diff options
Diffstat (limited to 'Documentation/dev-tools/kunit/usage.rst')
-rw-r--r-- | Documentation/dev-tools/kunit/usage.rst | 705 |
1 files changed, 705 insertions, 0 deletions
diff --git a/Documentation/dev-tools/kunit/usage.rst b/Documentation/dev-tools/kunit/usage.rst new file mode 100644 index 000000000..2737863ef --- /dev/null +++ b/Documentation/dev-tools/kunit/usage.rst @@ -0,0 +1,705 @@ +.. SPDX-License-Identifier: GPL-2.0 + +Writing Tests +============= + +Test Cases +---------- + +The fundamental unit in KUnit is the test case. A test case is a function with +the signature ``void (*)(struct kunit *test)``. It calls the function under test +and then sets *expectations* for what should happen. For example: + +.. code-block:: c + + void example_test_success(struct kunit *test) + { + } + + void example_test_failure(struct kunit *test) + { + KUNIT_FAIL(test, "This test never passes."); + } + +In the above example, ``example_test_success`` always passes because it does +nothing; no expectations are set, and therefore all expectations pass. On the +other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``, +which is a special expectation that logs a message and causes the test case to +fail. + +Expectations +~~~~~~~~~~~~ +An *expectation* specifies that we expect a piece of code to do something in a +test. An expectation is called like a function. A test is made by setting +expectations about the behavior of a piece of code under test. When one or more +expectations fail, the test case fails and information about the failure is +logged. For example: + +.. code-block:: c + + void add_test_basic(struct kunit *test) + { + KUNIT_EXPECT_EQ(test, 1, add(1, 0)); + KUNIT_EXPECT_EQ(test, 2, add(1, 1)); + } + +In the above example, ``add_test_basic`` makes a number of assertions about the +behavior of a function called ``add``. The first parameter is always of type +``struct kunit *``, which contains information about the current test context. +The second parameter, in this case, is what the value is expected to be. The +last value is what the value actually is. If ``add`` passes all of these +expectations, the test case, ``add_test_basic`` will pass; if any one of these +expectations fails, the test case will fail. + +A test case *fails* when any expectation is violated; however, the test will +continue to run, and try other expectations until the test case ends or is +otherwise terminated. This is as opposed to *assertions* which are discussed +later. + +To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst. + +.. note:: + A single test case should be short, easy to understand, and focused on a + single behavior. + +For example, if we want to rigorously test the ``add`` function above, create +additional tests cases which would test each property that an ``add`` function +should have as shown below: + +.. code-block:: c + + void add_test_basic(struct kunit *test) + { + KUNIT_EXPECT_EQ(test, 1, add(1, 0)); + KUNIT_EXPECT_EQ(test, 2, add(1, 1)); + } + + void add_test_negative(struct kunit *test) + { + KUNIT_EXPECT_EQ(test, 0, add(-1, 1)); + } + + void add_test_max(struct kunit *test) + { + KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX)); + KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN)); + } + + void add_test_overflow(struct kunit *test) + { + KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1)); + } + +Assertions +~~~~~~~~~~ + +An assertion is like an expectation, except that the assertion immediately +terminates the test case if the condition is not satisfied. For example: + +.. code-block:: c + + static void test_sort(struct kunit *test) + { + int *a, i, r = 1; + a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL); + KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a); + for (i = 0; i < TEST_LEN; i++) { + r = (r * 725861) % 6599; + a[i] = r; + } + sort(a, TEST_LEN, sizeof(*a), cmpint, NULL); + for (i = 0; i < TEST_LEN-1; i++) + KUNIT_EXPECT_LE(test, a[i], a[i + 1]); + } + +In this example, the method under test should return pointer to a value. If the +pointer returns null or an errno, we want to stop the test since the following +expectation could crash the test case. `ASSERT_NOT_ERR_OR_NULL(...)` allows us +to bail out of the test case if the appropriate conditions are not satisfied to +complete the test. + +Test Suites +~~~~~~~~~~~ + +We need many test cases covering all the unit's behaviors. It is common to have +many similar tests. In order to reduce duplication in these closely related +tests, most unit testing frameworks (including KUnit) provide the concept of a +*test suite*. A test suite is a collection of test cases for a unit of code +with optional setup and teardown functions that run before/after the whole +suite and/or every test case. For example: + +.. code-block:: c + + static struct kunit_case example_test_cases[] = { + KUNIT_CASE(example_test_foo), + KUNIT_CASE(example_test_bar), + KUNIT_CASE(example_test_baz), + {} + }; + + static struct kunit_suite example_test_suite = { + .name = "example", + .init = example_test_init, + .exit = example_test_exit, + .suite_init = example_suite_init, + .suite_exit = example_suite_exit, + .test_cases = example_test_cases, + }; + kunit_test_suite(example_test_suite); + +In the above example, the test suite ``example_test_suite`` would first run +``example_suite_init``, then run the test cases ``example_test_foo``, +``example_test_bar``, and ``example_test_baz``. Each would have +``example_test_init`` called immediately before it and ``example_test_exit`` +called immediately after it. Finally, ``example_suite_exit`` would be called +after everything else. ``kunit_test_suite(example_test_suite)`` registers the +test suite with the KUnit test framework. + +.. note:: + A test case will only run if it is associated with a test suite. + +``kunit_test_suite(...)