summaryrefslogtreecommitdiffstats
path: root/arch/ia64/kernel/efi.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /arch/ia64/kernel/efi.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/ia64/kernel/efi.c')
-rw-r--r--arch/ia64/kernel/efi.c1360
1 files changed, 1360 insertions, 0 deletions
diff --git a/arch/ia64/kernel/efi.c b/arch/ia64/kernel/efi.c
new file mode 100644
index 000000000..31149e41f
--- /dev/null
+++ b/arch/ia64/kernel/efi.c
@@ -0,0 +1,1360 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Extensible Firmware Interface
+ *
+ * Based on Extensible Firmware Interface Specification version 0.9
+ * April 30, 1999
+ *
+ * Copyright (C) 1999 VA Linux Systems
+ * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
+ * Copyright (C) 1999-2003 Hewlett-Packard Co.
+ * David Mosberger-Tang <davidm@hpl.hp.com>
+ * Stephane Eranian <eranian@hpl.hp.com>
+ * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
+ * Bjorn Helgaas <bjorn.helgaas@hp.com>
+ *
+ * All EFI Runtime Services are not implemented yet as EFI only
+ * supports physical mode addressing on SoftSDV. This is to be fixed
+ * in a future version. --drummond 1999-07-20
+ *
+ * Implemented EFI runtime services and virtual mode calls. --davidm
+ *
+ * Goutham Rao: <goutham.rao@intel.com>
+ * Skip non-WB memory and ignore empty memory ranges.
+ */
+#include <linux/module.h>
+#include <linux/memblock.h>
+#include <linux/crash_dump.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/slab.h>
+#include <linux/time.h>
+#include <linux/efi.h>
+#include <linux/kexec.h>
+#include <linux/mm.h>
+
+#include <asm/efi.h>
+#include <asm/io.h>
+#include <asm/kregs.h>
+#include <asm/meminit.h>
+#include <asm/processor.h>
+#include <asm/mca.h>
+#include <asm/sal.h>
+#include <asm/setup.h>
+#include <asm/tlbflush.h>
+
+#define EFI_DEBUG 0
+
+#define ESI_TABLE_GUID \
+ EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3, \
+ 0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
+
+static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
+static __initdata unsigned long palo_phys;
+
+unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
+unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
+unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
+
+static const efi_config_table_type_t arch_tables[] __initconst = {
+ {ESI_TABLE_GUID, &esi_phys, "ESI" },
+ {HCDP_TABLE_GUID, &hcdp_phys, "HCDP" },
+ {MPS_TABLE_GUID, &mps_phys, "MPS" },
+ {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID, &palo_phys, "PALO" },
+ {SAL_SYSTEM_TABLE_GUID, &sal_systab_phys, "SALsystab" },
+ {},
+};
+
+extern efi_status_t efi_call_phys (void *, ...);
+
+static efi_runtime_services_t *runtime;
+static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
+
+#define efi_call_virt(f, args...) (*(f))(args)
+
+#define STUB_GET_TIME(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_time_cap_t *atc = NULL; \
+ efi_status_t ret; \
+ \
+ if (tc) \
+ atc = adjust_arg(tc); \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time), \
+ adjust_arg(tm), atc); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_SET_TIME(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_set_time (efi_time_t *tm) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_status_t ret; \
+ \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time), \
+ adjust_arg(tm)); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending, \
+ efi_time_t *tm) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_status_t ret; \
+ \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix( \
+ (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time), \
+ adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm)); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_time_t *atm = NULL; \
+ efi_status_t ret; \
+ \
+ if (tm) \
+ atm = adjust_arg(tm); \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix( \
+ (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time), \
+ enabled, atm); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_GET_VARIABLE(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr, \
+ unsigned long *data_size, void *data) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ u32 *aattr = NULL; \
+ efi_status_t ret; \
+ \
+ if (attr) \
+ aattr = adjust_arg(attr); \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix( \
+ (efi_get_variable_t *) __va(runtime->get_variable), \
+ adjust_arg(name), adjust_arg(vendor), aattr, \
+ adjust_arg(data_size), adjust_arg(data)); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name, \
