 0; i < nRowRep; ++i)
+ {
+ nRowOffset = i;
+ for (size_t j = 0; j < nColRep; ++j)
+ {
+ nColOffset = j;
+ xMat1->ExecuteOperation(
+ std::pair<size_t, size_t>(0, 0),
+ std::pair<size_t, size_t>(std::min(nR1, nMaxRow) - 1, std::min(nC1, nMaxCol) - 1),
+ aDoubleFunc, aBoolFunc, aStringFunc, aEmptyFunc);
+ }
+ }
+ }
+ else
+ xMat1->ExecuteOperation(
+ std::pair<size_t, size_t>(0, 0),
+ std::pair<size_t, size_t>(nMaxRow - 1, nMaxCol - 1),
+ aDoubleFunc, aBoolFunc, aStringFunc, aEmptyFunc);
+
+ std::vector<svl::SharedString> aSharedString(nMaxCol*nMaxRow);
+
+ std::function<void(size_t, size_t, double)> aDoubleFunc2 =
+ [&](size_t nRow, size_t nCol, double nVal)
+ {
+ FormulaError nErr = GetDoubleErrorValue(nVal);
+ if (nErr != FormulaError::NONE)
+ {
+ aValid[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] = false;
+ nErrors[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] = nErr;
+ return;
+ }
+ OUString aStr;
+ rFormatter.GetInputLineString( nVal, nKey, aStr);
+ aSharedString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] = rStringPool.intern(aString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] + aStr);
+ };
+
+ std::function<void(size_t, size_t, bool)> aBoolFunc2 =
+ [&](size_t nRow, size_t nCol, bool nVal)
+ {
+ OUString aStr;
+ rFormatter.GetInputLineString( nVal ? 1.0 : 0.0, nKey, aStr);
+ aSharedString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] = rStringPool.intern(aString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] + aStr);
+ };
+
+ std::function<void(size_t, size_t, const svl::SharedString&)> aStringFunc2 =
+ [&](size_t nRow, size_t nCol, const svl::SharedString& aStr)
+ {
+ aSharedString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] =
+ rStringPool.intern(aString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] + aStr.getString());
+ };
+
+ std::function<void(size_t, size_t)> aEmptyFunc2 =
+ [&](size_t nRow, size_t nCol)
+ {
+ aSharedString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)] =
+ rStringPool.intern(aString[get_index(nMaxRow, nRow, nCol, nRowOffset, nColOffset)]);
+ };
+
+ nRowOffset = 0;
+ nColOffset = 0;
+ if (nC2 == 1 || nR2 == 1)
+ {
+ size_t nRowRep = nR2 == 1 ? nMaxRow : 1;
+ size_t nColRep = nC2 == 1 ? nMaxCol : 1;
+
+ for (size_t i = 0; i < nRowRep; ++i)
+ {
+ nRowOffset = i;
+ for (size_t j = 0; j < nColRep; ++j)
+ {
+ nColOffset = j;
+ xMat2->ExecuteOperation(
+ std::pair<size_t, size_t>(0, 0),
+ std::pair<size_t, size_t>(std::min(nR2, nMaxRow) - 1, std::min(nC2, nMaxCol) - 1),
+ aDoubleFunc2, aBoolFunc2, aStringFunc2, aEmptyFunc2);
+ }
+ }
+ }
+ else
+ xMat2->ExecuteOperation(
+ std::pair<size_t, size_t>(0, 0),
+ std::pair<size_t, size_t>(nMaxRow - 1, nMaxCol - 1),
+ aDoubleFunc2, aBoolFunc2, aStringFunc2, aEmptyFunc2);
+
+ aString.clear();
+
+ MatrixImplType::position_type pos = maMat.position(0, 0);