`` is a macro which tells the linker to put the +specified test suite in a special linker section so that it can be run by KUnit +either after ``late_init``, or when the test module is loaded (if the test was +built as a module). + +For more information, see Documentation/dev-tools/kunit/api/test.rst. + +.. _kunit-on-non-uml: + +Writing Tests For Other Architectures +------------------------------------- + +It is better to write tests that run on UML to tests that only run under a +particular architecture. It is better to write tests that run under QEMU or +another easy to obtain (and monetarily free) software environment to a specific +piece of hardware. + +Nevertheless, there are still valid reasons to write a test that is architecture +or hardware specific. For example, we might want to test code that really +belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does +not depend on physical hardware. Some of our test cases may not need hardware, +only few tests actually require the hardware to test it. When hardware is not +available, instead of disabling tests, we can skip them. + +Now that we have narrowed down exactly what bits are hardware specific, the +actual procedure for writing and running the tests is same as writing normal +KUnit tests. + +.. important:: + We may have to reset hardware state. If this is not possible, we may only + be able to run one test case per invocation. + +.. TODO(brendanhiggins@google.com): Add an actual example of an architecture- + dependent KUnit test. + +Common Patterns +=============== + +Isolating Behavior +------------------ + +Unit testing limits the amount of code under test to a single unit. It controls +what code gets run when the unit under test calls a function. Where a function +is exposed as part of an API such that the definition of that function can be +changed without affecting the rest of the code base. In the kernel, this comes +from two constructs: classes, which are structs that contain function pointers +provided by the implementer, and architecture-specific functions, which have +definitions selected at compile time. + +Classes +~~~~~~~ + +Classes are not a construct that is built into the C programming language; +however, it is an easily derived concept. Accordingly, in most cases, every +project that does not use a standardized object oriented library (like GNOME's +GObject) has their own slightly different way of doing object oriented +programming; the Linux kernel is no exception. + +The central concept in kernel object oriented programming is the class. In the +kernel, a *class* is a struct that contains function pointers. This creates a +contract between *implementers* and *users* since it forces them to use the +same function signature without having to call the function directly. To be a +class, the function pointers must specify that a pointer to the class, known as +a *class handle*, be one of the parameters. Thus the member functions (also +known as *methods*) have access to member variables (also known as *fields*) +allowing the same implementation to have multiple *instances*. + +A class can be *overridden* by *child classes* by embedding the *parent class* +in the child class. Then when the child class *method* is called, the child +implementation knows that the pointer passed to it is of a parent contained +within the child. Thus, the child can compute the pointer to itself because the +pointer to the parent is always a fixed offset from the pointer to the child. +This offset is the offset of the parent contained in the child struct. For +example: + +.. code-block:: c + + struct shape { + int (*area)(struct shape *this); + }; + + struct rectangle { + struct shape parent; + int length; + int width; + }; + + int rectangle_area(struct shape *this) + { + struct rectangle *self = container_of(this, struct rectangle, parent); + + return self->length * self->width; + }; + + void rectangle_new(struct rectangle *self, int length, int width) + { + self->parent.area = rectangle_area; + self->length = length; + self->width = width; + } + +In this example, computing the pointer to the child from the pointer to the +parent is done by ``container_of``. + +Faking Classes +~~~~~~~~~~~~~~ + +In order to unit test a piece of code that calls a method in a class, the +behavior of the method must be controllable, otherwise the test ceases to be a +unit test and becomes an integration test. + +A fake class implements a piece of code that is different than what runs in a +production instance, but behaves identical from the standpoint of the callers. +This is done to replace a dependency that is hard to deal with, or is slow. For +example, implementing a fake EEPROM that stores the "contents" in an +internal buffer. Assume we have a class that represents an EEPROM: + +.. code-block:: c + + struct eeprom { + ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count); + ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count); + }; + +And we want to test code that buffers writes to the EEPROM: + +.. code-block:: c + + struct eeprom_buffer { + ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count); + int flush(struct eeprom_buffer *this); + size_t flush_count; /* Flushes when buffer exceeds flush_count. */ + }; + + struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom); + void destroy_eeprom_buffer(struct eeprom *eeprom); + +We can test this code by *faking out* the underlying EEPROM: + +.. code-block:: c + + struct fake_eeprom { + struct eeprom parent; + char contents[FAKE_EEPROM_CONTENTS_SIZE]; + }; + + ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count) + { + struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); + + count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); + memcpy(buffer, this->contents + offset, count); + + return count; + } + + ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count) + { + struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent); + + count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset); + memcpy(this->contents + offset, buffer, count); + + return count; + } + + void fake_eeprom_init(struct fake_eeprom *this) + { + this->parent.read = fake_eeprom_read; + this->parent.write = fake_eeprom_write; + memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE); + } + +We can now use it to test ``struct eeprom_buffer``: + +.. code-block:: c + + struct eeprom_buffer_test { + struct fake_eeprom *fake_eeprom; + struct eeprom_buffer *eeprom_buffer; + }; + + static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test) + { + struct eeprom_buffer_test *ctx = test->priv; + struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; + struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; + char buffer[] = {0xff}; + + eeprom_buffer->flush_count = SIZE_MAX; + + eeprom_buffer->write(eeprom_buffer, buffer, 1); + KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); + + eeprom_buffer->write(eeprom_buffer, buffer, 1); + KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0); + + eeprom_buffer->flush(eeprom_buffer); + KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); + KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); + } + + static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test) + { + struct eeprom_buffer_test *ctx = test->priv; + struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; + struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; + char buffer[] = {0xff}; + + eeprom_buffer->flush_count = 2; + + eeprom_buffer->write(eeprom_buffer, buffer, 1); + KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); + + eeprom_buffer->write(eeprom_buffer, buffer, 1); + KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); + KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); + } + + static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test) + { + struct eeprom_buffer_test *ctx = test->priv; + struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer; + struct fake_eeprom *fake_eeprom = ctx->fake_eeprom; + char buffer[] = {0xff, 0xff}; + + eeprom_buffer->flush_count = 2; + + eeprom_buffer->write(eeprom_buffer, buffer, 1); + KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0); + + eeprom_buffer->write(eeprom_buffer, buffer, 2); + KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff); + KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff); + /* Should have only flushed the first two bytes. */ + KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0); + } + + static int eeprom_buffer_test_init(struct kunit *test) + { + struct eeprom_buffer_test *ctx; + + ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL); + KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx); + + ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL); + KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom); + fake_eeprom_init(ctx->fake_eeprom); + + ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent); + KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer); + + test->priv = ctx; + + return 0; + } + + static void eeprom_buffer_test_exit(struct kunit *test) + { + struct eeprom_buffer_test *ctx = test->priv; + + destroy_eeprom_buffer(ctx->eeprom_buffer); + } + +Testing Against Multiple Inputs +------------------------------- + +Testing just a few inputs is not enough to ensure that the code works correctly, +for example: testing a hash function. + +We can write a helper macro or function. The function is called for each input. +For example, to test ``sha1sum(1)``, we can write: + +.. code-block:: c + + #define TEST_SHA1(in, want) \ + sha1sum(in, out); \ + KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in); + + char out[40]; + TEST_SHA1("hello world", "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed"); + TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169"); + +Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more +detailed error and make the assertions clearer within the helper macros. + +The ``_MSG`` variants are useful when the same expectation is called multiple +times (in a loop or helper function) and thus the line number is not enough to +identify what failed, as shown below. + +In complicated cases, we recommend using a *table-driven test* compared to the +helper macro variation, for example: + +.. code-block:: c + + int i; + char out[40]; + + struct sha1_test_case { + const char *str; + const char *sha1; + }; + + struct sha1_test_case cases[] = { + { + .str = "hello world", + .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", + }, + { + .str = "hello world!", + .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", + }, + }; + for (i = 0; i < ARRAY_SIZE(cases); ++i) { + sha1sum(cases[i].str, out); + KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1, + "sha1sum(%s)", cases[i].str); + } + + +There is more boilerplate code involved, but it can: + +* be more readable when there are multiple inputs/outputs (due to field names). + + * For example, see ``fs/ext4/inode-test.c``. + +* reduce duplication if test cases are shared across multiple tests. + + * For example: if we want to test ``sha256sum``, we could add a ``sha256`` + field and reuse ``cases``. + +* be converted to a "parameterized test". + +Parameterized Testing +~~~~~~~~~~~~~~~~~~~~~ + +The table-driven testing pattern is common enough that KUnit has special +support for it. + +By reusing the same ``cases`` array from above, we can write the test as a +"parameterized test" with the following. + +.. code-block:: c + + // This is copy-pasted from above. + struct sha1_test_case { + const char *str; + const char *sha1; + }; + const struct sha1_test_case cases[] = { + { + .str = "hello world", + .sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed", + }, + { + .str = "hello world!", + .sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169", + }, + }; + + // Need a helper function to generate a name for each test case. + static void case_to_desc(const struct sha1_test_case *t, char *desc) + { + strcpy(desc, t->str); + } + // Creates `sha1_gen_params()` to iterate over `cases`. + KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc); + + // Looks no different from a normal test. + static void sha1_test(struct kunit *test) + { + // This function can just contain the body of the for-loop. + // The former `cases[i]` is accessible under test->param_value. + char out[40]; + struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value); + + sha1sum(test_param->str, out); + KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1, + "sha1sum(%s)", test_param->str); + } + + // Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the + // function declared by KUNIT_ARRAY_PARAM. + static struct kunit_case sha1_test_cases[] = { + KUNIT_CASE_PARAM(sha1_test, sha1_gen_params), + {} + }; + +Exiting Early on Failed Expectations +------------------------------------ + +We can use ``KUNIT_EXPECT_EQ`` to mark the test as failed and continue +execution. In some cases, it is unsafe to continue. We can use the +``KUNIT_ASSERT`` variant to exit on failure. + +.. code-block:: c + + void example_test_user_alloc_function(struct kunit *test) + { + void *object = alloc_some_object_for_me(); + + /* Make sure we got a valid pointer back. */ + KUNIT_ASSERT_NOT_ERR_OR_NULL(test, object); + do_something_with_object(object); + } + +Allocating Memory +----------------- + +Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit +will then ensure that the memory is freed once the test completes. + +This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit +early from a test without having to worry about remembering to call ``kfree``. +For example: + +.. code-block:: c + + void example_test_allocation(struct kunit *test) + { + char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL); + /* Ensure allocation succeeded. */ + KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer); + + KUNIT_ASSERT_STREQ(test, buffer, ""); + } + + +Testing Static Functions +------------------------ + +If we do not want to expose functions or variables for testing, one option is to +conditionally ``#include`` the test file at the end of your .c file. For +example: + +.. code-block:: c + + /* In my_file.c */ + + static int do_interesting_thing(); + + #ifdef CONFIG_MY_KUNIT_TEST + #include "my_kunit_test.c" + #endif + +Injecting Test-Only Code +------------------------ + +Similar to as shown above, we can add test-specific logic. For example: + +.. code-block:: c + + /* In my_file.h */ + + #ifdef CONFIG_MY_KUNIT_TEST + /* Defined in my_kunit_test.c */ + void test_only_hook(void); + #else + void test_only_hook(void) { } + #endif + +This test-only code can be made more useful by accessing the current ``kunit_test`` +as shown in next section: *Accessing The Current Test*. + +Accessing The Current Test +-------------------------- + +In some cases, we need to call test-only code from outside the test file. +For example, see example in section *Injecting Test-Only Code* or if +we are providing a fake implementation of an ops struct. Using +``kunit_test`` field in ``task_struct``, we can access it via +``current->kunit_test``. + +The example below includes how to implement "mocking": + +.. code-block:: c + + #include <linux/sched.h> /* for current */ + + struct test_data { + int foo_result; + int want_foo_called_with; + }; + + static int fake_foo(int arg) + { + struct kunit *test = current->kunit_test; + struct test_data *test_data = test->priv; + + KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg); + return test_data->foo_result; + } + + static void example_simple_test(struct kunit *test) + { + /* Assume priv (private, a member used to pass test data from + * the init function) is allocated in the suite's .init */ + struct test_data *test_data = test->priv; + + test_data->foo_result = 42; + test_data->want_foo_called_with = 1; + + /* In a real test, we'd probably pass a pointer to fake_foo somewhere + * like an ops struct, etc. instead of calling it directly. */ + KUNIT_EXPECT_EQ(test, fake_foo(1), 42); + } + +In this example, we are using the ``priv`` member of ``struct kunit`` as a way +of passing data to the test from the init function. In general ``priv`` is +pointer that can be used for any user data. This is preferred over static +variables, as it avoids concurrency issues. + +Had we wanted something more flexible, we could have used a named ``kunit_resource``. +Each test can have multiple resources which have string names providing the same +flexibility as a ``priv`` member, but also, for example, allowing helper +functions to create resources without conflicting with each other. It is also +possible to define a clean up function for each resource, making it easy to +avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/test.rst. + +Failing The Current Test +------------------------ + +If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)`` +which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``. +For example, we have an option to enable some extra debug checks on some data +structures as shown below: + +.. code-block:: c + + #include <kunit/test-bug.h> + + #ifdef CONFIG_EXTRA_DEBUG_CHECKS + static void validate_my_data(struct data *data) + { + if (is_valid(data)) + return; + + kunit_fail_current_test("data %p is invalid", data); + + /* Normal, non-KUnit, error reporting code here. */ + } + #else + static void my_debug_function(void) { } + #endif + |