+ efi_guid_t *vendor) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_status_t ret; \
+ \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix( \
+ (efi_get_next_variable_t *) __va(runtime->get_next_variable), \
+ adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor)); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_SET_VARIABLE(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor, \
+ u32 attr, unsigned long data_size, \
+ void *data) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_status_t ret; \
+ \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix( \
+ (efi_set_variable_t *) __va(runtime->set_variable), \
+ adjust_arg(name), adjust_arg(vendor), attr, data_size, \
+ adjust_arg(data)); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg) \
+static efi_status_t \
+prefix##_get_next_high_mono_count (u32 *count) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_status_t ret; \
+ \
+ ia64_save_scratch_fpregs(fr); \
+ ret = efi_call_##prefix((efi_get_next_high_mono_count_t *) \
+ __va(runtime->get_next_high_mono_count), \
+ adjust_arg(count)); \
+ ia64_load_scratch_fpregs(fr); \
+ return ret; \
+}
+
+#define STUB_RESET_SYSTEM(prefix, adjust_arg) \
+static void \
+prefix##_reset_system (int reset_type, efi_status_t status, \
+ unsigned long data_size, efi_char16_t *data) \
+{ \
+ struct ia64_fpreg fr[6]; \
+ efi_char16_t *adata = NULL; \
+ \
+ if (data) \
+ adata = adjust_arg(data); \
+ \
+ ia64_save_scratch_fpregs(fr); \
+ efi_call_##prefix( \
+ (efi_reset_system_t *) __va(runtime->reset_system), \
+ reset_type, status, data_size, adata); \
+ /* should not return, but just in case... */ \
+ ia64_load_scratch_fpregs(fr); \
+}
+
+#define phys_ptr(arg) ((__typeof__(arg)) ia64_tpa(arg))
+
+STUB_GET_TIME(phys, phys_ptr)
+STUB_SET_TIME(phys, phys_ptr)
+STUB_GET_WAKEUP_TIME(phys, phys_ptr)
+STUB_SET_WAKEUP_TIME(phys, phys_ptr)
+STUB_GET_VARIABLE(phys, phys_ptr)
+STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
+STUB_SET_VARIABLE(phys, phys_ptr)
+STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
+STUB_RESET_SYSTEM(phys, phys_ptr)
+
+#define id(arg) arg
+
+STUB_GET_TIME(virt, id)
+STUB_SET_TIME(virt, id)
+STUB_GET_WAKEUP_TIME(virt, id)
+STUB_SET_WAKEUP_TIME(virt, id)
+STUB_GET_VARIABLE(virt, id)
+STUB_GET_NEXT_VARIABLE(virt, id)
+STUB_SET_VARIABLE(virt, id)
+STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
+STUB_RESET_SYSTEM(virt, id)
+
+void
+efi_gettimeofday (struct timespec64 *ts)
+{
+ efi_time_t tm;
+
+ if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
+ memset(ts, 0, sizeof(*ts));
+ return;
+ }
+
+ ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
+ tm.hour, tm.minute, tm.second);
+ ts->tv_nsec = tm.nanosecond;
+}
+
+static int
+is_memory_available (efi_memory_desc_t *md)
+{
+ if (!(md->attribute & EFI_MEMORY_WB))
+ return 0;
+
+ switch (md->type) {
+ case EFI_LOADER_CODE:
+ case EFI_LOADER_DATA:
+ case EFI_BOOT_SERVICES_CODE:
+ case EFI_BOOT_SERVICES_DATA:
+ case EFI_CONVENTIONAL_MEMORY:
+ return 1;
+ }
+ return 0;
+}
+
+typedef struct kern_memdesc {
+ u64 attribute;
+ u64 start;
+ u64 num_pages;
+} kern_memdesc_t;
+
+static kern_memdesc_t *kern_memmap;
+
+#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
+
+static inline u64
+kmd_end(kern_memdesc_t *kmd)
+{
+ return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
+}
+
+static inline u64
+efi_md_end(efi_memory_desc_t *md)
+{
+ return (md->phys_addr + efi_md_size(md));
+}
+
+static inline int
+efi_wb(efi_memory_desc_t *md)
+{
+ return (md->attribute & EFI_MEMORY_WB);
+}
+
+static inline int
+efi_uc(efi_memory_desc_t *md)
+{
+ return (md->attribute & EFI_MEMORY_UC);
+}
+
+static void
+walk (efi_freemem_callback_t callback, void *arg, u64 attr)
+{
+ kern_memdesc_t *k;
+ u64 start, end, voff;
+
+ voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
+ for (k = kern_memmap; k->start != ~0UL; k++) {
+ if (k->attribute != attr)
+ continue;
+ start = PAGE_ALIGN(k->start);
+ end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
+ if (start < end)
+ if ((*callback)(start + voff, end + voff, arg) < 0)
+ return;
+ }
+}
+
+/*
+ * Walk the EFI memory map and call CALLBACK once for each EFI memory
+ * descriptor that has memory that is available for OS use.
+ */
+void
+efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
+{
+ walk(callback, arg, EFI_MEMORY_WB);
+}
+
+/*
+ * Walk the EFI memory map and call CALLBACK once for each EFI memory
+ * descriptor that has memory that is available for uncached allocator.
