summaryrefslogtreecommitdiffstats
path: root/arch/x86/events/amd/core.c
blob: 04f4b96dec6df74f71a6f8dce2bcd0cfb02ff08e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/perf_event.h>
#include <linux/jump_label.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/jiffies.h>
#include <asm/apicdef.h>
#include <asm/apic.h>
#include <asm/nmi.h>

#include "../perf_event.h"

static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
static unsigned long perf_nmi_window;

/* AMD Event 0xFFF: Merge.  Used with Large Increment per Cycle events */
#define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
#define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)

/* PMC Enable and Overflow bits for PerfCntrGlobal* registers */
static u64 amd_pmu_global_cntr_mask __read_mostly;

static __initconst const u64 amd_hw_cache_event_ids
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
};

static __initconst const u64 amd_hw_cache_event_ids_f17h
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
		[C(RESULT_MISS)]   = 0xc860, /* L2$ access from DC Miss */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
		[C(RESULT_MISS)]   = 0,
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches  */
		[C(RESULT_MISS)]   = 0x0081, /* Instruction cache misses   */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
		[C(RESULT_MISS)]   = 0xf045, /* L2 DTLB misses (PT walks) */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
		[C(RESULT_MISS)]   = 0xff85, /* L1 ITLB misses, L2 misses */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr.      */
		[C(RESULT_MISS)]   = 0x00c3, /* Retired Mispredicted BI    */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
},
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
},
};

/*
 * AMD Performance Monitor K7 and later, up to and including Family 16h:
 */
static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
{
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x077d,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x077e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
};

/*
 * AMD Performance Monitor Family 17h and later:
 */
static const u64 amd_f17h_perfmon_event_map[PERF_COUNT_HW_MAX] =
{
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0xff60,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x0964,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x0287,
	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x0187,
};

static u64 amd_pmu_event_map(int hw_event)
{
	if (boot_cpu_data.x86 >= 0x17)
		return amd_f17h_perfmon_event_map[hw_event];

	return amd_perfmon_event_map[hw_event];
}

/*
 * Previously calculated offsets
 */
static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;

/*
 * Legacy CPUs:
 *   4 counters starting at 0xc0010000 each offset by 1
 *
 * CPUs with core performance counter extensions:
 *   6 counters starting at 0xc0010200 each offset by 2
 */
static inline int amd_pmu_addr_offset(int index, bool eventsel)
{
	int offset;

	if (!index)
		return index;

	if (eventsel)
		offset = event_offsets[index];
	else
		offset = count_offsets[index];

	if (offset)
		return offset;

	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
		offset = index;
	else
		offset = index << 1;

	if (eventsel)
		event_offsets[index] = offset;
	else
		count_offsets[index] = offset;

	return offset;
}

/*
 * AMD64 events are detected based on their event codes.
 */
static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
{
	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
}

static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
{
	if (!(x86_pmu.flags & PMU_FL_PAIR))
		return false;

	switch (amd_get_event_code(hwc)) {
	case 0x003:	return true;	/* Retired SSE/AVX FLOPs */
	default:	return false;
	}
}

DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config);

static int amd_core_hw_config(struct perf_event *event)
{
	if (event->attr.exclude_host && event->attr.exclude_guest)
		/*
		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
		 * and will count in both modes. We don't want to count in that
		 * case so we emulate no-counting by setting US = OS = 0.
		 */
		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
				      ARCH_PERFMON_EVENTSEL_OS);
	else if (event->attr.exclude_host)
		event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
	else if (event->attr.exclude_guest)
		event->hw.config |= AMD64_EVENTSEL_HOSTONLY;

	if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
		event->hw.flags |= PERF_X86_EVENT_PAIR;

	if (has_branch_stack(event))
		return static_call(amd_pmu_branch_hw_config)(event);

	return 0;
}

static inline int amd_is_nb_event(struct hw_perf_event *hwc)
{
	return (hwc->config & 0xe0) == 0xe0;
}

static inline int amd_has_nb(struct cpu_hw_events *cpuc)
{
	struct amd_nb *nb = cpuc->amd_nb;

	return nb && nb->nb_id != -1;
}

static int amd_pmu_hw_config(struct perf_event *event)
{
	int ret;