+ for (SCSIZE i = 0; i < nMaxCol; ++i)
+ {
+ for (SCSIZE j = 0; j < nMaxRow && i < nMaxCol; ++j)
+ {
+ if (aValid[nMaxRow * i + j])
+ {
+ auto itr = aValid.begin();
+ std::advance(itr, nMaxRow * i + j);
+ auto itrEnd = std::find(itr, aValid.end(), false);
+ size_t nSteps = std::distance(itr, itrEnd);
+ auto itrStr = aSharedString.begin();
+ std::advance(itrStr, nMaxRow * i + j);
+ auto itrEndStr = itrStr;
+ std::advance(itrEndStr, nSteps);
+ pos = maMat.set(pos, itrStr, itrEndStr);
+ size_t nColSteps = nSteps / nMaxRow;
+ i += nColSteps;
+ j += nSteps % nMaxRow;
+ if (j >= nMaxRow)
+ {
+ j -= nMaxRow;
+ ++i;
+ }
+ }
+ else
+ {
+ pos = maMat.set(pos, CreateDoubleError(nErrors[nMaxRow * i + j]));
+ }
+ pos = MatrixImplType::next_position(pos);
+ }
+ }
+}
+
+void ScMatrix::IncRef() const
+{
+ ++nRefCnt;
+}
+
+void ScMatrix::DecRef() const
+{
+ --nRefCnt;
+ if (nRefCnt == 0)
+ delete this;
+}
+
+bool ScMatrix::IsSizeAllocatable( SCSIZE nC, SCSIZE nR )
+{
+ SAL_WARN_IF( !nC, "sc.core", "ScMatrix with 0 columns!");
+ SAL_WARN_IF( !nR, "sc.core", "ScMatrix with 0 rows!");
+ // 0-size matrix is valid, it could be resized later.
+ if ((nC && !nR) || (!nC && nR))
+ {
+ SAL_WARN( "sc.core", "ScMatrix one-dimensional zero: " << nC << " columns * " << nR << " rows");
+ return false;
+ }
+ if (!nC || !nR)
+ return true;
+
+ if (!bElementsMaxFetched)
+ {
+ const char* pEnv = std::getenv("SC_MAX_MATRIX_ELEMENTS");
+ if (pEnv)
+ {
+ // Environment specifies the overall elements pool.
+ nElementsMax = std::atoi(pEnv);
+ }
+ else
+ {
+ // GetElementsMax() uses an (~arbitrary) elements limit.
+ // The actual allocation depends on the types of individual matrix
+ // elements and is averaged for type double.
+#if SAL_TYPES_SIZEOFPOINTER < 8
+ // Assume 1GB memory could be consumed by matrices.
+ constexpr size_t nMemMax = 0x40000000;
+#else
+ // Assume 6GB memory could be consumed by matrices.
+ constexpr size_t nMemMax = 0x180000000;
+#endif
+ nElementsMax = GetElementsMax( nMemMax);
+ }
+ bElementsMaxFetched = true;
+ }
+
+ if (nC > (nElementsMax / nR))
+ {
+ SAL_WARN( "sc.core", "ScMatrix overflow: " << nC << " columns * " << nR << " rows");
+ return false;
+ }
+ return true;
+}
+
+ScMatrix::ScMatrix( SCSIZE nC, SCSIZE nR) :
+ nRefCnt(0), mbCloneIfConst(true)
+{
+ if (ScMatrix::IsSizeAllocatable( nC, nR))
+ pImpl.reset( new ScMatrixImpl( nC, nR));
+ else
+ // Invalid matrix size, allocate 1x1 matrix with error value.
+ pImpl.reset( new ScMatrixImpl( 1,1, CreateDoubleError( FormulaError::MatrixSize)));
+}
+
+ScMatrix::ScMatrix(SCSIZE nC, SCSIZE nR, double fInitVal) :
+ nRefCnt(0), mbCloneIfConst(true)
+{
+ if (ScMatrix::IsSizeAllocatable( nC, nR))
+ pImpl.reset( new ScMatrixImpl( nC, nR, fInitVal));
+ else
+ // Invalid matrix size, allocate 1x1 matrix with error value.
