diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/net/wireless/ralink/rt2x00/rt2500pci.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/wireless/ralink/rt2x00/rt2500pci.c')
-rw-r--r-- | drivers/net/wireless/ralink/rt2x00/rt2500pci.c | 2139 |
1 files changed, 2139 insertions, 0 deletions
diff --git a/drivers/net/wireless/ralink/rt2x00/rt2500pci.c b/drivers/net/wireless/ralink/rt2x00/rt2500pci.c new file mode 100644 index 000000000..cd6371e25 --- /dev/null +++ b/drivers/net/wireless/ralink/rt2x00/rt2500pci.c @@ -0,0 +1,2139 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> + <http://rt2x00.serialmonkey.com> + + */ + +/* + Module: rt2500pci + Abstract: rt2500pci device specific routines. + Supported chipsets: RT2560. + */ + +#include <linux/delay.h> +#include <linux/etherdevice.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/pci.h> +#include <linux/eeprom_93cx6.h> +#include <linux/slab.h> + +#include "rt2x00.h" +#include "rt2x00mmio.h" +#include "rt2x00pci.h" +#include "rt2500pci.h" + +/* + * Register access. + * All access to the CSR registers will go through the methods + * rt2x00mmio_register_read and rt2x00mmio_register_write. + * BBP and RF register require indirect register access, + * and use the CSR registers BBPCSR and RFCSR to achieve this. + * These indirect registers work with busy bits, + * and we will try maximal REGISTER_BUSY_COUNT times to access + * the register while taking a REGISTER_BUSY_DELAY us delay + * between each attampt. When the busy bit is still set at that time, + * the access attempt is considered to have failed, + * and we will print an error. + */ +#define WAIT_FOR_BBP(__dev, __reg) \ + rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg)) +#define WAIT_FOR_RF(__dev, __reg) \ + rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg)) + +static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev, + const unsigned int word, const u8 value) +{ + u32 reg; + + mutex_lock(&rt2x00dev->csr_mutex); + + /* + * Wait until the BBP becomes available, afterwards we + * can safely write the new data into the register. + */ + if (WAIT_FOR_BBP(rt2x00dev, ®)) { + reg = 0; + rt2x00_set_field32(®, BBPCSR_VALUE, value); + rt2x00_set_field32(®, BBPCSR_REGNUM, word); + rt2x00_set_field32(®, BBPCSR_BUSY, 1); + rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 1); + + rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg); + } + + mutex_unlock(&rt2x00dev->csr_mutex); +} + +static u8 rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev, + const unsigned int word) +{ + u32 reg; + u8 value; + + mutex_lock(&rt2x00dev->csr_mutex); + + /* + * Wait until the BBP becomes available, afterwards we + * can safely write the read request into the register. + * After the data has been written, we wait until hardware + * returns the correct value, if at any time the register + * doesn't become available in time, reg will be 0xffffffff + * which means we return 0xff to the caller. + */ + if (WAIT_FOR_BBP(rt2x00dev, ®)) { + reg = 0; + rt2x00_set_field32(®, BBPCSR_REGNUM, word); + rt2x00_set_field32(®, BBPCSR_BUSY, 1); + rt2x00_set_field32(®, BBPCSR_WRITE_CONTROL, 0); + + rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg); + + WAIT_FOR_BBP(rt2x00dev, ®); + } + + value = rt2x00_get_field32(reg, BBPCSR_VALUE); + + mutex_unlock(&rt2x00dev->csr_mutex); + + return value; +} + +static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev, + const unsigned int word, const u32 value) +{ + u32 reg; + + mutex_lock(&rt2x00dev->csr_mutex); + + /* + * Wait until the RF becomes available, afterwards we + * can safely write the new data into the register. + */ + if (WAIT_FOR_RF(rt2x00dev, ®)) { + reg = 0; + rt2x00_set_field32(®, RFCSR_VALUE, value); + rt2x00_set_field32(®, RFCSR_NUMBER_OF_BITS, 20); + rt2x00_set_field32(®, RFCSR_IF_SELECT, 0); + rt2x00_set_field32(®, RFCSR_BUSY, 1); + + rt2x00mmio_register_write(rt2x00dev, RFCSR, reg); + rt2x00_rf_write(rt2x00dev, word, value); + } + + mutex_unlock(&rt2x00dev->csr_mutex); +} + +static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom) +{ + struct rt2x00_dev *rt2x00dev = eeprom->data; + u32 reg; + + reg = rt2x00mmio_register_read(rt2x00dev, CSR21); + + eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN); + eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT); + eeprom->reg_data_clock = + !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK); + eeprom->reg_chip_select = + !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT); +} + +static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom) +{ + struct rt2x00_dev *rt2x00dev = eeprom->data; + u32 reg = 0; + + rt2x00_set_field32(®, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in); + rt2x00_set_field32(®, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out); + rt2x00_set_field32(®, CSR21_EEPROM_DATA_CLOCK, + !!eeprom->reg_data_clock); + rt2x00_set_field32(®, CSR21_EEPROM_CHIP_SELECT, + !!eeprom->reg_chip_select); + + rt2x00mmio_register_write(rt2x00dev, CSR21, reg); +} + +#ifdef CONFIG_RT2X00_LIB_DEBUGFS +static const struct rt2x00debug rt2500pci_rt2x00debug = { + .owner = THIS_MODULE, + .csr = { + .read = rt2x00mmio_register_read, + .write = rt2x00mmio_register_write, + .flags = RT2X00DEBUGFS_OFFSET, + .word_base = CSR_REG_BASE, + .word_size = sizeof(u32), + .word_count = CSR_REG_SIZE / sizeof(u32), + }, + .eeprom = { + .read = rt2x00_eeprom_read, + .write = rt2x00_eeprom_write, + .word_base = EEPROM_BASE, + .word_size = sizeof(u16), + .word_count = EEPROM_SIZE / sizeof(u16), + }, + .bbp = { + .read = rt2500pci_bbp_read, + .write = rt2500pci_bbp_write, + .word_base = BBP_BASE, + .word_size = sizeof(u8), + .word_count = BBP_SIZE / sizeof(u8), + }, + .rf = { + .read = rt2x00_rf_read, + .write = rt2500pci_rf_write, + .word_base = RF_BASE, + .word_size = sizeof(u32), + .word_count = RF_SIZE / sizeof(u32), + }, +}; +#endif /* CONFIG_RT2X00_LIB_DEBUGFS */ + +static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR); + return rt2x00_get_field32(reg, GPIOCSR_VAL0); +} + +#ifdef CONFIG_RT2X00_LIB_LEDS +static void rt2500pci_brightness_set(struct led_classdev *led_cdev, + enum led_brightness brightness) +{ + struct rt2x00_led *led = + container_of(led_cdev, struct rt2x00_led, led_dev); + unsigned int enabled = brightness != LED_OFF; + u32 reg; + + reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR); + + if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) + rt2x00_set_field32(®, LEDCSR_LINK, enabled); + else if (led->type == LED_TYPE_ACTIVITY) + rt2x00_set_field32(®, LEDCSR_ACTIVITY, enabled); + + rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg); +} + +static int rt2500pci_blink_set(struct led_classdev *led_cdev, + unsigned long *delay_on, + unsigned long *delay_off) +{ + struct rt2x00_led *led = + container_of(led_cdev, struct rt2x00_led, led_dev); + u32 reg; + + reg = rt2x00mmio_register_read(led->rt2x00dev, LEDCSR); + rt2x00_set_field32(®, LEDCSR_ON_PERIOD, *delay_on); + rt2x00_set_field32(®, LEDCSR_OFF_PERIOD, *delay_off); + rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg); + + return 0; +} + +static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev, + struct rt2x00_led *led, + enum led_type type) +{ + led->rt2x00dev = rt2x00dev; + led->type = type; + led->led_dev.brightness_set = rt2500pci_brightness_set; + led->led_dev.blink_set = rt2500pci_blink_set; + led->flags = LED_INITIALIZED; +} +#endif /* CONFIG_RT2X00_LIB_LEDS */ + +/* + * Configuration handlers. + */ +static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev, + const unsigned int filter_flags) +{ + u32 reg; + + /* + * Start configuration steps. + * Note that the version error will always be dropped + * and broadcast frames will always be accepted since + * there is no filter for it at this time. + */ + reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0); + rt2x00_set_field32(®, RXCSR0_DROP_CRC, + !(filter_flags & FIF_FCSFAIL)); + rt2x00_set_field32(®, RXCSR0_DROP_PHYSICAL, + !(filter_flags & FIF_PLCPFAIL)); + rt2x00_set_field32(®, RXCSR0_DROP_CONTROL, + !(filter_flags & FIF_CONTROL)); + rt2x00_set_field32(®, RXCSR0_DROP_NOT_TO_ME, + !test_bit(CONFIG_MONITORING, &rt2x00dev->flags)); + rt2x00_set_field32(®, RXCSR0_DROP_TODS, + !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) && + !rt2x00dev->intf_ap_count); + rt2x00_set_field32(®, RXCSR0_DROP_VERSION_ERROR, 1); + rt2x00_set_field32(®, RXCSR0_DROP_MCAST, + !