	/* pass precise event sampling to ibs: */
	if (event->attr.precise_ip && get_ibs_caps())
		return forward_event_to_ibs(event);

	if (has_branch_stack(event) && !x86_pmu.lbr_nr)
		return -EOPNOTSUPP;

	ret = x86_pmu_hw_config(event);
	if (ret)
		return ret;

	if (event->attr.type == PERF_TYPE_RAW)
		event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;

	return amd_core_hw_config(event);
}

static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
					   struct perf_event *event)
{
	struct amd_nb *nb = cpuc->amd_nb;
	int i;

	/*
	 * need to scan whole list because event may not have
	 * been assigned during scheduling
	 *
	 * no race condition possible because event can only
	 * be removed on one CPU at a time AND PMU is disabled
	 * when we come here
	 */
	for (i = 0; i < x86_pmu.num_counters; i++) {
		if (cmpxchg(nb->owners + i, event, NULL) == event)
			break;
	}
}

 /*
  * AMD64 NorthBridge events need special treatment because
  * counter access needs to be synchronized across all cores
  * of a package. Refer to BKDG section 3.12
  *
  * NB events are events measuring L3 cache, Hypertransport
  * traffic. They are identified by an event code >= 0xe00.
  * They measure events on the NorthBride which is shared
  * by all cores on a package. NB events are counted on a
  * shared set of counters. When a NB event is programmed
  * in a counter, the data actually comes from a shared
  * counter. Thus, access to those counters needs to be
  * synchronized.
  *
  * We implement the synchronization such that no two cores
  * can be measuring NB events using the same counters. Thus,
  * we maintain a per-NB allocation table. The available slot
  * is propagated using the event_constraint structure.
  *
  * We provide only one choice for each NB event based on
  * the fact that only NB events have restrictions. Consequently,
  * if a counter is available, there is a guarantee the NB event
  * will be assigned to it. If no slot is available, an empty
  * constraint is returned and scheduling will eventually fail
  * for this event.
  *
  * Note that all cores attached the same NB compete for the same
  * counters to host NB events, this is why we use atomic ops. Some
  * multi-chip CPUs may have more than one NB.
  *
  * Given that resources are allocated (cmpxchg), they must be
  * eventually freed for others to use. This is accomplished by
  * calling __amd_put_nb_event_constraints()
  *
  * Non NB events are not impacted by this restriction.
  */
static struct event_constraint *
__amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
			       struct event_constraint *c)
{
	struct hw_perf_event *hwc = &event->hw;
	struct amd_nb *nb = cpuc->amd_nb;
	struct perf_event *old;
	int idx, new = -1;

	if (!c)
		c = &unconstrained;

	if (cpuc->is_fake)
		return c;

	/*
	 * detect if already present, if so reuse
	 *
	 * cannot merge with actual allocation
	 * because of possible holes
	 *
	 * event can already be present yet not assigned (in hwc->idx)
	 * because of successive calls to x86_schedule_events() from
	 * hw_perf_group_sched_in() without hw_perf_enable()
	 */
	for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
		if (new == -1 || hwc->idx == idx)
			/* assign free slot, prefer hwc->idx */
			old = cmpxchg(nb->owners + idx, NULL, event);
		else if (nb->owners[idx] == event)
			/* event already present */
			old = event;
		else
			continue;

		if (old && old != event)
			continue;

		/* reassign to this slot */
		if (new != -1)
			cmpxchg(nb->owners + new, event, NULL);
		new = idx;

		/* already present, reuse */
		if (old == event)
			break;
	}

	if (new == -1)
		return &emptyconstraint;

	return &nb->event_constraints[new];
}

static struct amd_nb *amd_alloc_nb(int cpu)
{
	struct amd_nb *nb;
	int i;

	nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
	if (!nb)
		return NULL;

	nb->nb_id = -1;

	/*
	 * initialize all possible NB constraints
	 */
	for (i = 0; i < x86_pmu.num_counters; i++) {
		__set_bit(i, nb->event_constraints[i].idxmsk);
		nb->event_constraints[i].weight = 1;
	}
	return nb;
}

typedef void (amd_pmu_branch_reset_t)(void);
DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t);

static void amd_pmu_cpu_reset(int cpu)
{
	if (x86_pmu.lbr_nr)
		static_call(amd_pmu_branch_reset)();

	if (x86_pmu.version < 2)
		return;

	/* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */
	wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0);

	/*
	 * Clear freeze and overflow bits i.e. PerfCntrGLobalStatus.LbrFreeze
	 * and PerfCntrGLobalStatus.PerfCntrOvfl
	 */
	wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
	       GLOBAL_STATUS_LBRS_FROZEN | amd_pmu_global_cntr_mask);
}

static int amd_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

	cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL,
				     cpu_to_node(cpu));
	if (!cpuc->lbr_sel)
		return -ENOMEM;

