diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /kernel/rcu/rcu_segcblist.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'kernel/rcu/rcu_segcblist.c')
-rw-r--r-- | kernel/rcu/rcu_segcblist.c | 633 |
1 files changed, 633 insertions, 0 deletions
diff --git a/kernel/rcu/rcu_segcblist.c b/kernel/rcu/rcu_segcblist.c new file mode 100644 index 000000000..c54ea2b6a --- /dev/null +++ b/kernel/rcu/rcu_segcblist.c @@ -0,0 +1,633 @@ +// SPDX-License-Identifier: GPL-2.0+ +/* + * RCU segmented callback lists, function definitions + * + * Copyright IBM Corporation, 2017 + * + * Authors: Paul E. McKenney <paulmck@linux.ibm.com> + */ + +#include <linux/cpu.h> +#include <linux/interrupt.h> +#include <linux/kernel.h> +#include <linux/types.h> + +#include "rcu_segcblist.h" + +/* Initialize simple callback list. */ +void rcu_cblist_init(struct rcu_cblist *rclp) +{ + rclp->head = NULL; + rclp->tail = &rclp->head; + rclp->len = 0; +} + +/* + * Enqueue an rcu_head structure onto the specified callback list. + */ +void rcu_cblist_enqueue(struct rcu_cblist *rclp, struct rcu_head *rhp) +{ + *rclp->tail = rhp; + rclp->tail = &rhp->next; + WRITE_ONCE(rclp->len, rclp->len + 1); +} + +/* + * Flush the second rcu_cblist structure onto the first one, obliterating + * any contents of the first. If rhp is non-NULL, enqueue it as the sole + * element of the second rcu_cblist structure, but ensuring that the second + * rcu_cblist structure, if initially non-empty, always appears non-empty + * throughout the process. If rdp is NULL, the second rcu_cblist structure + * is instead initialized to empty. + */ +void rcu_cblist_flush_enqueue(struct rcu_cblist *drclp, + struct rcu_cblist *srclp, + struct rcu_head *rhp) +{ + drclp->head = srclp->head; + if (drclp->head) + drclp->tail = srclp->tail; + else + drclp->tail = &drclp->head; + drclp->len = srclp->len; + if (!rhp) { + rcu_cblist_init(srclp); + } else { + rhp->next = NULL; + srclp->head = rhp; + srclp->tail = &rhp->next; + WRITE_ONCE(srclp->len, 1); + } +} + +/* + * Dequeue the oldest rcu_head structure from the specified callback + * list. + */ +struct rcu_head *rcu_cblist_dequeue(struct rcu_cblist *rclp) +{ + struct rcu_head *rhp; + + rhp = rclp->head; + if (!rhp) + return NULL; + rclp->len--; + rclp->head = rhp->next; + if (!rclp->head) + rclp->tail = &rclp->head; + return rhp; +} + +/* Set the length of an rcu_segcblist structure. */ +static void rcu_segcblist_set_len(struct rcu_segcblist *rsclp, long v) +{ +#ifdef CONFIG_RCU_NOCB_CPU + atomic_long_set(&rsclp->len, v); +#else + WRITE_ONCE(rsclp->len, v); +#endif +} + +/* Get the length of a segment of the rcu_segcblist structure. */ +static long rcu_segcblist_get_seglen(struct rcu_segcblist *rsclp, int seg) +{ + return READ_ONCE(rsclp->seglen[seg]); +} + +/* Return number of callbacks in segmented callback list by summing seglen. */ +long rcu_segcblist_n_segment_cbs(struct rcu_segcblist *rsclp) +{ + long len = 0; + int i; + + for (i = RCU_DONE_TAIL; i < RCU_CBLIST_NSEGS; i++) + len += rcu_segcblist_get_seglen(rsclp, i); + + return len; +} + +/* Set the length of a segment of the rcu_segcblist structure. */ +static void rcu_segcblist_set_seglen(struct rcu_segcblist *rsclp, int seg, long v) +{ + WRITE_ONCE(rsclp->seglen[seg], v); +} + +/* Increase the numeric length of a segment by a specified amount. */ +static void rcu_segcblist_add_seglen(struct rcu_segcblist *rsclp, int seg, long v) +{ + WRITE_ONCE(rsclp->seglen[seg], rsclp->seglen[seg] + v); +} + +/* Move from's segment length to to's segment. */ +static void