+ */
+void
+efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
+{
+ walk(callback, arg, EFI_MEMORY_UC);
+}
+
+/*
+ * Look for the PAL_CODE region reported by EFI and map it using an
+ * ITR to enable safe PAL calls in virtual mode. See IA-64 Processor
+ * Abstraction Layer chapter 11 in ADAG
+ */
+void *
+efi_get_pal_addr (void)
+{
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ u64 efi_desc_size;
+ int pal_code_count = 0;
+ u64 vaddr, mask;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+ if (md->type != EFI_PAL_CODE)
+ continue;
+
+ if (++pal_code_count > 1) {
+ printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
+ "dropped @ %llx\n", md->phys_addr);
+ continue;
+ }
+ /*
+ * The only ITLB entry in region 7 that is used is the one
+ * installed by __start(). That entry covers a 64MB range.
+ */
+ mask = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
+ vaddr = PAGE_OFFSET + md->phys_addr;
+
+ /*
+ * We must check that the PAL mapping won't overlap with the
+ * kernel mapping.
+ *
+ * PAL code is guaranteed to be aligned on a power of 2 between
+ * 4k and 256KB and that only one ITR is needed to map it. This
+ * implies that the PAL code is always aligned on its size,
+ * i.e., the closest matching page size supported by the TLB.
+ * Therefore PAL code is guaranteed never to cross a 64MB unless
+ * it is bigger than 64MB (very unlikely!). So for now the
+ * following test is enough to determine whether or not we need
+ * a dedicated ITR for the PAL code.
+ */
+ if ((vaddr & mask) == (KERNEL_START & mask)) {
+ printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
+ __func__);
+ continue;
+ }
+
+ if (efi_md_size(md) > IA64_GRANULE_SIZE)
+ panic("Whoa! PAL code size bigger than a granule!");
+
+#if EFI_DEBUG
+ mask = ~((1 << IA64_GRANULE_SHIFT) - 1);
+
+ printk(KERN_INFO "CPU %d: mapping PAL code "
+ "[0x%llx-0x%llx) into [0x%llx-0x%llx)\n",
+ smp_processor_id(), md->phys_addr,
+ md->phys_addr + efi_md_size(md),
+ vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
+#endif
+ return __va(md->phys_addr);
+ }
+ printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
+ __func__);
+ return NULL;
+}
+
+
+static u8 __init palo_checksum(u8 *buffer, u32 length)
+{
+ u8 sum = 0;
+ u8 *end = buffer + length;
+
+ while (buffer < end)
+ sum = (u8) (sum + *(buffer++));
+
+ return sum;
+}
+
+/*
+ * Parse and handle PALO table which is published at:
+ * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
+ */
+static void __init handle_palo(unsigned long phys_addr)
+{
+ struct palo_table *palo = __va(phys_addr);
+ u8 checksum;
+
+ if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
+ printk(KERN_INFO "PALO signature incorrect.\n");
+ return;
+ }
+
+ checksum = palo_checksum((u8 *)palo, palo->length);
+ if (checksum) {
+ printk(KERN_INFO "PALO checksum incorrect.\n");
+ return;
+ }
+
+ setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
+}
+
+void
+efi_map_pal_code (void)
+{
+ void *pal_vaddr = efi_get_pal_addr ();
+ u64 psr;
+
+ if (!pal_vaddr)
+ return;
+
+ /*
+ * Cannot write to CRx with PSR.ic=1
+ */
+ psr = ia64_clear_ic();
+ ia64_itr(0x1, IA64_TR_PALCODE,
+ GRANULEROUNDDOWN((unsigned long) pal_vaddr),
+ pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
+ IA64_GRANULE_SHIFT);
+ ia64_set_psr(psr); /* restore psr */
+}
+
+void __init
+efi_init (void)
+{
+ const efi_system_table_t *efi_systab;
+ void *efi_map_start, *efi_map_end;
+ u64 efi_desc_size;
+ char *cp;
+
+ set_bit(EFI_BOOT, &efi.flags);
+ set_bit(EFI_64BIT, &efi.flags);
+
+ /*
+ * It's too early to be able to use the standard kernel command line
+ * support...