	WARN_ON_ONCE(cpuc->amd_nb);

	if (!x86_pmu.amd_nb_constraints)
		return 0;

	cpuc->amd_nb = amd_alloc_nb(cpu);
	if (cpuc->amd_nb)
		return 0;

	kfree(cpuc->lbr_sel);
	cpuc->lbr_sel = NULL;

	return -ENOMEM;
}

static void amd_pmu_cpu_starting(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
	void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
	struct amd_nb *nb;
	int i, nb_id;

	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
	amd_pmu_cpu_reset(cpu);

	if (!x86_pmu.amd_nb_constraints)
		return;

	nb_id = topology_die_id(cpu);
	WARN_ON_ONCE(nb_id == BAD_APICID);

	for_each_online_cpu(i) {
		nb = per_cpu(cpu_hw_events, i).amd_nb;
		if (WARN_ON_ONCE(!nb))
			continue;

		if (nb->nb_id == nb_id) {
			*onln = cpuc->amd_nb;
			cpuc->amd_nb = nb;
			break;
		}
	}

	cpuc->amd_nb->nb_id = nb_id;
	cpuc->amd_nb->refcnt++;
}

static void amd_pmu_cpu_dead(int cpu)
{
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);

	kfree(cpuhw->lbr_sel);
	cpuhw->lbr_sel = NULL;
	amd_pmu_cpu_reset(cpu);

	if (!x86_pmu.amd_nb_constraints)
		return;

	if (cpuhw->amd_nb) {
		struct amd_nb *nb = cpuhw->amd_nb;

		if (nb->nb_id == -1 || --nb->refcnt == 0)
			kfree(nb);

		cpuhw->amd_nb = NULL;
	}
}

static inline void amd_pmu_set_global_ctl(u64 ctl)
{
	wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl);
}

static inline u64 amd_pmu_get_global_status(void)
{
	u64 status;

	/* PerfCntrGlobalStatus is read-only */
	rdmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status);

	return status;
}

static inline void amd_pmu_ack_global_status(u64 status)
{
	/*
	 * PerfCntrGlobalStatus is read-only but an overflow acknowledgment
	 * mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr
	 * clears the same bit in PerfCntrGlobalStatus
	 */

	wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status);
}

static bool amd_pmu_test_overflow_topbit(int idx)
{
	u64 counter;

	rdmsrl(x86_pmu_event_addr(idx), counter);

	return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1));
}

static bool amd_pmu_test_overflow_status(int idx)
{
	return amd_pmu_get_global_status() & BIT_ULL(idx);
}

DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit);

/*
 * When a PMC counter overflows, an NMI is used to process the event and
 * reset the counter. NMI latency can result in the counter being updated
 * before the NMI can run, which can result in what appear to be spurious
 * NMIs. This function is intended to wait for the NMI to run and reset
 * the counter to avoid possible unhandled NMI messages.
 */
#define OVERFLOW_WAIT_COUNT	50

static void amd_pmu_wait_on_overflow(int idx)
{
	unsigned int i;

	/*
	 * Wait for the counter to be reset if it has overflowed. This loop
	 * should exit very, very quickly, but just in case, don't wait
	 * forever...
	 */
	for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
		if (!static_call(amd_pmu_test_overflow)(idx))
			break;

		/* Might be in IRQ context, so can't sleep */
		udelay(1);
	}
}

static void amd_pmu_check_overflow(void)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int idx;

	/*
	 * This shouldn't be called from NMI context, but add a safeguard here
	 * to return, since if we're in NMI context we can't wait for an NMI
	 * to reset an overflowed counter value.
	 */
	if (in_nmi())
		return;

	/*
	 * Check each counter for overflow and wait for it to be reset by the
	 * NMI if it has overflowed. This relies on the fact that all active
	 * counters are always enabled when this function is called and
	 * ARCH_PERFMON_EVENTSEL_INT is always set.
	 */
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		if (!test_bit(idx, cpuc->active_mask))
			continue;

		amd_pmu_wait_on_overflow(idx);
	}
}

static void amd_pmu_enable_event(struct perf_event *event)
{
	x86_pmu_enable_event(event);
}

static void amd_pmu_enable_all(int added)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int idx;

	amd_brs_enable_all();