+ pImpl.reset( new ScMatrixImpl( 1,1, CreateDoubleError( FormulaError::MatrixSize)));
+}
+
+ScMatrix::ScMatrix( size_t nC, size_t nR, const std::vector<double>& rInitVals ) :
+ nRefCnt(0), mbCloneIfConst(true)
+{
+ if (ScMatrix::IsSizeAllocatable( nC, nR))
+ pImpl.reset( new ScMatrixImpl( nC, nR, rInitVals));
+ else
+ // Invalid matrix size, allocate 1x1 matrix with error value.
+ pImpl.reset( new ScMatrixImpl( 1,1, CreateDoubleError( FormulaError::MatrixSize)));
+}
+
+ScMatrix::~ScMatrix()
+{
+}
+
+ScMatrix* ScMatrix::Clone() const
+{
+ SCSIZE nC, nR;
+ pImpl->GetDimensions(nC, nR);
+ ScMatrix* pScMat = new ScMatrix(nC, nR);
+ MatCopy(*pScMat);
+ pScMat->SetErrorInterpreter(pImpl->GetErrorInterpreter()); // TODO: really?
+ return pScMat;
+}
+
+ScMatrix* ScMatrix::CloneIfConst()
+{
+ return mbCloneIfConst ? Clone() : this;
+}
+
+void ScMatrix::SetMutable()
+{
+ mbCloneIfConst = false;
+}
+
+void ScMatrix::SetImmutable() const
+{
+ mbCloneIfConst = true;
+}
+
+void ScMatrix::Resize( SCSIZE nC, SCSIZE nR)
+{
+ pImpl->Resize(nC, nR);
+}
+
+void ScMatrix::Resize(SCSIZE nC, SCSIZE nR, double fVal)
+{
+ pImpl->Resize(nC, nR, fVal);
+}
+
+ScMatrix* ScMatrix::CloneAndExtend(SCSIZE nNewCols, SCSIZE nNewRows) const
+{
+ ScMatrix* pScMat = new ScMatrix(nNewCols, nNewRows);
+ MatCopy(*pScMat);
+ pScMat->SetErrorInterpreter(pImpl->GetErrorInterpreter());
+ return pScMat;
+}
+
+void ScMatrix::SetErrorInterpreter( ScInterpreter* p)
+{
+ pImpl->SetErrorInterpreter(p);
+}
+
+void ScMatrix::GetDimensions( SCSIZE& rC, SCSIZE& rR) const
+{
+ pImpl->GetDimensions(rC, rR);
+}
+
+SCSIZE ScMatrix::GetElementCount() const
+{
+ return pImpl->GetElementCount();
+}
+
+bool ScMatrix::ValidColRow( SCSIZE nC, SCSIZE nR) const
+{
+ return pImpl->ValidColRow(nC, nR);
+}
+
+bool ScMatrix::ValidColRowReplicated( SCSIZE & rC, SCSIZE & rR ) const
+{
+ return pImpl->ValidColRowReplicated(rC, rR);
+}
+
+bool ScMatrix::ValidColRowOrReplicated( SCSIZE & rC, SCSIZE & rR ) const
+{
+ return ValidColRow( rC, rR) || ValidColRowReplicated( rC, rR);
+}
+
+void ScMatrix::PutDouble(double fVal, SCSIZE nC, SCSIZE nR)
+{
+ pImpl->PutDouble(fVal, nC, nR);
+}
+
+void ScMatrix::PutDouble( double fVal, SCSIZE nIndex)
+{
+ pImpl->PutDouble(fVal, nIndex);
+}
+
+void ScMatrix::PutDouble(const double* pArray, size_t nLen, SCSIZE nC, SCSIZE nR)
+{
+ pImpl->PutDouble(pArray, nLen, nC, nR);
+}
+
+void ScMatrix::PutString(const svl::SharedString& rStr, SCSIZE nC, SCSIZE nR)
+{
+ pImpl->PutString(rStr, nC, nR);
+}
+
+void ScMatrix::PutString(const svl::SharedString& rStr, SCSIZE nIndex)
+{
+ pImpl->PutString(rStr, nIndex);
+}
+