+ */
+ for (cp = boot_command_line; *cp; ) {
+ if (memcmp(cp, "mem=", 4) == 0) {
+ mem_limit = memparse(cp + 4, &cp);
+ } else if (memcmp(cp, "max_addr=", 9) == 0) {
+ max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
+ } else if (memcmp(cp, "min_addr=", 9) == 0) {
+ min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
+ } else {
+ while (*cp != ' ' && *cp)
+ ++cp;
+ while (*cp == ' ')
+ ++cp;
+ }
+ }
+ if (min_addr != 0UL)
+ printk(KERN_INFO "Ignoring memory below %lluMB\n",
+ min_addr >> 20);
+ if (max_addr != ~0UL)
+ printk(KERN_INFO "Ignoring memory above %lluMB\n",
+ max_addr >> 20);
+
+ efi_systab = __va(ia64_boot_param->efi_systab);
+
+ /*
+ * Verify the EFI Table
+ */
+ if (efi_systab == NULL)
+ panic("Whoa! Can't find EFI system table.\n");
+ if (efi_systab_check_header(&efi_systab->hdr, 1))
+ panic("Whoa! EFI system table signature incorrect\n");
+
+ efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
+
+ palo_phys = EFI_INVALID_TABLE_ADDR;
+
+ if (efi_config_parse_tables(__va(efi_systab->tables),
+ efi_systab->nr_tables,
+ arch_tables) != 0)
+ return;
+
+ if (palo_phys != EFI_INVALID_TABLE_ADDR)
+ handle_palo(palo_phys);
+
+ runtime = __va(efi_systab->runtime);
+ efi.get_time = phys_get_time;
+ efi.set_time = phys_set_time;
+ efi.get_wakeup_time = phys_get_wakeup_time;
+ efi.set_wakeup_time = phys_set_wakeup_time;
+ efi.get_variable = phys_get_variable;
+ efi.get_next_variable = phys_get_next_variable;
+ efi.set_variable = phys_set_variable;
+ efi.get_next_high_mono_count = phys_get_next_high_mono_count;
+ efi.reset_system = phys_reset_system;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+#if EFI_DEBUG
+ /* print EFI memory map: */
+ {
+ efi_memory_desc_t *md;
+ void *p;
+ unsigned int i;
+
+ for (i = 0, p = efi_map_start; p < efi_map_end;
+ ++i, p += efi_desc_size)
+ {
+ const char *unit;
+ unsigned long size;
+ char buf[64];
+
+ md = p;
+ size = md->num_pages << EFI_PAGE_SHIFT;
+
+ if ((size >> 40) > 0) {
+ size >>= 40;
+ unit = "TB";
+ } else if ((size >> 30) > 0) {
+ size >>= 30;
+ unit = "GB";
+ } else if ((size >> 20) > 0) {
+ size >>= 20;
+ unit = "MB";
+ } else {
+ size >>= 10;
+ unit = "KB";
+ }
+
+ printk("mem%02d: %s "
+ "range=[0x%016llx-0x%016llx) (%4lu%s)\n",
+ i, efi_md_typeattr_format(buf, sizeof(buf), md),
+ md->phys_addr,
+ md->phys_addr + efi_md_size(md), size, unit);
+ }
+ }
+#endif
+
+ efi_map_pal_code();
+ efi_enter_virtual_mode();
+}
+
+void
+efi_enter_virtual_mode (void)
+{
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ efi_status_t status;
+ u64 efi_desc_size;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+ if (md->attribute & EFI_MEMORY_RUNTIME) {
+ /*
+ * Some descriptors have multiple bits set, so the
+ * order of the tests is relevant.
+ */
+ if (md->attribute & EFI_MEMORY_WB) {
+ md->virt_addr = (u64) __va(md->phys_addr);
+ } else if (md->attribute & EFI_MEMORY_UC) {
+ md->virt_addr = (u64) ioremap(md->phys_addr, 0);
+ } else if (md->attribute & EFI_MEMORY_WC) {
+#if 0
+ md->virt_addr = ia64_remap(md->phys_addr,
+ (_PAGE_A |
+ _PAGE_P |
+ _PAGE_D |
+ _PAGE_MA_WC |
+ _PAGE_PL_0 |
+ _PAGE_AR_RW));
+#else
+ printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
+ md->virt_addr = (u64) ioremap(md->phys_addr, 0);
+#endif
+ } else if (md->attribute & EFI_MEMORY_WT) {
+#if 0
+ md->virt_addr = ia64_remap(md->phys_addr,
+ (_PAGE_A |
+ _PAGE_P |
+ _PAGE_D |
+ _PAGE_MA_WT |
+ _PAGE_PL_0 |
+ _PAGE_AR_RW));
+#else
+ printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
+ md->virt_addr = (u64) ioremap(md->phys_addr, 0);
+#endif
+ }
+ }
+ }
+
+ status = efi_call_phys(__va(runtime->set_virtual_address_map),
+ ia64_boot_param->efi_memmap_size,
+ efi_desc_size,
+ ia64_boot_param->efi_memdesc_version,
+ ia64_boot_param->efi_memmap);
+ if (status != EFI_SUCCESS) {
+ printk(KERN_WARNING "warning: unable to switch EFI into "
+ "virtual mode (status=%lu)\n", status);
+ return;
+ }
+
+ set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
+
+ /*
+ * Now that EFI is in virtual mode, we call the EFI functions more
+ * efficiently:
+ */
+ efi.get_time = virt_get_time;
+ efi.set_time = virt_set_time;
+ efi.get_wakeup_time = virt_get_wakeup_time;
+ efi.set_wakeup_time = virt_set_wakeup_time;
+ efi.get_variable = virt_get_variable;
+ efi.get_next_variable = virt_get_next_variable;
+ efi.set_variable = virt_set_variable;
+ efi.get_next_high_mono_count = virt_get_next_high_mono_count;
+ efi.reset_system = virt_reset_system;
+}
+
+/*
+ * Walk the EFI memory map looking for the I/O port range. There can only be
+ * one entry of this type, other I/O port ranges should be described via ACPI.