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		/* only activate events which are marked as active */
		if (!test_bit(idx, cpuc->active_mask))
			continue;

		amd_pmu_enable_event(cpuc->events[idx]);
	}
}

static void amd_pmu_v2_enable_event(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	/*
	 * Testing cpu_hw_events.enabled should be skipped in this case unlike
	 * in x86_pmu_enable_event().
	 *
	 * Since cpu_hw_events.enabled is set only after returning from
	 * x86_pmu_start(), the PMCs must be programmed and kept ready.
	 * Counting starts only after x86_pmu_enable_all() is called.
	 */
	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
}

static __always_inline void amd_pmu_core_enable_all(void)
{
	amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask);
}

static void amd_pmu_v2_enable_all(int added)
{
	amd_pmu_lbr_enable_all();
	amd_pmu_core_enable_all();
}

static void amd_pmu_disable_event(struct perf_event *event)
{
	x86_pmu_disable_event(event);

	/*
	 * This can be called from NMI context (via x86_pmu_stop). The counter
	 * may have overflowed, but either way, we'll never see it get reset
	 * by the NMI if we're already in the NMI. And the NMI latency support
	 * below will take care of any pending NMI that might have been
	 * generated by the overflow.
	 */
	if (in_nmi())
		return;

	amd_pmu_wait_on_overflow(event->hw.idx);
}

static void amd_pmu_disable_all(void)
{
	amd_brs_disable_all();
	x86_pmu_disable_all();
	amd_pmu_check_overflow();
}

static __always_inline void amd_pmu_core_disable_all(void)
{
	amd_pmu_set_global_ctl(0);
}

static void amd_pmu_v2_disable_all(void)
{
	amd_pmu_core_disable_all();
	amd_pmu_lbr_disable_all();
	amd_pmu_check_overflow();
}

DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add);

static void amd_pmu_add_event(struct perf_event *event)
{
	if (needs_branch_stack(event))
		static_call(amd_pmu_branch_add)(event);
}

DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del);

static void amd_pmu_del_event(struct perf_event *event)
{
	if (needs_branch_stack(event))
		static_call(amd_pmu_branch_del)(event);
}

/*
 * Because of NMI latency, if multiple PMC counters are active or other sources
 * of NMIs are received, the perf NMI handler can handle one or more overflowed
 * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
 * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
 * back-to-back NMI support won't be active. This PMC handler needs to take into
 * account that this can occur, otherwise this could result in unknown NMI
 * messages being issued. Examples of this is PMC overflow while in the NMI
 * handler when multiple PMCs are active or PMC overflow while handling some
 * other source of an NMI.
 *
 * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
 * received during this window will be claimed. This prevents extending the
 * window past when it is possible that latent NMIs should be received. The
 * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
 * handled a counter. When an un-handled NMI is received, it will be claimed
 * only if arriving within that window.
 */
static inline int amd_pmu_adjust_nmi_window(int handled)
{
	/*
	 * If a counter was handled, record a timestamp such that un-handled
	 * NMIs will be claimed if arriving within that window.
	 */
	if (handled) {
		this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);

		return handled;
	}

	if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
		return NMI_DONE;

	return NMI_HANDLED;
}

static int amd_pmu_handle_irq(struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int handled;
	int pmu_enabled;

	/*
	 * Save the PMU state.
	 * It needs to be restored when leaving the handler.
	 */
	pmu_enabled = cpuc->enabled;
	cpuc->enabled = 0;

	amd_brs_disable_all();

	/* Drain BRS is in use (could be inactive) */
	if (cpuc->lbr_users)
		amd_brs_drain();

	/* Process any counter overflows */
	handled = x86_pmu_handle_irq(regs);

	cpuc->enabled = pmu_enabled;
	if (pmu_enabled)
		amd_brs_enable_all();

	return amd_pmu_adjust_nmi_window(handled);
}

static int amd_pmu_v2_handle_irq(struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct perf_sample_data data;
	struct hw_perf_event *hwc;
	struct perf_event *event;
	int handled = 0, idx;
	u64 reserved, status, mask;
	bool pmu_enabled;

	/*
	 * Save the PMU state as it needs to be restored when leaving the
	 * handler
	 */
	pmu_enabled = cpuc->enabled;
	cpuc->enabled = 0;

	/* Stop counting but do not disable LBR */
	amd_pmu_core_disable_all();

	status = amd_pmu_get_global_status();