+void ScMatrix::PutString(const svl::SharedString* pArray, size_t nLen, SCSIZE nC, SCSIZE nR)
+{
+ pImpl->PutString(pArray, nLen, nC, nR);
+}
+
+void ScMatrix::PutEmpty(SCSIZE nC, SCSIZE nR)
+{
+ pImpl->PutEmpty(nC, nR);
+}
+
+void ScMatrix::PutEmptyPath(SCSIZE nC, SCSIZE nR)
+{
+ pImpl->PutEmptyPath(nC, nR);
+}
+
+void ScMatrix::PutError( FormulaError nErrorCode, SCSIZE nC, SCSIZE nR )
+{
+ pImpl->PutError(nErrorCode, nC, nR);
+}
+
+void ScMatrix::PutBoolean(bool bVal, SCSIZE nC, SCSIZE nR)
+{
+ pImpl->PutBoolean(bVal, nC, nR);
+}
+
+FormulaError ScMatrix::GetError( SCSIZE nC, SCSIZE nR) const
+{
+ return pImpl->GetError(nC, nR);
+}
+
+double ScMatrix::GetDouble(SCSIZE nC, SCSIZE nR) const
+{
+ return pImpl->GetDouble(nC, nR);
+}
+
+double ScMatrix::GetDouble( SCSIZE nIndex) const
+{
+ return pImpl->GetDouble(nIndex);
+}
+
+double ScMatrix::GetDoubleWithStringConversion(SCSIZE nC, SCSIZE nR) const
+{
+ return pImpl->GetDoubleWithStringConversion(nC, nR);
+}
+
+svl::SharedString ScMatrix::GetString(SCSIZE nC, SCSIZE nR) const
+{
+ return pImpl->GetString(nC, nR);
+}
+
+svl::SharedString ScMatrix::GetString( SCSIZE nIndex) const
+{
+ return pImpl->GetString(nIndex);
+}
+
+svl::SharedString ScMatrix::GetString( SvNumberFormatter& rFormatter, SCSIZE nC, SCSIZE nR) const
+{
+ return pImpl->GetString(rFormatter, nC, nR);
+}
+
+ScMatrixValue ScMatrix::Get(SCSIZE nC, SCSIZE nR) const
+{
+ return pImpl->Get(nC, nR);
+}
+
+bool ScMatrix::IsStringOrEmpty( SCSIZE nIndex ) const
+{
+ return pImpl->IsStringOrEmpty(nIndex);
+}
+
+bool ScMatrix::IsStringOrEmpty( SCSIZE nC, SCSIZE nR ) const
+{
+ return pImpl->IsStringOrEmpty(nC, nR);
+}
+
+bool ScMatrix::IsEmpty( SCSIZE nC, SCSIZE nR ) const
+{
+ return pImpl->IsEmpty(nC, nR);
+}
+
+bool ScMatrix::IsEmptyCell( SCSIZE nC, SCSIZE nR ) const
+{
+ return pImpl->IsEmptyCell(nC, nR);
+}
+
+bool ScMatrix::IsEmptyResult( SCSIZE nC, SCSIZE nR ) const
+{
+ return pImpl->IsEmptyResult(nC, nR);
+}
+
+bool ScMatrix::IsEmptyPath( SCSIZE nC, SCSIZE nR ) const
+{
+ return pImpl->IsEmptyPath(nC, nR);
+}
+
+bool ScMatrix::IsValue( SCSIZE nIndex ) const
+{
+ return pImpl->IsValue(nIndex);
+}
+
+bool ScMatrix::IsValue( SCSIZE nC, SCSIZE nR ) const
+{
+ return pImpl->IsValue(nC, nR);
+}
+
+bool ScMatrix::IsValueOrEmpty( SCSIZE nC, SCSIZE nR ) const
+{
+ return pImpl->IsValueOrEmpty(nC, nR);
+}
+
+bool ScMatrix::IsBoolean( SCSIZE nC, SCSIZE nR ) const
+{
+ return pImpl->IsBoolean(nC, nR);
+}
+
+bool ScMatrix::IsNumeric() const
+{
+ return pImpl->IsNumeric();
+}
+
+void ScMatrix::MatCopy(const ScMatrix& mRes) const
+{
+ pImpl->MatCopy(*mRes.pImpl);
+}
+
+void ScMatrix::MatTrans(const ScMatrix& mRes) const
+{
+ pImpl->MatTrans(*mRes.pImpl);