(filter_flags & FIF_ALLMULTI)); + rt2x00_set_field32(®, RXCSR0_DROP_BCAST, 0); + rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); +} + +static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev, + struct rt2x00_intf *intf, + struct rt2x00intf_conf *conf, + const unsigned int flags) +{ + struct data_queue *queue = rt2x00dev->bcn; + unsigned int bcn_preload; + u32 reg; + + if (flags & CONFIG_UPDATE_TYPE) { + /* + * Enable beacon config + */ + bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); + reg = rt2x00mmio_register_read(rt2x00dev, BCNCSR1); + rt2x00_set_field32(®, BCNCSR1_PRELOAD, bcn_preload); + rt2x00_set_field32(®, BCNCSR1_BEACON_CWMIN, queue->cw_min); + rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg); + + /* + * Enable synchronisation. + */ + reg = rt2x00mmio_register_read(rt2x00dev, CSR14); + rt2x00_set_field32(®, CSR14_TSF_SYNC, conf->sync); + rt2x00mmio_register_write(rt2x00dev, CSR14, reg); + } + + if (flags & CONFIG_UPDATE_MAC) + rt2x00mmio_register_multiwrite(rt2x00dev, CSR3, + conf->mac, sizeof(conf->mac)); + + if (flags & CONFIG_UPDATE_BSSID) + rt2x00mmio_register_multiwrite(rt2x00dev, CSR5, + conf->bssid, sizeof(conf->bssid)); +} + +static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_erp *erp, + u32 changed) +{ + int preamble_mask; + u32 reg; + + /* + * When short preamble is enabled, we should set bit 0x08 + */ + if (changed & BSS_CHANGED_ERP_PREAMBLE) { + preamble_mask = erp->short_preamble << 3; + + reg = rt2x00mmio_register_read(rt2x00dev, TXCSR1); + rt2x00_set_field32(®, TXCSR1_ACK_TIMEOUT, 0x162); + rt2x00_set_field32(®, TXCSR1_ACK_CONSUME_TIME, 0xa2); + rt2x00_set_field32(®, TXCSR1_TSF_OFFSET, IEEE80211_HEADER); + rt2x00_set_field32(®, TXCSR1_AUTORESPONDER, 1); + rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, ARCSR2); + rt2x00_set_field32(®, ARCSR2_SIGNAL, 0x00); + rt2x00_set_field32(®, ARCSR2_SERVICE, 0x04); + rt2x00_set_field32(®, ARCSR2_LENGTH, + GET_DURATION(ACK_SIZE, 10)); + rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, ARCSR3); + rt2x00_set_field32(®, ARCSR3_SIGNAL, 0x01 | preamble_mask); + rt2x00_set_field32(®, ARCSR3_SERVICE, 0x04); + rt2x00_set_field32(®, ARCSR2_LENGTH, + GET_DURATION(ACK_SIZE, 20)); + rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, ARCSR4); + rt2x00_set_field32(®, ARCSR4_SIGNAL, 0x02 | preamble_mask); + rt2x00_set_field32(®, ARCSR4_SERVICE, 0x04); + rt2x00_set_field32(®, ARCSR2_LENGTH, + GET_DURATION(ACK_SIZE, 55)); + rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, ARCSR5); + rt2x00_set_field32(®, ARCSR5_SIGNAL, 0x03 | preamble_mask); + rt2x00_set_field32(®, ARCSR5_SERVICE, 0x84); + rt2x00_set_field32(®, ARCSR2_LENGTH, + GET_DURATION(ACK_SIZE, 110)); + rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg); + } + + if (changed & BSS_CHANGED_BASIC_RATES) + rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates); + + if (changed & BSS_CHANGED_ERP_SLOT) { + reg = rt2x00mmio_register_read(rt2x00dev, CSR11); + rt2x00_set_field32(®, CSR11_SLOT_TIME, erp->slot_time); + rt2x00mmio_register_write(rt2x00dev, CSR11, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, CSR18); + rt2x00_set_field32(®, CSR18_SIFS, erp->sifs); + rt2x00_set_field32(®, CSR18_PIFS, erp->pifs); + rt2x00mmio_register_write(rt2x00dev, CSR18, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, CSR19); + rt2x00_set_field32(®, CSR19_DIFS, erp->difs); + rt2x00_set_field32(®, CSR19_EIFS, erp->eifs); + rt2x00mmio_register_write(rt2x00dev, CSR19, reg); + } + + if (changed & BSS_CHANGED_BEACON_INT) { + reg = rt2x00mmio_register_read(rt2x00dev, CSR12); + rt2x00_set_field32(®, CSR12_BEACON_INTERVAL, + erp->beacon_int * 16); + rt2x00_set_field32(®, CSR12_CFP_MAX_DURATION, + erp->beacon_int * 16); + rt2x00mmio_register_write(rt2x00dev, CSR12, reg); + } + +} + +static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev, + struct antenna_setup *ant) +{ + u32 reg; + u8 r14; + u8 r2; + + /* + * We should never come here because rt2x00lib is supposed + * to catch this and send us the correct antenna explicitely. + */ + BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || + ant->tx == ANTENNA_SW_DIVERSITY); + + reg = rt2x00mmio_register_read(rt2x00dev, BBPCSR1); + r14 = rt2500pci_bbp_read(rt2x00dev, 14); + r2 = rt2500pci_bbp_read(rt2x00dev, 2); + + /* + * Configure the TX antenna. + */ + switch (ant->tx) { + case ANTENNA_A: + rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); + rt2x00_set_field32(®, BBPCSR1_CCK, 0); + rt2x00_set_field32(®, BBPCSR1_OFDM, 0); + break; + case ANTENNA_B: + default: + rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); + rt2x00_set_field32(®, BBPCSR1_CCK, 2); + rt2x00_set_field32(®, BBPCSR1_OFDM, 2); + break; + } + + /* + * Configure the RX antenna. + */ + switch (ant->rx) { + case ANTENNA_A: + rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); + break; + case ANTENNA_B: + default: + rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); + break; + } + + /* + * RT2525E and RT5222 need to flip TX I/Q + */ + if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) { + rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); + rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 1); + rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 1); + + /* + * RT2525E does not need RX I/Q Flip. + */ + if (rt2x00_rf(rt2x00dev, RF2525E)) + rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); + } else { + rt2x00_set_field32(®, BBPCSR1_CCK_FLIP, 0); + rt2x00_set_field32(®, BBPCSR1_OFDM_FLIP, 0); + } + + rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg); + rt2500pci_bbp_write(rt2x00dev, 14, r14); + rt2500pci_bbp_write(rt2x00dev, 2, r2); +} + +static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev, + struct rf_channel *rf, const int txpower) +{ + u8 r70; + + /* + * Set TXpower. + */ + rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); + + /* + * Switch on tuning bits. + * For RT2523 devices we do not need to update the R1 register. + */ + if (!rt2x00_rf(rt2x00dev, RF2523)) + rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1); + rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1); + + /* + * For RT2525 we should first set the channel to half band higher. + */ + if (rt2x00_rf(rt2x00dev, RF2525)) { + static const u32 vals[] = { + 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a, + 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a, + 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a, + 0x00080d2e, 0x00080d3a + }; + + rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); + rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); + rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); + if (rf->rf4) + rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); + } + + rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); + rt2500pci_rf_write(rt2x00dev, 2, rf->rf2); + rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); + if (rf->rf4) + rt2500pci_rf_write(rt2x00dev, 4, rf->rf4); + + /* + * Channel 14 requires the Japan filter bit to be set. + */ + r70 = 0x46; + rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14); + rt2500pci_bbp_write(rt2x00dev, 70, r70); + + msleep(1); + + /* + * Switch off tuning bits. + * For RT2523 devices we do not need to update the R1 register. + */ + if (!rt2x00_rf(rt2x00dev, RF2523)) { + rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0); + rt2500pci_rf_write(rt2x00dev, 1, rf->rf1); + } + + rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0); + rt2500pci_rf_write(rt2x00dev, 3, rf->rf3); + + /* + * Clear false CRC during channel switch. + */ + rf->rf1 = rt2x00mmio_register_read(rt2x00dev, CNT0); +} + +static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev, + const int txpower) +{ + u32 rf3; + + rf3 = rt2x00_rf_read(rt2x00dev, 3); + rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); + rt2500pci_rf_write(rt2x00dev, 3, rf3); +} + +static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_conf *libconf) +{ + u32 reg; + + reg = rt2x00mmio_register_read(rt2x00dev, CSR11); + rt2x00_set_field32(®, CSR11_LONG_RETRY, + libconf->conf->long_frame_max_tx_count); + rt2x00_set_field32(®, CSR11_SHORT_RETRY, + libconf->conf->short_frame_max_tx_count); + rt2x00mmio_register_write(rt2x00dev, CSR11, reg); +} + +static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_conf *libconf) +{ + enum dev_state state = + (libconf->conf->flags & IEEE80211_CONF_PS) ? + STATE_SLEEP : STATE_AWAKE; + u32 reg; + + if (state == STATE_SLEEP) { + reg = rt2x00mmio_register_read(rt2x00dev, CSR20); + rt2x00_set_field32(®, CSR20_DELAY_AFTER_TBCN, + (rt2x00dev->beacon_int - 20) * 16); + rt2x00_set_field32(®, CSR20_TBCN_BEFORE_WAKEUP, + libconf->conf->listen_interval - 1); + + /* We must first disable autowake before it can be enabled */ + rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); + rt2x00mmio_register_write(rt2x00dev, CSR20, reg); + + rt2x00_set_field32(®, CSR20_AUTOWAKE, 1); + rt2x00mmio_register_write(rt2x00dev, CSR20, reg); + } else { + reg = rt2x00mmio_register_read(rt2x00dev, CSR20); + rt2x00_set_field32(®, CSR20_AUTOWAKE, 0); + rt2x00mmio_register_write(rt2x00dev, CSR20, reg); + } + + rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); +} + +static void rt2500pci_config(struct rt2x00_dev *rt2x00dev, + struct rt2x00lib_conf *libconf, + const unsigned int flags) +{ + if (flags & IEEE80211_CONF_CHANGE_CHANNEL) + rt2500pci_config_channel(rt2x00dev, &libconf->rf, + libconf->conf->power_level); + if ((flags & IEEE80211_CONF_CHANGE_POWER) && + !