summaryrefslogtreecommitdiffstats
path: root/Documentation/driver-api/media/mc-core.rst
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /Documentation/driver-api/media/mc-core.rst
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'Documentation/driver-api/media/mc-core.rst')
-rw-r--r--Documentation/driver-api/media/mc-core.rst328
1 files changed, 328 insertions, 0 deletions
diff --git a/Documentation/driver-api/media/mc-core.rst b/Documentation/driver-api/media/mc-core.rst
new file mode 100644
index 000000000..400b8ca29
--- /dev/null
+++ b/Documentation/driver-api/media/mc-core.rst
@@ -0,0 +1,328 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Media Controller devices
+------------------------
+
+Media Controller
+~~~~~~~~~~~~~~~~
+
+The media controller userspace API is documented in
+:ref:`the Media Controller uAPI book <media_controller>`. This document focus
+on the kernel-side implementation of the media framework.
+
+Abstract media device model
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Discovering a device internal topology, and configuring it at runtime, is one
+of the goals of the media framework. To achieve this, hardware devices are
+modelled as an oriented graph of building blocks called entities connected
+through pads.
+
+An entity is a basic media hardware building block. It can correspond to
+a large variety of logical blocks such as physical hardware devices
+(CMOS sensor for instance), logical hardware devices (a building block
+in a System-on-Chip image processing pipeline), DMA channels or physical
+connectors.
+
+A pad is a connection endpoint through which an entity can interact with
+other entities. Data (not restricted to video) produced by an entity
+flows from the entity's output to one or more entity inputs. Pads should
+not be confused with physical pins at chip boundaries.
+
+A link is a point-to-point oriented connection between two pads, either
+on the same entity or on different entities. Data flows from a source
+pad to a sink pad.
+
+Media device
+^^^^^^^^^^^^
+
+A media device is represented by a struct media_device
+instance, defined in ``include/media/media-device.h``.
+Allocation of the structure is handled by the media device driver, usually by
+embedding the :c:type:`media_device` instance in a larger driver-specific
+structure.
+
+Drivers initialise media device instances by calling
+:c:func:`media_device_init()`. After initialising a media device instance, it is
+registered by calling :c:func:`__media_device_register()` via the macro
+``media_device_register()`` and unregistered by calling
+:c:func:`media_device_unregister()`. An initialised media device must be
+eventually cleaned up by calling :c:func:`media_device_cleanup()`.
+
+Note that it is not allowed to unregister a media device instance that was not
+previously registered, or clean up a media device instance that was not
+previously initialised.
+
+Entities
+^^^^^^^^
+
+Entities are represented by a struct media_entity
+instance, defined in ``include/media/media-entity.h``. The structure is usually
+embedded into a higher-level structure, such as
+:c:type:`v4l2_subdev` or :c:type:`video_device`
+instances, although drivers can allocate entities directly.
+
+Drivers initialize entity pads by calling
+:c:func:`media_entity_pads_init()`.
+
+Drivers register entities with a media device by calling
+:c:func:`media_device_register_entity()`
+and unregistered by calling
+:c:func:`media_device_unregister_entity()`.
+
+Interfaces
+^^^^^^^^^^
+
+Interfaces are represented by a
+struct media_interface instance, defined in
+``include/media/media-entity.h``. Currently, only one type of interface is
+defined: a device node. Such interfaces are represented by a
+struct media_intf_devnode.
+
+Drivers initialize and create device node interfaces by calling
+:c:func:`media_devnode_create()`
+and remove them by calling:
+:c:func:`media_devnode_remove()`.
+
+Pads
+^^^^
+Pads are represented by a struct media_pad instance,
+defined in ``include/media/media-entity.h``. Each entity stores its pads in
+a pads array managed by the entity driver. Drivers usually embed the array in
+a driver-specific structure.
+
+Pads are identified by their entity and their 0-based index in the pads
+array.
+
+Both information are stored in the struct media_pad,
+making the struct media_pad pointer the canonical way
+to store and pass link references.
+
+Pads have flags that describe the pad capabilities and state.