+}
+
+void ScMatrix::FillDouble( double fVal, SCSIZE nC1, SCSIZE nR1, SCSIZE nC2, SCSIZE nR2 )
+{
+ pImpl->FillDouble(fVal, nC1, nR1, nC2, nR2);
+}
+
+void ScMatrix::PutDoubleVector( const ::std::vector< double > & rVec, SCSIZE nC, SCSIZE nR )
+{
+ pImpl->PutDoubleVector(rVec, nC, nR);
+}
+
+void ScMatrix::PutStringVector( const ::std::vector< svl::SharedString > & rVec, SCSIZE nC, SCSIZE nR )
+{
+ pImpl->PutStringVector(rVec, nC, nR);
+}
+
+void ScMatrix::PutEmptyVector( SCSIZE nCount, SCSIZE nC, SCSIZE nR )
+{
+ pImpl->PutEmptyVector(nCount, nC, nR);
+}
+
+void ScMatrix::PutEmptyResultVector( SCSIZE nCount, SCSIZE nC, SCSIZE nR )
+{
+ pImpl->PutEmptyResultVector(nCount, nC, nR);
+}
+
+void ScMatrix::PutEmptyPathVector( SCSIZE nCount, SCSIZE nC, SCSIZE nR )
+{
+ pImpl->PutEmptyPathVector(nCount, nC, nR);
+}
+
+void ScMatrix::CompareEqual()
+{
+ pImpl->CompareEqual();
+}
+
+void ScMatrix::CompareNotEqual()
+{
+ pImpl->CompareNotEqual();
+}
+
+void ScMatrix::CompareLess()
+{
+ pImpl->CompareLess();
+}
+
+void ScMatrix::CompareGreater()
+{
+ pImpl->CompareGreater();
+}
+
+void ScMatrix::CompareLessEqual()
+{
+ pImpl->CompareLessEqual();
+}
+
+void ScMatrix::CompareGreaterEqual()
+{
+ pImpl->CompareGreaterEqual();
+}
+
+double ScMatrix::And() const
+{
+ return pImpl->And();
+}
+
+double ScMatrix::Or() const
+{
+ return pImpl->Or();
+}
+
+double ScMatrix::Xor() const
+{
+ return pImpl->Xor();
+}
+
+ScMatrix::KahanIterateResult ScMatrix::Sum(bool bTextAsZero, bool bIgnoreErrorValues) const
+{
+ return pImpl->Sum(bTextAsZero, bIgnoreErrorValues);
+}
+
+ScMatrix::KahanIterateResult ScMatrix::SumSquare(bool bTextAsZero, bool bIgnoreErrorValues) const
+{
+ return pImpl->SumSquare(bTextAsZero, bIgnoreErrorValues);
+}
+
+ScMatrix::DoubleIterateResult ScMatrix::Product(bool bTextAsZero, bool bIgnoreErrorValues) const
+{
+ return pImpl->Product(bTextAsZero, bIgnoreErrorValues);
+}
+
+size_t ScMatrix::Count(bool bCountStrings, bool bCountErrors, bool bIgnoreEmptyStrings) const
+{
+ return pImpl->Count(bCountStrings, bCountErrors, bIgnoreEmptyStrings);
+}
+
+size_t ScMatrix::MatchDoubleInColumns(double fValue, size_t nCol1, size_t nCol2) const
+{
+ return pImpl->MatchDoubleInColumns(fValue, nCol1, nCol2);
+}
+
+size_t ScMatrix::MatchStringInColumns(const svl::SharedString& rStr, size_t nCol1, size_t nCol2) const
+{
+ return pImpl->MatchStringInColumns(rStr, nCol1, nCol2);
+}
+
+double ScMatrix::GetMaxValue( bool bTextAsZero, bool bIgnoreErrorValues ) const
+{
+ return pImpl->GetMaxValue(bTextAsZero, bIgnoreErrorValues);
+}
+
+double ScMatrix::GetMinValue( bool bTextAsZero, bool bIgnoreErrorValues ) const
+{