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) + rt2500pci_config_txpower(rt2x00dev, + libconf->conf->power_level); + if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) + rt2500pci_config_retry_limit(rt2x00dev, libconf); + if (flags & IEEE80211_CONF_CHANGE_PS) + rt2500pci_config_ps(rt2x00dev, libconf); +} + +/* + * Link tuning + */ +static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev, + struct link_qual *qual) +{ + u32 reg; + + /* + * Update FCS error count from register. + */ + reg = rt2x00mmio_register_read(rt2x00dev, CNT0); + qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR); + + /* + * Update False CCA count from register. + */ + reg = rt2x00mmio_register_read(rt2x00dev, CNT3); + qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA); +} + +static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev, + struct link_qual *qual, u8 vgc_level) +{ + if (qual->vgc_level_reg != vgc_level) { + rt2500pci_bbp_write(rt2x00dev, 17, vgc_level); + qual->vgc_level = vgc_level; + qual->vgc_level_reg = vgc_level; + } +} + +static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev, + struct link_qual *qual) +{ + rt2500pci_set_vgc(rt2x00dev, qual, 0x48); +} + +static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev, + struct link_qual *qual, const u32 count) +{ + /* + * To prevent collisions with MAC ASIC on chipsets + * up to version C the link tuning should halt after 20 + * seconds while being associated. + */ + if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D && + rt2x00dev->intf_associated && count > 20) + return; + + /* + * Chipset versions C and lower should directly continue + * to the dynamic CCA tuning. Chipset version D and higher + * should go straight to dynamic CCA tuning when they + * are not associated. + */ + if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D || + !rt2x00dev->intf_associated) + goto dynamic_cca_tune; + + /* + * A too low RSSI will cause too much false CCA which will + * then corrupt the R17 tuning. To remidy this the tuning should + * be stopped (While making sure the R17 value will not exceed limits) + */ + if (qual->rssi < -80 && count > 20) { + if (qual->vgc_level_reg >= 0x41) + rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level); + return; + } + + /* + * Special big-R17 for short distance + */ + if (qual->rssi >= -58) { + rt2500pci_set_vgc(rt2x00dev, qual, 0x50); + return; + } + + /* + * Special mid-R17 for middle distance + */ + if (qual->rssi >= -74) { + rt2500pci_set_vgc(rt2x00dev, qual, 0x41); + return; + } + + /* + * Leave short or middle distance condition, restore r17 + * to the dynamic tuning range. + */ + if (qual->vgc_level_reg >= 0x41) { + rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level); + return; + } + +dynamic_cca_tune: + + /* + * R17 is inside the dynamic tuning range, + * start tuning the link based on the false cca counter. + */ + if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40) + rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg); + else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32) + rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg); +} + +/* + * Queue handlers. + */ +static void rt2500pci_start_queue(struct data_queue *queue) +{ + struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; + u32 reg; + + switch (queue->qid) { + case QID_RX: + reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0); + rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 0); + rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); + break; + case QID_BEACON: + reg = rt2x00mmio_register_read(rt2x00dev, CSR14); + rt2x00_set_field32(®, CSR14_TSF_COUNT, 1); + rt2x00_set_field32(®, CSR14_TBCN, 1); + rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); + rt2x00mmio_register_write(rt2x00dev, CSR14, reg); + break; + default: + break; + } +} + +static void rt2500pci_kick_queue(struct data_queue *queue) +{ + struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; + u32 reg; + + switch (queue->qid) { + case QID_AC_VO: + reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0); + rt2x00_set_field32(®, TXCSR0_KICK_PRIO, 1); + rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); + break; + case QID_AC_VI: + reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0); + rt2x00_set_field32(®, TXCSR0_KICK_TX, 1); + rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); + break; + case QID_ATIM: + reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0); + rt2x00_set_field32(®, TXCSR0_KICK_ATIM, 1); + rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); + break; + default: + break; + } +} + +static void rt2500pci_stop_queue(struct data_queue *queue) +{ + struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; + u32 reg; + + switch (queue->qid) { + case QID_AC_VO: + case QID_AC_VI: + case QID_ATIM: + reg = rt2x00mmio_register_read(rt2x00dev, TXCSR0); + rt2x00_set_field32(®, TXCSR0_ABORT, 1); + rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg); + break; + case QID_RX: + reg = rt2x00mmio_register_read(rt2x00dev, RXCSR0); + rt2x00_set_field32(®, RXCSR0_DISABLE_RX, 1); + rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg); + break; + case QID_BEACON: + reg = rt2x00mmio_register_read(rt2x00dev, CSR14); + rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); + rt2x00_set_field32(®, CSR14_TBCN, 0); + rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); + rt2x00mmio_register_write(rt2x00dev, CSR14, reg); + + /* + * Wait for possibly running tbtt tasklets. + */ + tasklet_kill(&rt2x00dev->tbtt_tasklet); + break; + default: + break; + } +} + +/* + * Initialization functions. + */ +static bool rt2500pci_get_entry_state(struct queue_entry *entry) +{ + struct queue_entry_priv_mmio *entry_priv = entry->priv_data; + u32 word; + + if (entry->queue->qid == QID_RX) { + word = rt2x00_desc_read(entry_priv->desc, 0); + + return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); + } else { + word = rt2x00_desc_read(entry_priv->desc, 0); + + return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || + rt2x00_get_field32(word, TXD_W0_VALID)); + } +} + +static void rt2500pci_clear_entry(struct queue_entry *entry) +{ + struct queue_entry_priv_mmio *entry_priv = entry->priv_data; + struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); + u32 word; + + if (entry->queue->qid == QID_RX) { + word = rt2x00_desc_read(entry_priv->desc, 1); + rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); + rt2x00_desc_write(entry_priv->desc, 1, word); + + word = rt2x00_desc_read(entry_priv->desc, 0); + rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); + rt2x00_desc_write(entry_priv->desc, 0, word); + } else { + word = rt2x00_desc_read(entry_priv->desc, 0); + rt2x00_set_field32(&word, TXD_W0_VALID, 0); + rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); + rt2x00_desc_write(entry_priv->desc, 0, word); + } +} + +static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev) +{ + struct queue_entry_priv_mmio *entry_priv; + u32 reg; + + /* + * Initialize registers. + */ + reg = rt2x00mmio_register_read(rt2x00dev, TXCSR2); + rt2x00_set_field32(®, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size); + rt2x00_set_field32(®, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit); + rt2x00_set_field32(®, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit); + rt2x00_set_field32(®, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit); + rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg); + + entry_priv = rt2x00dev->tx[1].entries[0].priv_data; + reg = rt2x00mmio_register_read(rt2x00dev, TXCSR3); + rt2x00_set_field32(®, TXCSR3_TX_RING_REGISTER, + entry_priv->desc_dma); + rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg); + + entry_priv = rt2x00dev->tx[0].entries[0].priv_data; + reg = rt2x00mmio_register_read(rt2x00dev, TXCSR5); + rt2x00_set_field32(®, TXCSR5_PRIO_RING_REGISTER, + entry_priv->desc_dma); + rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg); + + entry_priv = rt2x00dev->atim->entries[0].priv_data; + reg = rt2x00mmio_register_read(rt2x00dev, TXCSR4); + rt2x00_set_field32(®, TXCSR4_ATIM_RING_REGISTER, + entry_priv->desc_dma); + rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg); + + entry_priv = rt2x00dev->bcn->entries[0].priv_data; + reg = rt2x00mmio_register_read(rt2x00dev, TXCSR6); + rt2x00_set_field32(®, TXCSR6_BEACON_RING_REGISTER, + entry_priv->desc_dma); + rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, RXCSR1); + rt2x00_set_field32(®, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size); + rt2x00_set_field32(®, RXCSR1_NUM_RXD, rt2x00dev->rx->limit); + rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg); + + entry_priv = rt2x00dev->rx->entries[0].priv_data; + reg = rt2x00mmio_register_read(rt2x00dev, RXCSR2); + rt2x00_set_field32(®, RXCSR2_RX_RING_REGISTER, + entry_priv->desc_dma); + rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg); + + return 0; +} + +static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + + rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002); + rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002); + rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002); + rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002); + + reg = rt2x00mmio_register_read(rt2x00dev, TIMECSR); + rt2x00_set_field32(®, TIMECSR_US_COUNT, 33); + rt2x00_set_field32(®, TIMECSR_US_64_COUNT, 63); + rt2x00_set_field32(®, TIMECSR_BEACON_EXPECT, 0); + rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, CSR9); + rt2x00_set_field32(®, CSR9_MAX_FRAME_UNIT, + rt2x00dev->rx->data_size / 128); + rt2x00mmio_register_write(rt2x00dev, CSR9, reg); + + /* + * Always use CWmin and CWmax set in descriptor. + */ + reg = rt2x00mmio_register_read(rt2x00dev, CSR11); + rt2x00_set_field32(®, CSR11_CW_SELECT, 0); + rt2x00mmio_register_write(rt2x00dev, CSR11, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, CSR14); + rt2x00_set_field32(®, CSR14_TSF_COUNT, 0); + rt2x00_set_field32(®, CSR14_TSF_SYNC, 0); + rt2x00_set_field32(®, CSR14_TBCN, 0); + rt2x00_set_field32(®, CSR14_TCFP, 0); + rt2x00_set_field32(®, CSR14_TATIMW, 0); + rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); + rt2x00_set_field32(®, CSR14_CFP_COUNT_PRELOAD, 0); + rt2x00_set_field32(®, CSR14_TBCM_PRELOAD, 0); + rt2x00mmio_register_write(rt2x00dev, CSR14, reg); + + rt2x00mmio_register_write(rt2x00dev, CNT3, 0); + + reg = rt2x00mmio_register_read(rt2x00dev, TXCSR8); + rt2x00_set_field32(®, TXCSR8_BBP_ID0, 10); + rt2x00_set_field32(®, TXCSR8_BBP_ID0_VALID, 1); + rt2x00_set_field32(®, TXCSR8_BBP_ID1, 11); + rt2x00_set_field32(®, TXCSR8_BBP_ID1_VALID, 1); + rt2x00_set_field32(®, TXCSR8_BBP_ID2, 13); + rt2x00_set_field32(®, TXCSR8_BBP_ID2_VALID, 1); + rt2x00_set_field32(®, TXCSR8_BBP_ID3, 12); + rt2x00_set_field32(®, TXCSR8_BBP_ID3_VALID, 1); + rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR0); + rt2x00_set_field32(®, ARTCSR0_ACK_CTS_1MBS, 112); + rt2x00_set_field32(®, ARTCSR0_ACK_CTS_2MBS, 56); + rt2x00_set_field32(®, ARTCSR0_ACK_CTS_5_5MBS, 20); + rt2x00_set_field32(®, ARTCSR0_ACK_CTS_11MBS, 10); + rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR1); + rt2x00_set_field32(®, ARTCSR1_ACK_CTS_6MBS, 45); + rt2x00_set_field32(®, ARTCSR1_ACK_CTS_9MBS, 37); + rt2x00_set_field32(®, ARTCSR1_ACK_CTS_12MBS, 33); + rt2x00_set_field32(®, ARTCSR1_ACK_CTS_18MBS, 29); + rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, ARTCSR2); + rt2x00_set_field32(®, ARTCSR2_ACK_CTS_24MBS, 29); + rt2x00_set_field32(®, ARTCSR2_ACK_CTS_36MBS, 25); + rt2x00_set_field32(®, ARTCSR2_ACK_CTS_48MBS, 25); + rt2x00_set_field32(®, ARTCSR2_ACK_CTS_54MBS, 25); + rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, RXCSR3); + rt2x00_set_field32(®, RXCSR3_BBP_ID0, 47); /* CCK Signal */ + rt2x00_set_field32(®, RXCSR3_BBP_ID0_VALID, 1); + rt2x00_set_field32(®, RXCSR3_BBP_ID1, 51); /* Rssi */ + rt2x00_set_field32(®, RXCSR3_BBP_ID1_VALID, 1); + rt2x00_set_field32(®, RXCSR3_BBP_ID2, 42); /* OFDM Rate */ + rt2x00_set_field32(®, RXCSR3_BBP_ID2_VALID, 1); + rt2x00_set_field32(®, RXCSR3_BBP_ID3, 51); /* RSSI */ + rt2x00_set_field32(®, RXCSR3_BBP_ID3_VALID, 1); + rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, PCICSR); + rt2x00_set_field32(®, PCICSR_BIG_ENDIAN, 0); + rt2x00_set_field32(®, PCICSR_RX_TRESHOLD, 0); + rt2x00_set_field32(®, PCICSR_TX_TRESHOLD, 3); + rt2x00_set_field32(®, PCICSR_BURST_LENTH, 1); + rt2x00_set_field32(®, PCICSR_ENABLE_CLK, 1); + rt2x00_set_field32(®, PCICSR_READ_MULTIPLE, 1); + rt2x00_set_field32(®, PCICSR_WRITE_INVALID, 1); + rt2x00mmio_register_write(rt2x00dev, PCICSR, reg); + + rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100); + + rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00); + rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0); + + if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) + return -EBUSY; + + rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223); + rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518); + + reg = rt2x00mmio_register_read(rt2x00dev, MACCSR2); + rt2x00_set_field32(®, MACCSR2_DELAY, 64); + rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, RALINKCSR); + rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA0, 17); + rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID0, 26); + rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID0, 1); + rt2x00_set_field32(®, RALINKCSR_AR_BBP_DATA1, 0); + rt2x00_set_field32(®, RALINKCSR_AR_BBP_ID1, 26); + rt2x00_set_field32(®, RALINKCSR_AR_BBP_VALID1, 1); + rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg); + + rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200); + + rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020); + + reg = rt2x00mmio_register_read(rt2x00dev, CSR1); + rt2x00_set_field32(®, CSR1_SOFT_RESET, 1); + rt2x00_set_field32(®, CSR1_BBP_RESET, 0); + rt2x00_set_field32(®, CSR1_HOST_READY, 0); + rt2x00mmio_register_write(rt2x00dev, CSR1, reg); + + reg = rt2x00mmio_register_read(rt2x00dev, CSR1); + rt2x00_set_field32(®, CSR1_SOFT_RESET, 0); + rt2x00_set_field32(®, CSR1_HOST_READY, 1); + rt2x00mmio_register_write(rt2x00dev, CSR1, reg); + + /* + * We must clear the FCS and FIFO error count. + * These registers are cleared on read, + * so we may pass a useless variable to store the value. + */ + reg = rt2x00mmio_register_read(rt2x00dev, CNT0); + reg = rt2x00mmio_register_read(rt2x00dev, CNT4); + + return 0; +} + +static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) +{ + unsigned int i; + u8 value; + + for (i = 0; i < REGISTER_BUSY_COUNT; i++) { + value = rt2500pci_bbp_read(rt2x00dev, 0); + if ((value != 0xff) && (value != 0x00)) + return 0; + udelay(REGISTER_BUSY_DELAY); + } + + rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); + return -EACCES; +} + +static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev) +{ + unsigned int i; + u16 eeprom; + u8 reg_id; + u8 value; + + if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev))) + return -EACCES; + + rt2500pci_bbp_write(rt2x00dev, 3, 0x02); + rt2500pci_bbp_write(rt2x00dev, 4, 0x19); + rt2500pci_bbp_write(rt2x00dev, 14, 0x1c); + rt2500pci_bbp_write(rt2x00dev, 15, 0x30); + rt2500pci_bbp_write(rt2x00dev, 16, 0xac); + rt2500pci_bbp_write(rt2x00dev, 18, 0x18); + rt2500pci_bbp_write(rt2x00dev, 19, 0xff); + rt2500pci_bbp_write(rt2x00dev, 20, 0x1e); + rt2500pci_bbp_write(rt2x00dev, 21, 0x08); + rt2500pci_bbp_write(rt2x00dev, 22, 0x08); + rt2500pci_bbp_write(rt2x00dev, 23, 0x08); + rt2500pci_bbp_write(rt2x00dev, 24, 0x70); + rt2500pci_bbp_write(rt2x00dev, 