1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
// Natural, Clamped, or Periodic Cubic Splines
//
// Input: A list of N+1 points (x_i,a_i), 0 <= i <= N, which are sampled
// from a function, a_i = f(x_i). The function f is unknown. Boundary
// conditions are
// (1) Natural splines: f"(x_0) = f"(x_N) = 0
// (2) Clamped splines: f'(x_0) and f'(x_N) are user-specified.
// (3) Periodic splines: f(x_0) = f(x_N) [in which case a_N = a_0 is
// required in the input], f'(x_0) = f'(x_N), and f"(x_0) = f"(x_N).
//
// Output: b_i, c_i, d_i, 0 <= i <= N-1, which are coefficients for the cubic
// spline S_i(x) = a_i + b_i(x-x_i) + c_i(x-x_i)^2 + d_i(x-x_i)^3 for
// x_i <= x < x_{i+1}.
//
// The natural and clamped algorithms were implemented from
//
// Numerical Analysis, 3rd edition
// Richard L. Burden and J. Douglas Faires
// Prindle, Weber & Schmidt
// Boston, 1985, pp. 122-124.
//
// The algorithm sets up a tridiagonal linear system of equations in the
// c_i values. This can be solved in O(N) time.
//
// The periodic spline algorithm was implemented from my own derivation. The
// linear system of equations is not tridiagonal. For now I use a standard
// linear solver that does not take advantage of the sparseness of the
// matrix. Therefore for very large N, you may have to worry about memory
// usage.
#include <sal/config.h>
#include <memory>
#include "cspline.h"
#include "solver.h"
void NaturalSpline (int N, const double* x, const double* a, std::unique_ptr<double[]>& b, std::unique_ptr<double[]>& c,
std::unique_ptr<double[]>& d)
{
const double oneThird = 1.0/3.0;
int i;
std::unique_ptr<double[]> h(new double[N]);
std::unique_ptr<double[]> hdiff(new double[N]);
std::unique_ptr<double[]> alpha(new double[N]);
for (i = 0; i < N; i++){
h[i] = x[i+1]-x[i];
}
for (i = 1; i < N; i++)
hdiff[i] = x[i+1]-x[i-1];
for (i = 1; i < N; i++)
{
double numer = 3.0*(a[i+1]*h[i-1]-a[i]*hdiff[i]+a[i-1]*h[i]);
double denom = h[i-1]*h[i];
alpha[i] = numer/denom;
}
std::unique_ptr<double[]> ell(new double[N+1]);
std::unique_ptr<double[]> mu(new double[N]);
std::unique_ptr<double[]> z(new double[N+1]);
double recip;
ell[0] = 1.0;
mu[0] = 0.0;
z[0] = 0.0;
for (i = 1; i < N; i++)
{
ell[i] = 2.0*hdiff[i]-h[i-1]*mu[i-1];
recip = 1.0/ell[i];
mu[i] = recip*h[i];
z[i] = recip*(alpha[i]-h[i-1]*z[i-1]);
}
ell[N] = 1.0;
z[N] = 0.0;
b.reset(new double[N]);
c.reset(new double[N+1]);
d.reset(new double[N]);
c[N] = 0.0;
for (i = N-1; i >= 0; i--)
{
c[i] = z[i]-mu[i]*c[i+1];
recip = 1.0/h[i];
b[i] = recip*(a[i+1]-a[i])-h[i]*(c[i+1]+2.0*c[i])*oneThird;
d[i] = oneThird*recip*(c[i+1]-c[i]);
}
}
void PeriodicSpline (int N, const double* x, const double* a, std::unique_ptr<double[]>& b, std::unique_ptr<double[]>& c,
std::unique_ptr<double[]>& d)
{
std::unique_ptr<double[]> h(new double[N]);
int i;
for (i = 0; i < N; i++)
h[i] = x[i+1]-x[i];
std::unique_ptr<std::unique_ptr<double[]>[]> mat = mgcLinearSystemD::NewMatrix(N+1); // guaranteed to be zeroed memory
c = mgcLinearSystemD::NewVector(N+1); // guaranteed to be zeroed memory
// c[0] - c[N] = 0
mat[0][0] = +1.0f;
mat[0][N] = -1.0f;
// h[i-1]*c[i-1]+2*(h[i-1]+h[i])*c[i]+h[i]*c[i+1] =
// 3*{(a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]}
for (i = 1; i <= N-1; i++)
{
mat[i][i-1] = h[i-1];
mat[i][i ] = 2.0f*(h[i-1]+h[i]);
mat[i][i+1] = h[i];
c[i] = 3.0f*((a[i+1]-a[i])/h[i] - (a[i]-a[i-1])/h[i-1]);
}
// "wrap around equation" for periodicity
// h[N-1]*c[N-1]+2*(h[N-1]+h[0])*c[0]+h[0]*c[1] =
// 3*{(a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]}
mat[N][N-1] = h[N-1];
mat[N][0 ] = 2.0f*(h[N-1]+h[0]);
mat[N][1 ] = h[0];
c[N] = 3.0f*((a[1]-a[0])/h[0] - (a[0]-a[N-1])/h[N-1]);
// solve for c[0] through c[N]
mgcLinearSystemD::Solve(N+1,mat,c.get());
const double oneThird = 1.0/3.0;
b.reset(new double[N]);
d.reset(new double[N]);
for (i = 0; i < N; i++)
{
b[i] = (a[i+1]-a[i])/h[i] - oneThird*(c[i+1]+2.0f*c[i])*h[i];
d[i] = oneThird*(c[i+1]-c[i])/h[i];
}
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|