+
+``MEDIA_PAD_FL_SINK`` indicates that the pad supports sinking data.
+``MEDIA_PAD_FL_SOURCE`` indicates that the pad supports sourcing data.
+
+.. note::
+
+ One and only one of ``MEDIA_PAD_FL_SINK`` or ``MEDIA_PAD_FL_SOURCE`` must
+ be set for each pad.
+
+Links
+^^^^^
+
+Links are represented by a struct media_link instance,
+defined in ``include/media/media-entity.h``. There are two types of links:
+
+**1. pad to pad links**:
+
+Associate two entities via their PADs. Each entity has a list that points
+to all links originating at or targeting any of its pads.
+A given link is thus stored twice, once in the source entity and once in
+the target entity.
+
+Drivers create pad to pad links by calling:
+:c:func:`media_create_pad_link()` and remove with
+:c:func:`media_entity_remove_links()`.
+
+**2. interface to entity links**:
+
+Associate one interface to a Link.
+
+Drivers create interface to entity links by calling:
+:c:func:`media_create_intf_link()` and remove with
+:c:func:`media_remove_intf_links()`.
+
+.. note::
+
+ Links can only be created after having both ends already created.
+
+Links have flags that describe the link capabilities and state. The
+valid values are described at :c:func:`media_create_pad_link()` and
+:c:func:`media_create_intf_link()`.
+
+Graph traversal
+^^^^^^^^^^^^^^^
+
+The media framework provides APIs to iterate over entities in a graph.
+
+To iterate over all entities belonging to a media device, drivers can use
+the media_device_for_each_entity macro, defined in
+``include/media/media-device.h``.
+
+.. code-block:: c
+
+ struct media_entity *entity;
+
+ media_device_for_each_entity(entity, mdev) {
+ // entity will point to each entity in turn
+ ...
+ }
+
+Drivers might also need to iterate over all entities in a graph that can be
+reached only through enabled links starting at a given entity. The media
+framework provides a depth-first graph traversal API for that purpose.
+
+.. note::
+
+ Graphs with cycles (whether directed or undirected) are **NOT**
+ supported by the graph traversal API. To prevent infinite loops, the graph
+ traversal code limits the maximum depth to ``MEDIA_ENTITY_ENUM_MAX_DEPTH``,
+ currently defined as 16.
+
+Drivers initiate a graph traversal by calling
+:c:func:`media_graph_walk_start()`
+
+The graph structure, provided by the caller, is initialized to start graph
+traversal at the given entity.
+
+Drivers can then retrieve the next entity by calling
+:c:func:`media_graph_walk_next()`
+
+When the graph traversal is complete the function will return ``NULL``.
+
+Graph traversal can be interrupted at any moment. No cleanup function call
+is required and the graph structure can be freed normally.
+
+Helper functions can be used to find a link between two given pads, or a pad
+connected to another pad through an enabled link
+(:c:func:`media_entity_find_link()`, :c:func:`media_pad_remote_pad_first()`,
+:c:func:`media_entity_remote_source_pad_unique()` and
+:c:func:`media_pad_remote_pad_unique()`).
+
+Use count and power handling
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Due to the wide differences between drivers regarding power management
+needs, the media controller does not implement power management. However,
+the struct media_entity includes a ``use_count``
+field that media drivers
+can use to track the number of users of every entity for power management
+needs.
+
+The :c:type:`media_entity<media_entity>`.\ ``use_count`` field is owned by
+media drivers and must not be
+touched by entity drivers. Access to the field must be protected by the
+:c:type:`media_device`.\ ``graph_mutex`` lock.
+
+Links setup
+^^^^^^^^^^^
+
+Link properties can be modified at runtime by calling
+:c:func:`media_entity_setup_link()`.
+
+Pipelines and media streams
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+A media stream is a stream of pixels or metadata originating from one or more
+source devices (such as a sensors) and flowing through media entity pads
+towards the final sinks. The stream can be modified on the route by the
+devices (e.g. scaling or pixel format conversions), or it can be split into
+multiple branches, or multiple branches can be merged.