rcu_segcblist_move_seglen(struct rcu_segcblist *rsclp, int from, int to) +{ + long len; + + if (from == to) + return; + + len = rcu_segcblist_get_seglen(rsclp, from); + if (!len) + return; + + rcu_segcblist_add_seglen(rsclp, to, len); + rcu_segcblist_set_seglen(rsclp, from, 0); +} + +/* Increment segment's length. */ +static void rcu_segcblist_inc_seglen(struct rcu_segcblist *rsclp, int seg) +{ + rcu_segcblist_add_seglen(rsclp, seg, 1); +} + +/* + * Increase the numeric length of an rcu_segcblist structure by the + * specified amount, which can be negative. This can cause the ->len + * field to disagree with the actual number of callbacks on the structure. + * This increase is fully ordered with respect to the callers accesses + * both before and after. + * + * So why on earth is a memory barrier required both before and after + * the update to the ->len field??? + * + * The reason is that rcu_barrier() locklessly samples each CPU's ->len + * field, and if a given CPU's field is zero, avoids IPIing that CPU. + * This can of course race with both queuing and invoking of callbacks. + * Failing to correctly handle either of these races could result in + * rcu_barrier() failing to IPI a CPU that actually had callbacks queued + * which rcu_barrier() was obligated to wait on. And if rcu_barrier() + * failed to wait on such a callback, unloading certain kernel modules + * would result in calls to functions whose code was no longer present in + * the kernel, for but one example. + * + * Therefore, ->len transitions from 1->0 and 0->1 have to be carefully + * ordered with respect with both list modifications and the rcu_barrier(). + * + * The queuing case is CASE 1 and the invoking case is CASE 2. + * + * CASE 1: Suppose that CPU 0 has no callbacks queued, but invokes + * call_rcu() just as CPU 1 invokes rcu_barrier(). CPU 0's ->len field + * will transition from 0->1, which is one of the transitions that must + * be handled carefully. Without the full memory barriers after the ->len + * update and at the beginning of rcu_barrier(), the following could happen: + * + * CPU 0 CPU 1 + * + * call_rcu(). + * rcu_barrier() sees ->len as 0. + * set ->len = 1. + * rcu_barrier() does nothing. + * module is unloaded. + * callback invokes unloaded function! + * + * With the full barriers, any case where rcu_barrier() sees ->len as 0 will + * have unambiguously preceded the return from the racing call_rcu(), which + * means that this call_rcu() invocation is OK to not wait on. After all, + * you are supposed to make sure that any problematic call_rcu() invocations + * happen before the rcu_barrier(). + * + * + * CASE 2: Suppose that CPU 0 is invoking its last callback just as + * CPU 1 invokes rcu_barrier(). CPU 0's ->len field will transition from + * 1->0, which is one of the transitions that must be handled carefully. + * Without the full memory barriers before the ->len update and at the + * end of rcu_barrier(), the following could happen: + * + * CPU 0 CPU 1 + * + * start invoking last callback + * set ->len = 0 (reordered) + * rcu_barrier() sees ->len as 0 + * rcu_barrier() does nothing. + * module is unloaded + * callback executing after unloaded! + * + * With the full barriers, any case where rcu_barrier() sees ->len as 0 + * will be fully ordered after the completion of the callback function, + * so that the module unloading operation is completely safe. + * + */ +void rcu_segcblist_add_len(struct rcu_segcblist *rsclp, long v) +{ +#ifdef CONFIG_RCU_NOCB_CPU + smp_mb__before_atomic(); // Read header comment