summaryrefslogtreecommitdiffstats
path: root/chart2/source/tools/PotentialRegressionCurveCalculator.cxx
blob: 01aa5b2548fb2ac5979f135d87100f8d70e09592 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
 * This file is part of the LibreOffice project.
 *
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/.
 *
 * This file incorporates work covered by the following license notice:
 *
 *   Licensed to the Apache Software Foundation (ASF) under one or more
 *   contributor license agreements. See the NOTICE file distributed
 *   with this work for additional information regarding copyright
 *   ownership. The ASF licenses this file to you under the Apache
 *   License, Version 2.0 (the "License"); you may not use this file
 *   except in compliance with the License. You may obtain a copy of
 *   the License at http://www.apache.org/licenses/LICENSE-2.0 .
 */

#include <PotentialRegressionCurveCalculator.hxx>
#include <RegressionCalculationHelper.hxx>
#include <SpecialCharacters.hxx>

#include <limits>
#include <rtl/math.hxx>
#include <rtl/ustrbuf.hxx>

using namespace ::com::sun::star;

namespace chart
{

PotentialRegressionCurveCalculator::PotentialRegressionCurveCalculator()
    : m_fSlope(std::numeric_limits<double>::quiet_NaN())
    , m_fIntercept(std::numeric_limits<double>::quiet_NaN())
    , m_fSign(1.0)
{
}

PotentialRegressionCurveCalculator::~PotentialRegressionCurveCalculator()
{}

// ____ XRegressionCurveCalculator ____
void SAL_CALL PotentialRegressionCurveCalculator::recalculateRegression(
    const uno::Sequence< double >& aXValues,
    const uno::Sequence< double >& aYValues )
{
    RegressionCalculationHelper::tDoubleVectorPair aValues(
        RegressionCalculationHelper::cleanup(
            aXValues, aYValues,
            RegressionCalculationHelper::isValidAndBothPositive()));
    m_fSign = 1.0;

    size_t nMax = aValues.first.size();
    if( nMax <= 1 )  // at least 2 points
    {
        aValues = RegressionCalculationHelper::cleanup(
                    aXValues, aYValues,
                    RegressionCalculationHelper::isValidAndXPositiveAndYNegative());
        nMax = aValues.first.size();
        if( nMax <= 1 )
        {
            m_fSlope = std::numeric_limits<double>::quiet_NaN();
            m_fIntercept = std::numeric_limits<double>::quiet_NaN();
            m_fCorrelationCoefficient = std::numeric_limits<double>::quiet_NaN();
            return;
        }
        m_fSign = -1.0;
    }

    double fAverageX = 0.0, fAverageY = 0.0;
    size_t i = 0;
    for( i = 0; i < nMax; ++i )
    {
        fAverageX += log( aValues.first[i] );
        fAverageY += log( m_fSign * aValues.second[i] );
    }

    const double fN = static_cast< double >( nMax );
    fAverageX /= fN;
    fAverageY /= fN;

    double fQx = 0.0, fQy = 0.0, fQxy = 0.0;
    for( i = 0; i < nMax; ++i )
    {
        double fDeltaX = log( aValues.first[i] ) - fAverageX;
        double fDeltaY = log( m_fSign * aValues.second[i] ) - fAverageY;

        fQx  += fDeltaX * fDeltaX;
        fQy  += fDeltaY * fDeltaY;
        fQxy += fDeltaX * fDeltaY;
    }

    m_fSlope = fQxy / fQx;
    m_fIntercept = fAverageY - m_fSlope * fAverageX;
    m_fCorrelationCoefficient = fQxy / sqrt( fQx * fQy );

    m_fIntercept = m_fSign * exp( m_fIntercept );
}

double SAL_CALL PotentialRegressionCurveCalculator::getCurveValue( double x )
{
    if( ! ( std::isnan( m_fSlope ) ||
            std::isnan( m_fIntercept )))
    {
        return m_fIntercept * pow( x, m_fSlope );
    }

    return std::numeric_limits<double>::quiet_NaN();
}

uno::Sequence< geometry::RealPoint2D > SAL_CALL PotentialRegressionCurveCalculator::getCurveValues(
    double min, double max, ::sal_Int32 nPointCount,
    const uno::Reference< chart2::XScaling >& xScalingX,
    const uno::Reference< chart2::XScaling >& xScalingY,
    sal_Bool bMaySkipPointsInCalculation )
{
    if( bMaySkipPointsInCalculation &&
        isLogarithmicScaling( xScalingX ) &&
        isLogarithmicScaling( xScalingY ))
    {
        // optimize result
        uno::Sequence< geometry::RealPoint2D > aResult{ { min, getCurveValue( min ) },
                                                        { max, getCurveValue( max ) } };

        return aResult;
    }
    return RegressionCurveCalculator::getCurveValues( min, max, nPointCount, xScalingX, xScalingY, bMaySkipPointsInCalculation );
}

OUString PotentialRegressionCurveCalculator::ImplGetRepresentation(
    const uno::Reference< util::XNumberFormatter >& xNumFormatter,
    sal_Int32 nNumberFormatKey, sal_Int32* pFormulaMaxWidth /* = nullptr */ ) const
{
    bool bHasIntercept = !rtl::math::approxEqual( fabs(m_fIntercept), 1.0 );
    OUStringBuffer aBuf( mYName + " = " );
    sal_Int32 nLineLength = aBuf.getLength();
    sal_Int32 nValueLength=0;
    if ( pFormulaMaxWidth && *pFormulaMaxWidth > 0 ) // count nValueLength
    {
        sal_Int32 nCharMin = nLineLength + mXName.getLength() + 3;  // 3 = "^" + 2 extra characters
        if ( m_fIntercept != 0.0 && m_fSlope != 0.0 )
        {
            if ( m_fIntercept < 0.0 )
                nCharMin += 2;  // "- "
            if ( bHasIntercept )
                nValueLength = (*pFormulaMaxWidth - nCharMin) / 2;
        }
        if ( nValueLength == 0 ) // not yet calculated
            nValueLength = *pFormulaMaxWidth - nCharMin;
        if ( nValueLength <= 0 )
            nValueLength = 1;
    }

    if( m_fIntercept == 0.0 )
    {
        aBuf.append( '0' );
    }
    else
    {
        // temporary buffer
        OUStringBuffer aTmpBuf("");
        // if nValueLength not calculated then nullptr
        sal_Int32* pValueLength = nValueLength ? &nValueLength : nullptr;
        if ( m_fIntercept < 0.0 )    // add intercept value
             aTmpBuf.append( OUStringChar(aMinusSign) + " " );
        if( bHasIntercept )
        {
            OUString aValueString = getFormattedString( xNumFormatter, nNumberFormatKey, fabs(m_fIntercept), pValueLength );
            if ( aValueString != "1" )  // aValueString may be rounded to 1 if nValueLength is small
            {
                aTmpBuf.append( aValueString + " " );
            }
        }
        if( m_fSlope != 0.0 )  // add slope value
        {
            aTmpBuf.append( mXName + "^" );
            aTmpBuf.append( getFormattedString( xNumFormatter, nNumberFormatKey, m_fSlope, pValueLength ));
        }
        addStringToEquation( aBuf, nLineLength, aTmpBuf, pFormulaMaxWidth );
    }

    return aBuf.makeStringAndClear();
}

} //  namespace chart

/* vim:set shiftwidth=4 softtabstop=4 expandtab: */