+ */
+u64
+efi_get_iobase (void)
+{
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ u64 efi_desc_size;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+ if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
+ if (md->attribute & EFI_MEMORY_UC)
+ return md->phys_addr;
+ }
+ }
+ return 0;
+}
+
+static struct kern_memdesc *
+kern_memory_descriptor (unsigned long phys_addr)
+{
+ struct kern_memdesc *md;
+
+ for (md = kern_memmap; md->start != ~0UL; md++) {
+ if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
+ return md;
+ }
+ return NULL;
+}
+
+static efi_memory_desc_t *
+efi_memory_descriptor (unsigned long phys_addr)
+{
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ u64 efi_desc_size;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+
+ if (phys_addr - md->phys_addr < efi_md_size(md))
+ return md;
+ }
+ return NULL;
+}
+
+static int
+efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
+{
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ u64 efi_desc_size;
+ unsigned long end;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ end = phys_addr + size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+ if (md->phys_addr < end && efi_md_end(md) > phys_addr)
+ return 1;
+ }
+ return 0;
+}
+
+int
+efi_mem_type (unsigned long phys_addr)
+{
+ efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
+
+ if (md)
+ return md->type;
+ return -EINVAL;
+}
+
+u64
+efi_mem_attributes (unsigned long phys_addr)
+{
+ efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
+
+ if (md)
+ return md->attribute;
+ return 0;
+}
+EXPORT_SYMBOL(efi_mem_attributes);
+
+u64
+efi_mem_attribute (unsigned long phys_addr, unsigned long size)
+{
+ unsigned long end = phys_addr + size;
+ efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
+ u64 attr;
+
+ if (!md)
+ return 0;
+
+ /*
+ * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
+ * the kernel that firmware needs this region mapped.
+ */
+ attr = md->attribute & ~EFI_MEMORY_RUNTIME;
+ do {
+ unsigned long md_end = efi_md_end(md);
+
+ if (end <= md_end)
+ return attr;
+
+ md = efi_memory_descriptor(md_end);
+ if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
+ return 0;
+ } while (md);
+ return 0; /* never reached */
+}
+
+u64
+kern_mem_attribute (unsigned long phys_addr, unsigned long size)
+{
+ unsigned long end = phys_addr + size;
+ struct kern_memdesc *md;
+ u64 attr;
+
+ /*
+ * This is a hack for ioremap calls before we set up kern_memmap.
+ * Maybe we should do efi_memmap_init() earlier instead.
+ */
+ if (!kern_memmap) {
+ attr = efi_mem_attribute(phys_addr, size);
+ if (attr & EFI_MEMORY_WB)
+ return EFI_MEMORY_WB;
+ return 0;
+ }
+
+ md = kern_memory_descriptor(phys_addr);
+ if (!md)
+ return 0;
+
+ attr = md->attribute;
+ do {
+ unsigned long md_end = kmd_end(md);
+
+ if (end <= md_end)
+ return attr;
+
+ md = kern_memory_descriptor(md_end);
+ if (!md || md->attribute != attr)
+ return 0;
+ } while (md);
+ return 0; /* never reached */
+}
+
+int
+valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
+{
+ u64 attr;
+
+ /*
+ * /dev/mem reads and writes use copy_to_user(), which implicitly
+ * uses a granule-sized kernel identity mapping. It's really
+ * only safe to do this for regions in kern_memmap. For more
+ * details, see Documentation/ia64/aliasing.rst.
+ */
+ attr = kern_mem_attribute(phys_addr, size);
+ if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
+ return 1;
+ return 0;
+}
+
+int
+valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
+{
+ unsigned long phys_addr = pfn << PAGE_SHIFT;
+ u64 attr;
+
+ attr = efi_mem_attribute(phys_addr, size);
+
+ /*
+ * /dev/mem mmap uses normal user pages, so we don't need the entire
+ * granule, but the entire region we're mapping must support the same
+ * attribute.
+ */
+ if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
+ return 1;
+
+ /*
+ * Intel firmware doesn't tell us about all the MMIO regions, so
+ * in general we have to allow mmap requests. But if EFI *does*
+ * tell us about anything inside this region, we should deny it.
+ * The user can always map a smaller region to avoid the overlap.