above. + atomic_long_add(v, &rsclp->len); + smp_mb__after_atomic(); // Read header comment above. +#else + smp_mb(); // Read header comment above. + WRITE_ONCE(rsclp->len, rsclp->len + v); + smp_mb(); // Read header comment above. +#endif +} + +/* + * Increase the numeric length of an rcu_segcblist structure by one. + * This can cause the ->len field to disagree with the actual number of + * callbacks on the structure. This increase is fully ordered with respect + * to the callers accesses both before and after. + */ +void rcu_segcblist_inc_len(struct rcu_segcblist *rsclp) +{ + rcu_segcblist_add_len(rsclp, 1); +} + +/* + * Initialize an rcu_segcblist structure. + */ +void rcu_segcblist_init(struct rcu_segcblist *rsclp) +{ + int i; + + BUILD_BUG_ON(RCU_NEXT_TAIL + 1 != ARRAY_SIZE(rsclp->gp_seq)); + BUILD_BUG_ON(ARRAY_SIZE(rsclp->tails) != ARRAY_SIZE(rsclp->gp_seq)); + rsclp->head = NULL; + for (i = 0; i < RCU_CBLIST_NSEGS; i++) { + rsclp->tails[i] = &rsclp->head; + rcu_segcblist_set_seglen(rsclp, i, 0); + } + rcu_segcblist_set_len(rsclp, 0); + rcu_segcblist_set_flags(rsclp, SEGCBLIST_ENABLED); +} + +/* + * Disable the specified rcu_segcblist structure, so that callbacks can + * no longer be posted to it. This structure must be empty. + */ +void rcu_segcblist_disable(struct rcu_segcblist *rsclp) +{ + WARN_ON_ONCE(!rcu_segcblist_empty(rsclp)); + WARN_ON_ONCE(rcu_segcblist_n_cbs(rsclp)); + rcu_segcblist_clear_flags(rsclp, SEGCBLIST_ENABLED); +} + +/* + * Mark the specified rcu_segcblist structure as offloaded (or not) + */ +void rcu_segcblist_offload(struct rcu_segcblist *rsclp, bool offload) +{ + if (offload) + rcu_segcblist_set_flags(rsclp, SEGCBLIST_LOCKING | SEGCBLIST_OFFLOADED); + else + rcu_segcblist_clear_flags(rsclp, SEGCBLIST_OFFLOADED); +} + +/* + * Does the specified rcu_segcblist structure contain callbacks that + * are ready to be invoked? + */ +bool rcu_segcblist_ready_cbs(struct rcu_segcblist *rsclp) +{ + return rcu_segcblist_is_enabled(rsclp) && + &rsclp->head != READ_ONCE(rsclp->tails[RCU_DONE_TAIL]); +} + +/* + * Does the specified rcu_segcblist structure contain callbacks that + * are still pending, that is, not yet ready to be invoked? + */ +bool rcu_segcblist_pend_cbs(struct rcu_segcblist *rsclp) +{ + return rcu_segcblist_is_enabled(rsclp) && + !rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL); +} + +/* + * Return a pointer to the first callback in the specified rcu_segcblist + * structure. This is useful for diagnostics. + */ +struct rcu_head *rcu_segcblist_first_cb(struct rcu_segcblist *rsclp) +{ + if (rcu_segcblist_is_enabled(rsclp)) + return rsclp->head; + return NULL; +} + +/* + * Return a pointer to the first pending callback in the specified + * rcu_segcblist structure. This is useful just after posting a given + * callback -- if that callback is the first pending callback, then + * you cannot rely on someone else having already started up the required + * grace period. + */ +struct rcu_head *rcu_segcblist_first_pend_cb(struct rcu_segcblist *rsclp) +{ + if (rcu_segcblist_is_enabled(rsclp)) + return *rsclp->tails[RCU_DONE_TAIL]; + return NULL; +} + +/* + * Return false if there are no CBs awaiting grace periods, otherwise, + * return true and store the nearest waited-upon grace period into *lp. + */ +bool rcu_segcblist_nextgp(struct rcu_segcblist *rsclp, unsigned long *lp) +{ + if (!rcu_segcblist_pend_cbs(rsclp)) + return false; + *lp = rsclp->gp_seq[RCU_WAIT_TAIL]; + return true; +} + +/* + * Enqueue the specified callback onto the specified rcu_segcblist + * structure, updating