+
+A media pipeline is a set of media streams which are interdependent. This
+interdependency can be caused by the hardware (e.g. configuration of a second
+stream cannot be changed if the first stream has been enabled) or by the driver
+due to the software design. Most commonly a media pipeline consists of a single
+stream which does not branch.
+
+When starting streaming, drivers must notify all entities in the pipeline to
+prevent link states from being modified during streaming by calling
+:c:func:`media_pipeline_start()`.
+
+The function will mark all the pads which are part of the pipeline as streaming.
+
+The struct media_pipeline instance pointed to by
+the pipe argument will be stored in every pad in the pipeline.
+Drivers should embed the struct media_pipeline
+in higher-level pipeline structures and can then access the
+pipeline through the struct media_pad
+pipe field.
+
+Calls to :c:func:`media_pipeline_start()` can be nested.
+The pipeline pointer must be identical for all nested calls to the function.
+
+:c:func:`media_pipeline_start()` may return an error. In that case,
+it will clean up any of the changes it did by itself.
+
+When stopping the stream, drivers must notify the entities with
+:c:func:`media_pipeline_stop()`.
+
+If multiple calls to :c:func:`media_pipeline_start()` have been
+made the same number of :c:func:`media_pipeline_stop()` calls
+are required to stop streaming.
+The :c:type:`media_entity`.\ ``pipe`` field is reset to ``NULL`` on the last
+nested stop call.
+
+Link configuration will fail with ``-EBUSY`` by default if either end of the
+link is a streaming entity. Links that can be modified while streaming must
+be marked with the ``MEDIA_LNK_FL_DYNAMIC`` flag.
+
+If other operations need to be disallowed on streaming entities (such as
+changing entities configuration parameters) drivers can explicitly check the
+media_entity stream_count field to find out if an entity is streaming. This
+operation must be done with the media_device graph_mutex held.
+
+Link validation
+^^^^^^^^^^^^^^^
+
+Link validation is performed by :c:func:`media_pipeline_start()`
+for any entity which has sink pads in the pipeline. The
+:c:type:`media_entity`.\ ``link_validate()`` callback is used for that
+purpose. In ``link_validate()`` callback, entity driver should check
+that the properties of the source pad of the connected entity and its own
+sink pad match. It is up to the type of the entity (and in the end, the
+properties of the hardware) what matching actually means.
+
+Subsystems should facilitate link validation by providing subsystem specific
+helper functions to provide easy access for commonly needed information, and
+in the end provide a way to use driver-specific callbacks.
+
+Media Controller Device Allocator API
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+When the media device belongs to more than one driver, the shared media
+device is allocated with the shared struct device as the key for look ups.
+
+The shared media device should stay in registered state until the last
+driver unregisters it. In addition, the media device should be released when
+all the references are released. Each driver gets a reference to the media
+device during probe, when it allocates the media device. If media device is
+already allocated, the allocate API bumps up the refcount and returns the
+existing media device. The driver puts the reference back in its disconnect
+routine when it calls :c:func:`media_device_delete()`.
+
+The media device is unregistered and cleaned up from the kref put handler to
+ensure that the media device stays in registered state until the last driver
+unregisters the media device.
+
+**Driver Usage**
+
+Drivers should use the appropriate media-core routines to manage the shared
+media device life-time handling the two states:
+1. allocate -> register -> delete
+2. get reference to already registered device -> delete
+
+call :c:func:`media_device_delete()` routine to make sure the shared media
+device delete is handled correctly.
+
+**driver probe:**
+Call :c:func:`media_device_usb_allocate()` to allocate or get a reference
+Call :c:func:`media_device_register()`, if media devnode isn't registered
+
+**driver disconnect:**
+Call :c:func:`media_device_delete()` to free the media_device. Freeing is
+handled by the kref put handler.
+
+API Definitions
+^^^^^^^^^^^^^^^
+
+.. kernel-doc:: include/media/media-device.h
+
+.. kernel-doc:: include/media/media-devnode.h
+
+.. kernel-doc:: include/media/media-entity.h
+
+.. kernel-doc:: include/media/media-request.h
+
+.. kernel-doc:: include/media/media-dev-allocator.h