+ */
+ if (efi_memmap_intersects(phys_addr, size))
+ return 0;
+
+ return 1;
+}
+
+pgprot_t
+phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
+ pgprot_t vma_prot)
+{
+ unsigned long phys_addr = pfn << PAGE_SHIFT;
+ u64 attr;
+
+ /*
+ * For /dev/mem mmap, we use user mappings, but if the region is
+ * in kern_memmap (and hence may be covered by a kernel mapping),
+ * we must use the same attribute as the kernel mapping.
+ */
+ attr = kern_mem_attribute(phys_addr, size);
+ if (attr & EFI_MEMORY_WB)
+ return pgprot_cacheable(vma_prot);
+ else if (attr & EFI_MEMORY_UC)
+ return pgprot_noncached(vma_prot);
+
+ /*
+ * Some chipsets don't support UC access to memory. If
+ * WB is supported, we prefer that.
+ */
+ if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
+ return pgprot_cacheable(vma_prot);
+
+ return pgprot_noncached(vma_prot);
+}
+
+int __init
+efi_uart_console_only(void)
+{
+ efi_status_t status;
+ char *s, name[] = "ConOut";
+ efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
+ efi_char16_t *utf16, name_utf16[32];
+ unsigned char data[1024];
+ unsigned long size = sizeof(data);
+ struct efi_generic_dev_path *hdr, *end_addr;
+ int uart = 0;
+
+ /* Convert to UTF-16 */
+ utf16 = name_utf16;
+ s = name;
+ while (*s)
+ *utf16++ = *s++ & 0x7f;
+ *utf16 = 0;
+
+ status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
+ if (status != EFI_SUCCESS) {
+ printk(KERN_ERR "No EFI %s variable?\n", name);
+ return 0;
+ }
+
+ hdr = (struct efi_generic_dev_path *) data;
+ end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
+ while (hdr < end_addr) {
+ if (hdr->type == EFI_DEV_MSG &&
+ hdr->sub_type == EFI_DEV_MSG_UART)
+ uart = 1;
+ else if (hdr->type == EFI_DEV_END_PATH ||
+ hdr->type == EFI_DEV_END_PATH2) {
+ if (!uart)
+ return 0;
+ if (hdr->sub_type == EFI_DEV_END_ENTIRE)
+ return 1;
+ uart = 0;
+ }
+ hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
+ }
+ printk(KERN_ERR "Malformed %s value\n", name);
+ return 0;
+}
+
+/*
+ * Look for the first granule aligned memory descriptor memory
+ * that is big enough to hold EFI memory map. Make sure this
+ * descriptor is at least granule sized so it does not get trimmed
+ */
+struct kern_memdesc *
+find_memmap_space (void)
+{
+ u64 contig_low=0, contig_high=0;
+ u64 as = 0, ae;
+ void *efi_map_start, *efi_map_end, *p, *q;
+ efi_memory_desc_t *md, *pmd = NULL, *check_md;
+ u64 space_needed, efi_desc_size;
+ unsigned long total_mem = 0;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ /*
+ * Worst case: we need 3 kernel descriptors for each efi descriptor
+ * (if every entry has a WB part in the middle, and UC head and tail),
+ * plus one for the end marker.
+ */
+ space_needed = sizeof(kern_memdesc_t) *
+ (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
+
+ for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
+ md = p;
+ if (!efi_wb(md)) {
+ continue;
+ }
+ if (pmd == NULL || !efi_wb(pmd) ||
+ efi_md_end(pmd) != md->phys_addr) {
+ contig_low = GRANULEROUNDUP(md->phys_addr);
+ contig_high = efi_md_end(md);
+ for (q = p + efi_desc_size; q < efi_map_end;
+ q += efi_desc_size) {
+ check_md = q;
+ if (!efi_wb(check_md))
+ break;
+ if (contig_high != check_md->phys_addr)
+ break;
+ contig_high = efi_md_end(check_md);
+ }
+ contig_high = GRANULEROUNDDOWN(contig_high);
+ }
+ if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
+ continue;
+
+ /* Round ends inward to granule boundaries */
+ as = max(contig_low, md->phys_addr);
+ ae = min(contig_high, efi_md_end(md));
+
+ /* keep within max_addr= and min_addr= command line arg */
+ as = max(as, min_addr);
+ ae = min(ae, max_addr);
+ if (ae <= as)
+ continue;
+
+ /* avoid going over mem= command line arg */
+ if (total_mem + (ae - as) > mem_limit)
+ ae -= total_mem + (ae - as) - mem_limit;
+
+ if (ae <= as)
+ continue;
+
+ if (ae - as > space_needed)
+ break;
+ }
+ if (p >= efi_map_end)
+ panic("Can't allocate space for kernel memory descriptors");
+
+ return __va(as);
+}
+
+/*
+ * Walk the EFI memory map and gather all memory available for kernel
+ * to use. We can allocate partial granules only if the unavailable
+ * parts exist, and are WB.