accounting as needed. Note that the ->len + * field may be accessed locklessly, hence the WRITE_ONCE(). + * The ->len field is used by rcu_barrier() and friends to determine + * if it must post a callback on this structure, and it is OK + * for rcu_barrier() to sometimes post callbacks needlessly, but + * absolutely not OK for it to ever miss posting a callback. + */ +void rcu_segcblist_enqueue(struct rcu_segcblist *rsclp, + struct rcu_head *rhp) +{ + rcu_segcblist_inc_len(rsclp); + rcu_segcblist_inc_seglen(rsclp, RCU_NEXT_TAIL); + rhp->next = NULL; + WRITE_ONCE(*rsclp->tails[RCU_NEXT_TAIL], rhp); + WRITE_ONCE(rsclp->tails[RCU_NEXT_TAIL], &rhp->next); +} + +/* + * Entrain the specified callback onto the specified rcu_segcblist at + * the end of the last non-empty segment. If the entire rcu_segcblist + * is empty, make no change, but return false. + * + * This is intended for use by rcu_barrier()-like primitives, -not- + * for normal grace-period use. IMPORTANT: The callback you enqueue + * will wait for all prior callbacks, NOT necessarily for a grace + * period. You have been warned. + */ +bool rcu_segcblist_entrain(struct rcu_segcblist *rsclp, + struct rcu_head *rhp) +{ + int i; + + if (rcu_segcblist_n_cbs(rsclp) == 0) + return false; + rcu_segcblist_inc_len(rsclp); + smp_mb(); /* Ensure counts are updated before callback is entrained. */ + rhp->next = NULL; + for (i = RCU_NEXT_TAIL; i > RCU_DONE_TAIL; i--) + if (rsclp->tails[i] != rsclp->tails[i - 1]) + break; + rcu_segcblist_inc_seglen(rsclp, i); + WRITE_ONCE(*rsclp->tails[i], rhp); + for (; i <= RCU_NEXT_TAIL; i++) + WRITE_ONCE(rsclp->tails[i], &rhp->next); + return true; +} + +/* + * Extract only those callbacks ready to be invoked from the specified + * rcu_segcblist structure and place them in the specified rcu_cblist + * structure. + */ +void rcu_segcblist_extract_done_cbs(struct rcu_segcblist *rsclp, + struct rcu_cblist *rclp) +{ + int i; + + if (!rcu_segcblist_ready_cbs(rsclp)) + return; /* Nothing to do. */ + rclp->len = rcu_segcblist_get_seglen(rsclp, RCU_DONE_TAIL); + *rclp->tail = rsclp->head; + WRITE_ONCE(rsclp->head, *rsclp->tails[RCU_DONE_TAIL]); + WRITE_ONCE(*rsclp->tails[RCU_DONE_TAIL], NULL); + rclp->tail = rsclp->tails[RCU_DONE_TAIL]; + for (i = RCU_CBLIST_NSEGS - 1; i >= RCU_DONE_TAIL; i--) + if (rsclp->tails[i] == rsclp->tails[RCU_DONE_TAIL]) + WRITE_ONCE(rsclp->tails[i], &rsclp->head); + rcu_segcblist_set_seglen(rsclp, RCU_DONE_TAIL, 0); +} + +/* + * Extract only those callbacks still pending (not yet ready to be + * invoked) from the specified rcu_segcblist structure and place them in + * the specified rcu_cblist structure. Note that this loses information + * about any callbacks that might have been partway done waiting for + * their grace period. Too bad! They will have to start over. + */ +void rcu_segcblist_extract_pend_cbs(struct rcu_segcblist *rsclp, + struct rcu_cblist *rclp) +{ + int i; + + if (!rcu_segcblist_pend_cbs(rsclp)) + return; /* Nothing to do. */ + rclp->len = 0; + *rclp->tail = *rsclp->tails[RCU_DONE_TAIL]; + rclp->tail = rsclp->tails[RCU_NEXT_TAIL]; + WRITE_ONCE(*rsclp->tails[RCU_DONE_TAIL], NULL); + for (i = RCU_DONE_TAIL + 1; i < RCU_CBLIST_NSEGS; i++) { + rclp->len += rcu_segcblist_get_seglen(rsclp, i); + WRITE_ONCE(rsclp->tails[i], rsclp->tails[RCU_DONE_TAIL]); + rcu_segcblist_set_seglen(rsclp, i, 0); + } +} + +/* + * Insert counts from the specified rcu_cblist structure in the + * specified rcu_segcblist structure. + */ +void rcu_segcblist_insert_count(struct rcu_segcblist *rsclp, + struct rcu_cblist *rclp) +{ + rcu_segcblist_add_len(rsclp, rclp->len); +} + +/* + * Move callbacks from the specified rcu_cblist to the beginning of the + * done-callbacks segment of the specified rcu_segcblist. + */ +void rcu_segcblist_insert_done_cbs(struct rcu_segcblist *rsclp, + struct rcu_cblist *rclp) +{ + int i; + + if (!rclp->head) + return; /* No callbacks to move. */ + rcu_segcblist_add_seglen(rsclp, RCU_DONE_TAIL, rclp->len); + *rclp->tail = rsclp->head; + WRITE_ONCE(rsclp->head, rclp->head); + for (i = RCU_DONE_TAIL; i < RCU_CBLIST_NSEGS; i++) + if (&rsclp->head == rsclp->tails[i]) + WRITE_ONCE(rsclp->tails[i], rclp->tail); + else + break; + rclp->head = NULL; + rclp->tail = &rclp->head; +} + +/* + * Move callbacks from the specified rcu_cblist to the end of the + * new-callbacks segment of the specified rcu_segcblist. + */ +void rcu_segcblist_insert_pend_cbs(struct rcu_segcblist *rsclp, + struct rcu_cblist *rclp) +{ + if (!rclp->head) + return; /* Nothing to do. */ + + rcu_segcblist_add_seglen(rsclp, RCU_NEXT_TAIL, rclp->len); + WRITE_ONCE(*rsclp->tails[RCU_NEXT_TAIL], rclp->head); + WRITE_ONCE(rsclp->tails[RCU_NEXT_TAIL], rclp->tail); +} + +/* + * Advance the callbacks in the specified rcu_segcblist structure based + * on the current value passed in for the grace-period counter. + */ +void rcu_segcblist_advance(struct rcu_segcblist *rsclp, unsigned long seq) +{ + int i, j; + + WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp)); + if (rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)) + return; + + /* + * Find all callbacks whose ->gp_seq numbers indicate that they + * are ready to invoke, and put them into the RCU_DONE_TAIL segment. + */ + for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) { + if (ULONG_CMP_LT(seq, rsclp->gp_seq[i])) + break; + WRITE_ONCE(rsclp->tails[RCU_DONE_TAIL], rsclp->tails[i]); + rcu_segcblist_move_seglen(rsclp, i, RCU_DONE_TAIL); + } + + /* If no callbacks moved, nothing more need be done. */ + if (i == RCU_WAIT_TAIL) + return; + + /* Clean up tail pointers that might have been misordered above. */ + for (j = RCU_WAIT_TAIL; j < i; j++) + WRITE_ONCE(rsclp->tails[j], rsclp->tails[RCU_DONE_TAIL]); + + /* + * Callbacks moved, so there might be an empty RCU_WAIT_TAIL + * and a non-empty RCU_NEXT_READY_TAIL. If so, copy the + * RCU_NEXT_READY_TAIL segment to fill the RCU_WAIT_TAIL gap + * created by the now-ready-to-invoke segments. + */ + for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) { + if (rsclp->tails[j] == rsclp->tails[RCU_NEXT_TAIL]) + break; /* No more callbacks. */ + WRITE_ONCE(rsclp->tails[j], rsclp->tails[i]); + rcu_segcblist_move_seglen(rsclp, i, j); + rsclp->gp_seq[j] = rsclp->gp_seq[i]; + } +} + +/* + * "Accelerate" callbacks based on more-accurate grace-period information. + * The reason for this is that RCU does not synchronize the beginnings and + * ends of grace periods, and that callbacks are posted locally. This in + * turn means that the callbacks must be labelled conservatively early + * on, as getting exact information would degrade both performance and + * scalability. When more accurate grace-period information becomes + * available, previously posted callbacks can be "accelerated", marking + * them to complete at the end of the earlier grace period. + * + * This function operates on an rcu_segcblist structure, and also the + * grace-period sequence number seq at which new callbacks would become + * ready to invoke. Returns true if there are callbacks that won't be + * ready to invoke until seq, false otherwise. + */ +bool