+ return pImpl->GetMinValue(bTextAsZero, bIgnoreErrorValues);
+}
+
+double ScMatrix::GetGcd() const
+{
+ return pImpl->GetGcd();
+}
+
+double ScMatrix::GetLcm() const
+{
+ return pImpl->GetLcm();
+}
+
+
+ScMatrixRef ScMatrix::CompareMatrix(
+ sc::Compare& rComp, size_t nMatPos, sc::CompareOptions* pOptions ) const
+{
+ return pImpl->CompareMatrix(rComp, nMatPos, pOptions);
+}
+
+void ScMatrix::GetDoubleArray( std::vector<double>& rArray, bool bEmptyAsZero ) const
+{
+ pImpl->GetDoubleArray(rArray, bEmptyAsZero);
+}
+
+void ScMatrix::MergeDoubleArrayMultiply( std::vector<double>& rArray ) const
+{
+ pImpl->MergeDoubleArrayMultiply(rArray);
+}
+
+namespace matop {
+
+namespace {
+
+/** A template for operations where operands are supposed to be numeric.
+ A non-numeric (string) operand leads to the configured conversion to number
+ method being called if in interpreter context and a FormulaError::NoValue DoubleError
+ if conversion was not possible, else to an unconditional FormulaError::NoValue
+ DoubleError.
+ An empty operand evaluates to 0.
+ */
+template<typename TOp>
+struct MatOp
+{
+private:
+ TOp maOp;
+ ScInterpreter* mpErrorInterpreter;
+ double mfVal;
+
+public:
+ typedef double number_value_type;
+
+ MatOp( TOp aOp, ScInterpreter* pErrorInterpreter,
+ double fVal = 0.0 ):
+ maOp(aOp),
+ mpErrorInterpreter(pErrorInterpreter),
+ mfVal(fVal)
+ {
+ if (mpErrorInterpreter)
+ {
+ FormulaError nErr = mpErrorInterpreter->GetError();
+ if (nErr != FormulaError::NONE)
+ mfVal = CreateDoubleError( nErr);
+ }
+ }
+
+ double operator()(double fVal) const
+ {
+ return maOp(fVal, mfVal);
+ }
+
+ double operator()(bool bVal) const
+ {
+ return maOp(static_cast<double>(bVal), mfVal);
+ }
+
+ double operator()(const svl::SharedString& rStr) const
+ {
+ return maOp( convertStringToValue( mpErrorInterpreter, rStr.getString()), mfVal);
+ }
+
+ /// the action for empty entries in a matrix
+ double operator()(char) const
+ {
+ return maOp(0, mfVal);
+ }
+
+ static bool useFunctionForEmpty()
+ {
+ return true;
+ }
+};
+
+}
+
+}
+
+void ScMatrix::NotOp( const ScMatrix& rMat)
+{
+ auto not_ = [](double a, double){return double(a == 0.0);};
+ matop::MatOp<decltype(not_)> aOp(not_, pImpl->GetErrorInterpreter());
+ pImpl->ApplyOperation(aOp, *rMat.pImpl);
+}
+
+void ScMatrix::NegOp( const ScMatrix& rMat)
+{
+ auto neg_ = [](double a, double){return -a;};
+ matop::MatOp<decltype(neg_)> aOp(neg_, pImpl->GetErrorInterpreter());
+ pImpl->ApplyOperation(aOp, *rMat.pImpl);
+}
+
+void ScMatrix::AddOp( double fVal, const ScMatrix& rMat)
+{
+ auto add_ = [](double a, double b){return a + b;};
+ matop::MatOp<decltype(add_)> aOp(add_, pImpl->GetErrorInterpreter(), fVal);