+ */
+unsigned long
+efi_memmap_init(u64 *s, u64 *e)
+{
+ struct kern_memdesc *k, *prev = NULL;
+ u64 contig_low=0, contig_high=0;
+ u64 as, ae, lim;
+ void *efi_map_start, *efi_map_end, *p, *q;
+ efi_memory_desc_t *md, *pmd = NULL, *check_md;
+ u64 efi_desc_size;
+ unsigned long total_mem = 0;
+
+ k = kern_memmap = find_memmap_space();
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
+ md = p;
+ if (!efi_wb(md)) {
+ if (efi_uc(md) &&
+ (md->type == EFI_CONVENTIONAL_MEMORY ||
+ md->type == EFI_BOOT_SERVICES_DATA)) {
+ k->attribute = EFI_MEMORY_UC;
+ k->start = md->phys_addr;
+ k->num_pages = md->num_pages;
+ k++;
+ }
+ continue;
+ }
+ if (pmd == NULL || !efi_wb(pmd) ||
+ efi_md_end(pmd) != md->phys_addr) {
+ contig_low = GRANULEROUNDUP(md->phys_addr);
+ contig_high = efi_md_end(md);
+ for (q = p + efi_desc_size; q < efi_map_end;
+ q += efi_desc_size) {
+ check_md = q;
+ if (!efi_wb(check_md))
+ break;
+ if (contig_high != check_md->phys_addr)
+ break;
+ contig_high = efi_md_end(check_md);
+ }
+ contig_high = GRANULEROUNDDOWN(contig_high);
+ }
+ if (!is_memory_available(md))
+ continue;
+
+ /*
+ * Round ends inward to granule boundaries
+ * Give trimmings to uncached allocator
+ */
+ if (md->phys_addr < contig_low) {
+ lim = min(efi_md_end(md), contig_low);
+ if (efi_uc(md)) {
+ if (k > kern_memmap &&
+ (k-1)->attribute == EFI_MEMORY_UC &&
+ kmd_end(k-1) == md->phys_addr) {
+ (k-1)->num_pages +=
+ (lim - md->phys_addr)
+ >> EFI_PAGE_SHIFT;
+ } else {
+ k->attribute = EFI_MEMORY_UC;
+ k->start = md->phys_addr;
+ k->num_pages = (lim - md->phys_addr)
+ >> EFI_PAGE_SHIFT;
+ k++;
+ }
+ }
+ as = contig_low;
+ } else
+ as = md->phys_addr;
+
+ if (efi_md_end(md) > contig_high) {
+ lim = max(md->phys_addr, contig_high);
+ if (efi_uc(md)) {
+ if (lim == md->phys_addr && k > kern_memmap &&
+ (k-1)->attribute == EFI_MEMORY_UC &&
+ kmd_end(k-1) == md->phys_addr) {
+ (k-1)->num_pages += md->num_pages;
+ } else {
+ k->attribute = EFI_MEMORY_UC;
+ k->start = lim;
+ k->num_pages = (efi_md_end(md) - lim)
+ >> EFI_PAGE_SHIFT;
+ k++;
+ }
+ }
+ ae = contig_high;
+ } else
+ ae = efi_md_end(md);
+
+ /* keep within max_addr= and min_addr= command line arg */
+ as = max(as, min_addr);
+ ae = min(ae, max_addr);
+ if (ae <= as)
+ continue;
+
+ /* avoid going over mem= command line arg */
+ if (total_mem + (ae - as) > mem_limit)
+ ae -= total_mem + (ae - as) - mem_limit;
+
+ if (ae <= as)
+ continue;
+ if (prev && kmd_end(prev) == md->phys_addr) {
+ prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
+ total_mem += ae - as;
+ continue;
+ }
+ k->attribute = EFI_MEMORY_WB;
+ k->start = as;
+ k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
+ total_mem += ae - as;
+ prev = k++;
+ }
+ k->start = ~0L; /* end-marker */
+
+ /* reserve the memory we are using for kern_memmap */
+ *s = (u64)kern_memmap;
+ *e = (u64)++k;
+
+ return total_mem;
+}
+
+void
+efi_initialize_iomem_resources(struct resource *code_resource,
+ struct resource *data_resource,
+ struct resource *bss_resource)
+{
+ struct resource *res;
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ u64 efi_desc_size;
+ char *name;
+ unsigned long flags, desc;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ res = NULL;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+
+ if (md->num_pages == 0) /* should not happen */
+ continue;
+
+ flags = IORESOURCE_MEM | IORESOURCE_BUSY;
+ desc = IORES_DESC_NONE;
+
+ switch (md->type) {
+
+ case EFI_MEMORY_MAPPED_IO:
+ case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
+ continue;
+
+ case EFI_LOADER_CODE:
+ case EFI_LOADER_DATA:
+ case EFI_BOOT_SERVICES_DATA:
+ case EFI_BOOT_SERVICES_CODE:
+ case EFI_CONVENTIONAL_MEMORY:
+ if (md->attribute & EFI_MEMORY_WP) {
+ name = "System ROM";
+ flags |= IORESOURCE_READONLY;
+ } else if (md->attribute == EFI_MEMORY_UC) {
+ name = "Uncached RAM";
+ } else {
+ name = "System RAM";
+ flags |= IORESOURCE_SYSRAM;
+ }
+ break;
+
+ case EFI_ACPI_MEMORY_NVS:
+ name = "ACPI Non-volatile Storage";
+ desc = IORES_DESC_ACPI_NV_STORAGE;
+ break;
+
+ case EFI_UNUSABLE_MEMORY:
+ name = "reserved";
+ flags |= IORESOURCE_DISABLED;
+ break;
+
+ case EFI_PERSISTENT_MEMORY:
+ name = "Persistent Memory";
+ desc = IORES_DESC_PERSISTENT_MEMORY;
+ break;
+
+ case EFI_RESERVED_TYPE:
+ case EFI_RUNTIME_SERVICES_CODE:
+ case EFI_RUNTIME_SERVICES_DATA:
+ case EFI_ACPI_RECLAIM_MEMORY:
+ default:
+ name = "reserved";
+ break;
+ }
+
+ if ((res = kzalloc(sizeof(struct resource),
+ GFP_KERNEL)) == NULL) {
+ printk(KERN_ERR
+ "failed to allocate resource for iomem\n");
+ return;
+ }
+
+ res->name = name;
+ res->start = md->phys_addr;
+ res->end = md->phys_addr + efi_md_size(md) - 1;
+ res->flags = flags;
+ res->desc = desc;
+
+ if (insert_resource(&iomem_resource, res) < 0)
+ kfree(res);
+ else {
+ /*
+ * We don't know which region contains
+ * kernel data so we try it repeatedly and
+ * let the resource manager test it.
+ */
+ insert_resource(res, code_resource);
+ insert_resource(res, data_resource);
+ insert_resource(res, bss_resource);
+#ifdef CONFIG_KEXEC
+ insert_resource(res, &efi_memmap_res);
+ insert_resource(res, &boot_param_res);
+ if (crashk_res.end > crashk_res.start)
+ insert_resource(res, &crashk_res);
+#endif
+ }
+ }
+}
+
+#ifdef CONFIG_KEXEC
+/* find a block of memory aligned to 64M exclude reserved regions
+ rsvd_regions are sorted
+ */
+unsigned long __init
+kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
+{
+ int i;
+ u64 start, end;
+ u64 alignment = 1UL << _PAGE_SIZE_64M;
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ u64 efi_desc_size;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+ if (!efi_wb(md))
+ continue;
+ start = ALIGN(md->phys_addr, alignment);
+ end = efi_md_end(md);
+ for (i = 0; i < n; i++) {
+ if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
+ if (__pa(r[i].start) > start + size)
+ return start;
+ start = ALIGN(__pa(r[i].end), alignment);
+ if (i < n-1 &&
+ __pa(r[i+1].start) < start + size)
+ continue;
+ else
+ break;
+ }
+ }
+ if (end > start + size)
+ return start;
+ }
+
+ printk(KERN_WARNING
+ "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
+ return ~0UL;
+}
+#endif
+
+#ifdef CONFIG_CRASH_DUMP
+/* locate the size find a the descriptor at a certain address */
+unsigned long __init
+vmcore_find_descriptor_size (unsigned long address)
+{
+ void *efi_map_start, *efi_map_end, *p;
+ efi_memory_desc_t *md;
+ u64 efi_desc_size;
+ unsigned long ret = 0;
+
+ efi_map_start = __va(ia64_boot_param->efi_memmap);
+ efi_map_end = efi_map_start + ia64_boot_param->efi_memmap_size;
+ efi_desc_size = ia64_boot_param->efi_memdesc_size;
+
+ for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
+ md = p;
+ if (efi_wb(md) && md->type == EFI_LOADER_DATA
+ && md->phys_addr == address) {
+ ret = efi_md_size(md);
+ break;
+ }
+ }
+
+ if (ret == 0)
+ printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
+
+ return ret;
+}
+#endif
+
+char *efi_systab_show_arch(char *str)
+{
+ if (mps_phys != EFI_INVALID_TABLE_ADDR)
+ str += sprintf(str, "MPS=0x%lx\n", mps_phys);
+ if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
+ str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
+ return str;
+}