rcu_segcblist_accelerate(struct rcu_segcblist *rsclp, unsigned long seq) +{ + int i, j; + + WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp)); + if (rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)) + return false; + + /* + * Find the segment preceding the oldest segment of callbacks + * whose ->gp_seq[] completion is at or after that passed in via + * "seq", skipping any empty segments. This oldest segment, along + * with any later segments, can be merged in with any newly arrived + * callbacks in the RCU_NEXT_TAIL segment, and assigned "seq" + * as their ->gp_seq[] grace-period completion sequence number. + */ + for (i = RCU_NEXT_READY_TAIL; i > RCU_DONE_TAIL; i--) + if (rsclp->tails[i] != rsclp->tails[i - 1] && + ULONG_CMP_LT(rsclp->gp_seq[i], seq)) + break; + + /* + * If all the segments contain callbacks that correspond to + * earlier grace-period sequence numbers than "seq", leave. + * Assuming that the rcu_segcblist structure has enough + * segments in its arrays, this can only happen if some of + * the non-done segments contain callbacks that really are + * ready to invoke. This situation will get straightened + * out by the next call to rcu_segcblist_advance(). + * + * Also advance to the oldest segment of callbacks whose + * ->gp_seq[] completion is at or after that passed in via "seq", + * skipping any empty segments. + * + * Note that segment "i" (and any lower-numbered segments + * containing older callbacks) will be unaffected, and their + * grace-period numbers remain unchanged. For example, if i == + * WAIT_TAIL, then neither WAIT_TAIL nor DONE_TAIL will be touched. + * Instead, the CBs in NEXT_TAIL will be merged with those in + * NEXT_READY_TAIL and the grace-period number of NEXT_READY_TAIL + * would be updated. NEXT_TAIL would then be empty. + */ + if (rcu_segcblist_restempty(rsclp, i) || ++i >= RCU_NEXT_TAIL) + return false; + + /* Accounting: everything below i is about to get merged into i. */ + for (j = i + 1; j <= RCU_NEXT_TAIL; j++) + rcu_segcblist_move_seglen(rsclp, j, i); + + /* + * Merge all later callbacks, including newly arrived callbacks, + * into the segment located by the for-loop above. Assign "seq" + * as the ->gp_seq[] value in order to correctly handle the case + * where there were no pending callbacks in the rcu_segcblist + * structure other than in the RCU_NEXT_TAIL segment. + */ + for (; i < RCU_NEXT_TAIL; i++) { + WRITE_ONCE(rsclp->tails[i], rsclp->tails[RCU_NEXT_TAIL]); + rsclp->gp_seq[i] = seq; + } + return true; +} + +/* + * Merge the source rcu_segcblist structure into the destination + * rcu_segcblist structure, then initialize the source. Any pending + * callbacks from the source get to start over. It is best to + * advance and accelerate both the destination and the source + * before merging. + */ +void rcu_segcblist_merge(struct rcu_segcblist *dst_rsclp, + struct rcu_segcblist *src_rsclp) +{ + struct rcu_cblist donecbs; + struct rcu_cblist pendcbs; + + lockdep_assert_cpus_held(); + + rcu_cblist_init(&donecbs); + rcu_cblist_init(&pendcbs); + + rcu_segcblist_extract_done_cbs(src_rsclp, &donecbs); + rcu_segcblist_extract_pend_cbs(src_rsclp, &pendcbs); + + /* + * No need smp_mb() before setting length to 0, because CPU hotplug + * lock excludes rcu_barrier. + */ + rcu_segcblist_set_len(src_rsclp, 0); + + rcu_segcblist_insert_count(dst_rsclp, &donecbs); + rcu_segcblist_insert_count(dst_rsclp, &pendcbs); + rcu_segcblist_insert_done_cbs(dst_rsclp, &donecbs); + rcu_segcblist_insert_pend_cbs(dst_rsclp, &pendcbs); + + rcu_segcblist_init(src_rsclp); +} |