25, 0x40); + rt2500pci_bbp_write(rt2x00dev, 26, 0x08); + rt2500pci_bbp_write(rt2x00dev, 27, 0x23); + rt2500pci_bbp_write(rt2x00dev, 30, 0x10); + rt2500pci_bbp_write(rt2x00dev, 31, 0x2b); + rt2500pci_bbp_write(rt2x00dev, 32, 0xb9); + rt2500pci_bbp_write(rt2x00dev, 34, 0x12); + rt2500pci_bbp_write(rt2x00dev, 35, 0x50); + rt2500pci_bbp_write(rt2x00dev, 39, 0xc4); + rt2500pci_bbp_write(rt2x00dev, 40, 0x02); + rt2500pci_bbp_write(rt2x00dev, 41, 0x60); + rt2500pci_bbp_write(rt2x00dev, 53, 0x10); + rt2500pci_bbp_write(rt2x00dev, 54, 0x18); + rt2500pci_bbp_write(rt2x00dev, 56, 0x08); + rt2500pci_bbp_write(rt2x00dev, 57, 0x10); + rt2500pci_bbp_write(rt2x00dev, 58, 0x08); + rt2500pci_bbp_write(rt2x00dev, 61, 0x6d); + rt2500pci_bbp_write(rt2x00dev, 62, 0x10); + + for (i = 0; i < EEPROM_BBP_SIZE; i++) { + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i); + + if (eeprom != 0xffff && eeprom != 0x0000) { + reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); + value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); + rt2500pci_bbp_write(rt2x00dev, reg_id, value); + } + } + + return 0; +} + +/* + * Device state switch handlers. + */ +static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev, + enum dev_state state) +{ + int mask = (state == STATE_RADIO_IRQ_OFF); + u32 reg; + unsigned long flags; + + /* + * When interrupts are being enabled, the interrupt registers + * should clear the register to assure a clean state. + */ + if (state == STATE_RADIO_IRQ_ON) { + reg = rt2x00mmio_register_read(rt2x00dev, CSR7); + rt2x00mmio_register_write(rt2x00dev, CSR7, reg); + } + + /* + * Only toggle the interrupts bits we are going to use. + * Non-checked interrupt bits are disabled by default. + */ + spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); + + reg = rt2x00mmio_register_read(rt2x00dev, CSR8); + rt2x00_set_field32(®, CSR8_TBCN_EXPIRE, mask); + rt2x00_set_field32(®, CSR8_TXDONE_TXRING, mask); + rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, mask); + rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, mask); + rt2x00_set_field32(®, CSR8_RXDONE, mask); + rt2x00mmio_register_write(rt2x00dev, CSR8, reg); + + spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); + + if (state == STATE_RADIO_IRQ_OFF) { + /* + * Ensure that all tasklets are finished. + */ + tasklet_kill(&rt2x00dev->txstatus_tasklet); + tasklet_kill(&rt2x00dev->rxdone_tasklet); + tasklet_kill(&rt2x00dev->tbtt_tasklet); + } +} + +static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev) +{ + /* + * Initialize all registers. + */ + if (unlikely(rt2500pci_init_queues(rt2x00dev) || + rt2500pci_init_registers(rt2x00dev) || + rt2500pci_init_bbp(rt2x00dev))) + return -EIO; + + return 0; +} + +static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev) +{ + /* + * Disable power + */ + rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0); +} + +static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev, + enum dev_state state) +{ + u32 reg, reg2; + unsigned int i; + bool put_to_sleep; + u8 bbp_state; + u8 rf_state; + + put_to_sleep = (state != STATE_AWAKE); + + reg = rt2x00mmio_register_read(rt2x00dev, PWRCSR1); + rt2x00_set_field32(®, PWRCSR1_SET_STATE, 1); + rt2x00_set_field32(®, PWRCSR1_BBP_DESIRE_STATE, state); + rt2x00_set_field32(®, PWRCSR1_RF_DESIRE_STATE, state); + rt2x00_set_field32(®, PWRCSR1_PUT_TO_SLEEP, put_to_sleep); + rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg); + + /* + * Device is not guaranteed to be in the requested state yet. + * We must wait until the register indicates that the + * device has entered the correct state. + */ + for (i = 0; i < REGISTER_BUSY_COUNT; i++) { + reg2 = rt2x00mmio_register_read(rt2x00dev, PWRCSR1); + bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE); + rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE); + if (bbp_state == state && rf_state == state) + return 0; + rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg); + msleep(10); + } + + return -EBUSY; +} + +static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev, + enum dev_state state) +{ + int retval = 0; + + switch (state) { + case STATE_RADIO_ON: + retval = rt2500pci_enable_radio(rt2x00dev); + break; + case STATE_RADIO_OFF: + rt2500pci_disable_radio(rt2x00dev); + break; + case STATE_RADIO_IRQ_ON: + case STATE_RADIO_IRQ_OFF: + rt2500pci_toggle_irq(rt2x00dev, state); + break; + case STATE_DEEP_SLEEP: + case STATE_SLEEP: + case STATE_STANDBY: + case STATE_AWAKE: + retval = rt2500pci_set_state(rt2x00dev, state); + break; + default: + retval = -ENOTSUPP; + break; + } + + if (unlikely(retval)) + rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", + state, retval); + + return retval; +} + +/* + * TX descriptor initialization + */ +static void rt2500pci_write_tx_desc(struct queue_entry *entry, + struct txentry_desc *txdesc) +{ + struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); + struct queue_entry_priv_mmio *entry_priv = entry->priv_data; + __le32 *txd = entry_priv->desc; + u32 word; + + /* + * Start writing the descriptor words. + */ + word = rt2x00_desc_read(txd, 1); + rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma); + rt2x00_desc_write(txd, 1, word); + + word = rt2x00_desc_read(txd, 2); + rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER); + rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs); + rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min); + rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max); + rt2x00_desc_write(txd, 2, word); + + word = rt2x00_desc_read(txd, 3); + rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal); + rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service); + rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, + txdesc->u.plcp.length_low); + rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, + txdesc->u.plcp.length_high); + rt2x00_desc_write(txd, 3, word); + + word = rt2x00_desc_read(txd, 10); + rt2x00_set_field32(&word, TXD_W10_RTS, + test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)); + rt2x00_desc_write(txd, 10, word); + + /* + * Writing TXD word 0 must the last to prevent a race condition with + * the device, whereby the device may take hold of the TXD before we + * finished updating it. + */ + word = rt2x00_desc_read(txd, 0); + rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); + rt2x00_set_field32(&word, TXD_W0_VALID, 1); + rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, + test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_ACK, + test_bit(ENTRY_TXD_ACK, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, + test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_OFDM, + (txdesc->rate_mode == RATE_MODE_OFDM)); + rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1); + rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); + rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, + test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); + rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); + rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE); + rt2x00_desc_write(txd, 0, word); + + /* + * Register descriptor details in skb frame descriptor. + */ + skbdesc->desc = txd; + skbdesc->desc_len = TXD_DESC_SIZE; +} + +/* + * TX data initialization + */ +static void rt2500pci_write_beacon(struct queue_entry *entry, + struct txentry_desc *txdesc) +{ + struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; + u32 reg; + + /* + * Disable beaconing while we are reloading the beacon data, + * otherwise we might be sending out invalid data. + */ + reg = rt2x00mmio_register_read(rt2x00dev, CSR14); + rt2x00_set_field32(®, CSR14_BEACON_GEN, 0); + rt2x00mmio_register_write(rt2x00dev, CSR14, reg); + + if (rt2x00queue_map_txskb(entry)) { + rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n"); + goto out; + } + + /* + * Write the TX descriptor for the beacon. + */ + rt2500pci_write_tx_desc(entry, txdesc); + + /* + * Dump beacon to userspace through debugfs. + */ + rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry); +out: + /* + * Enable beaconing again. + */ + rt2x00_set_field32(®, CSR14_BEACON_GEN, 1); + rt2x00mmio_register_write(rt2x00dev, CSR14, reg); +} + +/* + * RX control handlers + */ +static void rt2500pci_fill_rxdone(struct queue_entry *entry, + struct rxdone_entry_desc *rxdesc) +{ + struct queue_entry_priv_mmio *entry_priv = entry->priv_data; + u32 word0; + u32 word2; + + word0 = rt2x00_desc_read(entry_priv->desc, 0); + word2 = rt2x00_desc_read(entry_priv->desc, 2); + + if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) + rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; + if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) + rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; + + /* + * Obtain the status about this packet. + * When frame was received with an OFDM bitrate, + * the signal is the PLCP value. If it was received with + * a CCK bitrate the signal is the rate in 100kbit/s. + */ + rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL); + rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) - + entry->queue->rt2x00dev->rssi_offset; + rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); + + if (rt2x00_get_field32(word0, RXD_W0_OFDM)) + rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; + else + rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; + if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) + rxdesc->dev_flags |= RXDONE_MY_BSS; +} + +/* + * Interrupt functions. + */ +static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, + const enum data_queue_qid queue_idx) +{ + struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); + struct queue_entry_priv_mmio *entry_priv; + struct queue_entry *entry; + struct txdone_entry_desc txdesc; + u32 word; + + while (!rt2x00queue_empty(queue)) { + entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); + entry_priv = entry->priv_data; + word = rt2x00_desc_read(entry_priv->desc, 0); + + if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || + !rt2x00_get_field32(word, TXD_W0_VALID)) + break; + + /* + * Obtain the status about this packet. + */ + txdesc.flags = 0; + switch (rt2x00_get_field32(word, TXD_W0_RESULT)) { + case 0: /* Success */ + case 1: /* Success with retry */ + __set_bit(TXDONE_SUCCESS, &txdesc.flags); + break; + case 2: /* Failure, excessive retries */ + __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); + fallthrough; /* this is a failed frame! */ + default: /* Failure */ + __set_bit(TXDONE_FAILURE, &txdesc.flags); + } + txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT); + + rt2x00lib_txdone(entry, &txdesc); + } +} + +static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, + struct rt2x00_field32 irq_field) +{ + u32 reg; + + /* + * Enable a single interrupt. The interrupt mask register + * access needs locking. + */ + spin_lock_irq(&rt2x00dev->irqmask_lock); + + reg = rt2x00mmio_register_read(rt2x00dev, CSR8); + rt2x00_set_field32(®, irq_field, 0); + rt2x00mmio_register_write(rt2x00dev, CSR8, reg); + + spin_unlock_irq(&rt2x00dev->irqmask_lock); +} + +static void rt2500pci_txstatus_tasklet(struct tasklet_struct *t) +{ + struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, + txstatus_tasklet); + u32 reg; + + /* + * Handle all tx queues. + */ + rt2500pci_txdone(rt2x00dev, QID_ATIM); + rt2500pci_txdone(rt2x00dev, QID_AC_VO); + rt2500pci_txdone(rt2x00dev, QID_AC_VI); + + /* + * Enable all TXDONE interrupts again. + */ + if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) { + spin_lock_irq(&rt2x00dev->irqmask_lock); + + reg = rt2x00mmio_register_read(rt2x00dev, CSR8); + rt2x00_set_field32(®, CSR8_TXDONE_TXRING, 0); + rt2x00_set_field32(®, CSR8_TXDONE_ATIMRING, 0); + rt2x00_set_field32(®, CSR8_TXDONE_PRIORING, 0); + rt2x00mmio_register_write(rt2x00dev, CSR8, reg); + + spin_unlock_irq(&rt2x00dev->irqmask_lock); + } +} + +static void rt2500pci_tbtt_tasklet(struct tasklet_struct *t) +{ + struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, tbtt_tasklet); + rt2x00lib_beacondone(rt2x00dev); + if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) + rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE); +} + +static void rt2500pci_rxdone_tasklet(struct tasklet_struct *t) +{ + struct rt2x00_dev *rt2x00dev = from_tasklet(rt2x00dev, t, + rxdone_tasklet); + if (rt2x00mmio_rxdone(rt2x00dev)) + tasklet_schedule(&rt2x00dev->rxdone_tasklet); + else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) + rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE); +} + +static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance) +{ + struct rt2x00_dev *rt2x00dev = dev_instance; + u32 reg, mask; + + /* + * Get the interrupt sources & saved to local variable. + * Write register value back to clear pending interrupts. + */ + reg = rt2x00mmio_register_read(rt2x00dev, CSR7); + rt2x00mmio_register_write(rt2x00dev, CSR7, reg); + + if (!reg) + return IRQ_NONE; + + if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) + return IRQ_HANDLED; + + mask = reg; + + /* + * Schedule tasklets for interrupt handling. + */ + if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE)) + tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); + + if (rt2x00_get_field32(reg, CSR7_RXDONE)) + tasklet_schedule(&rt2x00dev->rxdone_tasklet); + + if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) || + rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) || + rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) { + tasklet_schedule(&rt2x00dev->txstatus_tasklet); + /* + * Mask out all txdone interrupts. + */ + rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1); + rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1); + rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1); + } + + /* + * Disable all interrupts for which a tasklet was scheduled right now, + * the tasklet will reenable the appropriate interrupts. + */ + spin_lock(&rt2x00dev->irqmask_lock); + + reg = rt2x00mmio_register_read(rt2x00dev, CSR8); + reg |= mask; + rt2x00mmio_register_write(rt2x00dev, CSR8, reg); + + spin_unlock(&rt2x00dev->irqmask_lock); + + return IRQ_HANDLED; +} + +/* + * Device probe functions. + */ +static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) +{ + struct eeprom_93cx6 eeprom; + u32 reg; + u16 word; + u8 *mac; + + reg = rt2x00mmio_register_read(rt2x00dev, CSR21); + + eeprom.data = rt2x00dev; + eeprom.register_read = rt2500pci_eepromregister_read; + eeprom.register_write = rt2500pci_eepromregister_write; + eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ? + PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; + eeprom.reg_data_in = 0; + eeprom.reg_data_out = 0; + eeprom.reg_data_clock = 0; + eeprom.reg_chip_select = 0; + + eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, + EEPROM_SIZE / sizeof(u16)); + + /* + * Start validation of the data that has been read. + */ + mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); + rt2x00lib_set_mac_address(rt2x00dev, mac); + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); + rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, + ANTENNA_SW_DIVERSITY); + rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, + ANTENNA_SW_DIVERSITY); + rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, + LED_MODE_DEFAULT); + rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); + rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); + rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); + rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); + } + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); + rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); + rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); + rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); + rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); + } + + word = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET); + if (word == 0xffff) { + rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, + DEFAULT_RSSI_OFFSET); + rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); + rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n", + word); + } + + return 0; +} + +static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev) +{ + u32 reg; + u16 value; + u16 eeprom; + + /* + * Read EEPROM word for configuration. + */ + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA); + + /* + * Identify RF chipset. + */ + value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); + reg = rt2x00mmio_register_read(rt2x00dev, CSR0); + rt2x00_set_chip(rt2x00dev, RT2560, value, + rt2x00_get_field32(reg, CSR0_REVISION)); + + if (!rt2x00_rf(rt2x00dev, RF2522) && + !rt2x00_rf(rt2x00dev, RF2523) && + !rt2x00_rf(rt2x00dev, RF2524) && + !rt2x00_rf(rt2x00dev, RF2525) && + !rt2x00_rf(rt2x00dev, RF2525E) && + !rt2x00_rf(rt2x00dev, RF5222)) { + rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); + return -ENODEV; + } + + /* + * Identify default antenna configuration. + */ + rt2x00dev->default_ant.tx = + rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); + rt2x00dev->default_ant.rx = + rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); + + /* + * Store led mode, for correct led behaviour. + */ +#ifdef CONFIG_RT2X00_LIB_LEDS + value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); + + rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); + if (value == LED_MODE_TXRX_ACTIVITY || + value == LED_MODE_DEFAULT || + value == LED_MODE_ASUS) + rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual, + LED_TYPE_ACTIVITY); +#endif /* CONFIG_RT2X00_LIB_LEDS */ + + /* + * Detect if this device has an hardware controlled radio. + */ + if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) { + __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); + /* + * On this device RFKILL initialized during probe does not work. + */ + __set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags); + } + + /* + * Check if the BBP tuning should be enabled. + */ + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC); + if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE)) + __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); + + /* + * Read the RSSI <-> dBm offset information. + */ + eeprom = rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET); + rt2x00dev->rssi_offset = + rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); + + return 0; +} + +/* + * RF value list for RF2522 + * Supports: 2.4 GHz + */ +static const struct rf_channel rf_vals_bg_2522[] = { + { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 }, + { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 }, + { 3, 0x00002050, 0x000c2002, 0x00000101, 0 }, + { 4, 0x00002050, 0x000c2016, 0x00000101, 0 }, + { 5, 0x00002050, 0x000c202a, 0x00000101, 0 }, + { 6, 0x00002050, 0x000c203e, 0x00000101, 0 }, + { 7, 0x00002050, 0x000c2052, 0x00000101, 0 }, + { 8, 0x00002050, 0x000c2066, 0x00000101, 0 }, + { 9, 0x00002050, 0x000c207a, 0x00000101, 0 }, + { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, + { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, + { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, + { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, + { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, +}; + +/* + * RF value list for RF2523 + * Supports: 2.4 GHz + */ +static const struct rf_channel rf_vals_bg_2523[] = { + { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, + { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, + { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, + { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, + { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, + { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, + { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, + { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, + { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, + { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, + { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, + { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, + { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, + { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, +}; + +/* + * RF value list for RF2524 + * Supports: 2.4 GHz + */ +static const struct rf_channel rf_vals_bg_2524[] = { + { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, + { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, + { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, + { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, + { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, + { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, + { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, + { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, + { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, + { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, + { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, + { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, + { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, + { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, +}; + +/* + * RF value list for RF2525 + * Supports: 2.4 GHz + */ +static const struct rf_channel rf_vals_bg_2525[] = { + { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, + { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, + { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, + { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, + { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, + { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, + { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, + { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, + { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, + { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, + { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, + { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, + { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, + { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, +}; + +/* + * RF value list for RF2525e + * Supports: 2.4 GHz + */ +static const struct rf_channel rf_vals_bg_2525e[] = { + { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b }, + { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b }, + { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b }, + { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b }, + { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b }, + { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b }, + { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b }, + { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b }, + { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b }, + { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b }, + { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b }, + { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b }, + { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b }, + { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b }, +}; + +/* + * RF value list for RF5222 + * Supports: 2.4 GHz & 5.2 GHz + */ +static const struct rf_channel rf_vals_5222[] = { + { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, + { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, + { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, + { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, + { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, + { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, + { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, + { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, + { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, + { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, + { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, + { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, + { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, + { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, + + /* 802.11 UNI / HyperLan 2 */ + { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, + { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, + { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, + { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, + { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, + { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, + { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, + { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, + + /* 802.11 HyperLan 2 */ + { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, + { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, + { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, + { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, + { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, + { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, + { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, + { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, + { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, + { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, + + /* 802.11 UNII */ + { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, + { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, + { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, + { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, + { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, +}; + +static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) +{ + struct hw_mode_spec *spec = &rt2x00dev->spec; + struct channel_info *info; + u8 *tx_power; + unsigned int i; + + /* + * Initialize all hw fields. + */ + ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK); + ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS); + ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING); + ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM); + + SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); + SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, + rt2x00_eeprom_addr(rt2x00dev, + EEPROM_MAC_ADDR_0)); + + /* + * Disable powersaving as default. + */ + rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; + + /* + * Initialize hw_mode information. + */ + spec->supported_bands = SUPPORT_BAND_2GHZ; + spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; + + if (rt2x00_rf(rt2x00dev, RF2522)) { + spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); + spec->channels = rf_vals_bg_2522; + } else if (rt2x00_rf(rt2x00dev, RF2523)) { + spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); + spec->channels = rf_vals_bg_2523; + } else if (rt2x00_rf(rt2x00dev, RF2524)) { + spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); + spec->channels = rf_vals_bg_2524; + } else if (rt2x00_rf(rt2x00dev, RF2525)) { + spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); + spec->channels = rf_vals_bg_2525; + } else if (rt2x00_rf(rt2x00dev, RF2525E)) { + spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); + spec->channels = rf_vals_bg_2525e; + } else if (rt2x00_rf(rt2x00dev, RF5222)) { + spec->supported_bands |= SUPPORT_BAND_5GHZ; + spec->num_channels = ARRAY_SIZE(rf_vals_5222); + spec->channels = rf_vals_5222; + } + + /* + * Create channel information array + */ + info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); + if (!info) + return -ENOMEM; + + spec->channels_info = info; + + tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); + for (i = 0; i < 14; i++) { + info[i].max_power = MAX_TXPOWER; + info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); + } + + if (spec->num_channels > 14) { + for (i = 14; i < spec->num_channels; i++) { + info[i].max_power = MAX_TXPOWER; + info[i].default_power1 = DEFAULT_TXPOWER; + } + } + + return 0; +} + +static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev) +{ + int retval; + u32 reg; + + /* + * Allocate eeprom data. + */ + retval = rt2500pci_validate_eeprom(rt2x00dev); + if (retval) + return retval; + + retval = rt2500pci_init_eeprom(rt2x00dev); + if (retval) + return retval; + + /* + * Enable rfkill polling by setting GPIO direction of the + * rfkill switch GPIO pin correctly. + */ + reg = rt2x00mmio_register_read(rt2x00dev, GPIOCSR); + rt2x00_set_field32(®, GPIOCSR_DIR0, 1); + rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg); + + /* + * Initialize hw specifications. + */ + retval = rt2500pci_probe_hw_mode(rt2x00dev); + if (retval) + return retval; + + /* + * This device requires the atim queue and DMA-mapped skbs. + */ + __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); + __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); + __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); + + /* + * Set the rssi offset. + */ + rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; + + return 0; +} + +/* + * IEEE80211 stack callback functions. + */ +static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw, + struct ieee80211_vif *vif) +{ + struct rt2x00_dev *rt2x00dev = hw->priv; + u64 tsf; + u32 reg; + + reg = rt2x00mmio_register_read(rt2x00dev, CSR17); + tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32; + reg = rt2x00mmio_register_read(rt2x00dev, CSR16); + tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER); + + return tsf; +} + +static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw) +{ + struct rt2x00_dev *rt2x00dev = hw->priv; + u32 reg; + + reg = rt2x00mmio_register_read(rt2x00dev, CSR15); + return rt2x00_get_field32(reg, CSR15_BEACON_SENT); +} + +static const struct ieee80211_ops rt2500pci_mac80211_ops = { + .tx = rt2x00mac_tx, + .start = rt2x00mac_start, + .stop = rt2x00mac_stop, + .add_interface = rt2x00mac_add_interface, + .remove_interface = rt2x00mac_remove_interface, + .config = rt2x00mac_config, + .configure_filter = rt2x00mac_configure_filter, + .sw_scan_start = rt2x00mac_sw_scan_start, + .sw_scan_complete = rt2x00mac_sw_scan_complete, + .get_stats = rt2x00mac_get_stats, + .bss_info_changed = rt2x00mac_bss_info_changed, + .conf_tx = rt2x00mac_conf_tx, + .get_tsf = rt2500pci_get_tsf, + .tx_last_beacon = rt2500pci_tx_last_beacon, + .rfkill_poll = rt2x00mac_rfkill_poll, + .flush = rt2x00mac_flush, + .set_antenna = rt2x00mac_set_antenna, + .get_antenna = rt2x00mac_get_antenna, + .get_ringparam = rt2x00mac_get_ringparam, + .tx_frames_pending = rt2x00mac_tx_frames_pending, +}; + +static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = { + .irq_handler = rt2500pci_interrupt, + .txstatus_tasklet = rt2500pci_txstatus_tasklet, + .tbtt_tasklet = rt2500pci_tbtt_tasklet, + .rxdone_tasklet = rt2500pci_rxdone_tasklet, + .probe_hw = rt2500pci_probe_hw, + .initialize = rt2x00mmio_initialize, + .uninitialize = rt2x00mmio_uninitialize, + .get_entry_state = rt2500pci_get_entry_state, + .clear_entry = rt2500pci_clear_entry, + .set_device_state = rt2500pci_set_device_state, + .rfkill_poll = rt2500pci_rfkill_poll, + .link_stats = rt2500pci_link_stats, + .reset_tuner = rt2500pci_reset_tuner, + .link_tuner = rt2500pci_link_tuner, + .start_queue = rt2500pci_start_queue, + .kick_queue = rt2500pci_kick_queue, + .stop_queue = rt2500pci_stop_queue, + .flush_queue = rt2x00mmio_flush_queue, + .write_tx_desc = rt2500pci_write_tx_desc, + .write_beacon = rt2500pci_write_beacon, + .fill_rxdone = rt2500pci_fill_rxdone, + .config_filter = rt2500pci_config_filter, + .config_intf = rt2500pci_config_intf, + .config_erp = rt2500pci_config_erp, + .config_ant = rt2500pci_config_ant, + .config = rt2500pci_config, +}; + +static void rt2500pci_queue_init(struct data_queue *queue) +{ + switch (queue->qid) { + case QID_RX: + queue->limit = 32; + queue->data_size = DATA_FRAME_SIZE; + queue->desc_size = RXD_DESC_SIZE; + queue->priv_size = sizeof(struct queue_entry_priv_mmio); + break; + + case QID_AC_VO: + case QID_AC_VI: + case QID_AC_BE: + case QID_AC_BK: + queue->limit = 32; + queue->data_size = DATA_FRAME_SIZE; + queue->desc_size = TXD_DESC_SIZE; + queue->priv_size = sizeof(struct queue_entry_priv_mmio); + break; + + case QID_BEACON: + queue->limit = 1; + queue->data_size = MGMT_FRAME_SIZE; + queue->desc_size = TXD_DESC_SIZE; + queue->priv_size = sizeof(struct queue_entry_priv_mmio); + break; + + case QID_ATIM: + queue->limit = 8; + queue->data_size = DATA_FRAME_SIZE; + queue->desc_size = TXD_DESC_SIZE; + queue->priv_size = sizeof(struct queue_entry_priv_mmio); + break; + + default: + BUG(); + break; + } +} + +static const struct rt2x00_ops rt2500pci_ops = { + .name = KBUILD_MODNAME, + .max_ap_intf = 1, + .eeprom_size = EEPROM_SIZE, + .rf_size = RF_SIZE, + .tx_queues = NUM_TX_QUEUES, + .queue_init = rt2500pci_queue_init, + .lib = &rt2500pci_rt2x00_ops, + .hw = &rt2500pci_mac80211_ops, +#ifdef CONFIG_RT2X00_LIB_DEBUGFS + .debugfs = &rt2500pci_rt2x00debug, +#endif /* CONFIG_RT2X00_LIB_DEBUGFS */ +}; + +/* + * RT2500pci module information. + */ +static const struct pci_device_id rt2500pci_device_table[] = { + { PCI_DEVICE(0x1814, 0x0201) }, + { 0, } +}; + +MODULE_AUTHOR(DRV_PROJECT); +MODULE_VERSION(DRV_VERSION); +MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver."); +MODULE_DEVICE_TABLE(pci, rt2500pci_device_table); +MODULE_LICENSE("GPL"); + +static int rt2500pci_probe(struct pci_dev *pci_dev, + const struct pci_device_id *id) +{ + return rt2x00pci_probe(pci_dev, &rt2500pci_ops); +} + +static struct pci_driver rt2500pci_driver = { + .name = KBUILD_MODNAME, + .id_table = rt2500pci_device_table, + .probe = rt2500pci_probe, + .remove = rt2x00pci_remove, + .driver.pm = &rt2x00pci_pm_ops, +}; + +module_pci_driver(rt2500pci_driver); |