+ pImpl->ApplyOperation(aOp, *rMat.pImpl);
+}
+
+void ScMatrix::SubOp( bool bFlag, double fVal, const ScMatrix& rMat)
+{
+ if (bFlag)
+ {
+ auto sub_ = [](double a, double b){return b - a;};
+ matop::MatOp<decltype(sub_)> aOp(sub_, pImpl->GetErrorInterpreter(), fVal);
+ pImpl->ApplyOperation(aOp, *rMat.pImpl);
+ }
+ else
+ {
+ auto sub_ = [](double a, double b){return a - b;};
+ matop::MatOp<decltype(sub_)> aOp(sub_, pImpl->GetErrorInterpreter(), fVal);
+ pImpl->ApplyOperation(aOp, *rMat.pImpl);
+ }
+}
+
+void ScMatrix::MulOp( double fVal, const ScMatrix& rMat)
+{
+ auto mul_ = [](double a, double b){return a * b;};
+ matop::MatOp<decltype(mul_)> aOp(mul_, pImpl->GetErrorInterpreter(), fVal);
+ pImpl->ApplyOperation(aOp, *rMat.pImpl);
+}
+
+void ScMatrix::DivOp( bool bFlag, double fVal, const ScMatrix& rMat)
+{
+ if (bFlag)
+ {
+ auto div_ = [](double a, double b){return sc::div(b, a);};
+ matop::MatOp<decltype(div_)> aOp(div_, pImpl->GetErrorInterpreter(), fVal);
+ pImpl->ApplyOperation(aOp, *rMat.pImpl);
+ }
+ else
+ {
+ auto div_ = [](double a, double b){return sc::div(a, b);};
+ matop::MatOp<decltype(div_)> aOp(div_, pImpl->GetErrorInterpreter(), fVal);
+ pImpl->ApplyOperation(aOp, *rMat.pImpl);
+ }
+}
+
+void ScMatrix::PowOp( bool bFlag, double fVal, const ScMatrix& rMat)
+{
+ if (bFlag)
+ {
+ auto pow_ = [](double a, double b){return sc::power(b, a);};
+ matop::MatOp<decltype(pow_)> aOp(pow_, pImpl->GetErrorInterpreter(), fVal);
+ pImpl->ApplyOperation(aOp, *rMat.pImpl);
+ }
+ else
+ {
+ auto pow_ = [](double a, double b){return sc::power(a, b);};
+ matop::MatOp<decltype(pow_)> aOp(pow_, pImpl->GetErrorInterpreter(), fVal);
+ pImpl->ApplyOperation(aOp, *rMat.pImpl);
+ }
+}
+
+void ScMatrix::ExecuteOperation(const std::pair<size_t, size_t>& rStartPos,
+ const std::pair<size_t, size_t>& rEndPos, DoubleOpFunction aDoubleFunc,
+ BoolOpFunction aBoolFunc, StringOpFunction aStringFunc, EmptyOpFunction aEmptyFunc) const
+{
+ pImpl->ExecuteOperation(rStartPos, rEndPos, aDoubleFunc, aBoolFunc, aStringFunc, aEmptyFunc);
+}
+
+ScMatrix::KahanIterateResultMultiple ScMatrix::CollectKahan(const std::vector<sc::op::kOp>& aOp)
+{
+ return pImpl->ApplyCollectOperation<sc::op::kOp, KahanSum>(aOp);
+}
+
+#if DEBUG_MATRIX
+void ScMatrix::Dump() const
+{
+ pImpl->Dump();
+}
+#endif
+
+void ScMatrix::MatConcat(SCSIZE nMaxCol, SCSIZE nMaxRow,
+ const ScMatrixRef& xMat1, const ScMatrixRef& xMat2, SvNumberFormatter& rFormatter, svl::SharedStringPool& rPool)
+{
+ pImpl->MatConcat(nMaxCol, nMaxRow, xMat1, xMat2, rFormatter, rPool);
+}
+
+/* vim:set shiftwidth=4 softtabstop=4 expandtab: */