	/* Check if any overflows are pending */
	if (!status)
		goto done;

	/* Read branch records before unfreezing */
	if (status & GLOBAL_STATUS_LBRS_FROZEN) {
		amd_pmu_lbr_read();
		status &= ~GLOBAL_STATUS_LBRS_FROZEN;
	}

	reserved = status & ~amd_pmu_global_cntr_mask;
	if (reserved)
		pr_warn_once("Reserved PerfCntrGlobalStatus bits are set (0x%llx), please consider updating microcode\n",
			     reserved);

	/* Clear any reserved bits set by buggy microcode */
	status &= amd_pmu_global_cntr_mask;

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		if (!test_bit(idx, cpuc->active_mask))
			continue;

		event = cpuc->events[idx];
		hwc = &event->hw;
		x86_perf_event_update(event);
		mask = BIT_ULL(idx);

		if (!(status & mask))
			continue;

		/* Event overflow */
		handled++;
		status &= ~mask;
		perf_sample_data_init(&data, 0, hwc->last_period);

		if (!x86_perf_event_set_period(event))
			continue;

		if (has_branch_stack(event)) {
			data.br_stack = &cpuc->lbr_stack;
			data.sample_flags |= PERF_SAMPLE_BRANCH_STACK;
		}

		if (perf_event_overflow(event, &data, regs))
			x86_pmu_stop(event, 0);
	}

	/*
	 * It should never be the case that some overflows are not handled as
	 * the corresponding PMCs are expected to be inactive according to the
	 * active_mask
	 */
	WARN_ON(status > 0);

	/* Clear overflow and freeze bits */
	amd_pmu_ack_global_status(~status);

	/*
	 * Unmasking the LVTPC is not required as the Mask (M) bit of the LVT
	 * PMI entry is not set by the local APIC when a PMC overflow occurs
	 */
	inc_irq_stat(apic_perf_irqs);

done:
	cpuc->enabled = pmu_enabled;

	/* Resume counting only if PMU is active */
	if (pmu_enabled)
		amd_pmu_core_enable_all();

	return amd_pmu_adjust_nmi_window(handled);
}

static struct event_constraint *
amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	/*
	 * if not NB event or no NB, then no constraints
	 */
	if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
		return &unconstrained;

	return __amd_get_nb_event_constraints(cpuc, event, NULL);
}

static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
				      struct perf_event *event)
{
	if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
		__amd_put_nb_event_constraints(cpuc, event);
}

PMU_FORMAT_ATTR(event,	"config:0-7,32-35");
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);

static struct attribute *amd_format_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

/* AMD Family 15h */

#define AMD_EVENT_TYPE_MASK	0x000000F0ULL

#define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
#define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
#define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
#define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
#define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
#define AMD_EVENT_EX_LS		0x000000C0ULL
#define AMD_EVENT_DE		0x000000D0ULL
#define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL

/*
 * AMD family 15h event code/PMC mappings:
 *
 * type = event_code & 0x0F0:
 *
 * 0x000	FP	PERF_CTL[5:3]
 * 0x010	FP	PERF_CTL[5:3]
 * 0x020	LS	PERF_CTL[5:0]
 * 0x030	LS	PERF_CTL[5:0]
 * 0x040	DC	PERF_CTL[5:0]
 * 0x050	DC	PERF_CTL[5:0]
 * 0x060	CU	PERF_CTL[2:0]
 * 0x070	CU	PERF_CTL[2:0]
 * 0x080	IC/DE	PERF_CTL[2:0]
 * 0x090	IC/DE	PERF_CTL[2:0]
 * 0x0A0	---
 * 0x0B0	---
 * 0x0C0	EX/LS	PERF_CTL[5:0]
 * 0x0D0	DE	PERF_CTL[2:0]
 * 0x0E0	NB	NB_PERF_CTL[3:0]
 * 0x0F0	NB	NB_PERF_CTL[3:0]
 *
 * Exceptions:
 *
 * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
 * 0x003	FP	PERF_CTL[3]
 * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
 * 0x00B	FP	PERF_CTL[3]
 * 0x00D	FP	PERF_CTL[3]
 * 0x023	DE	PERF_CTL[2:0]
 * 0x02D	LS	PERF_CTL[3]
 * 0x02E	LS	PERF_CTL[3,0]
 * 0x031	LS	PERF_CTL[2:0] (**)
 * 0x043	CU	PERF_CTL[2:0]
 * 0x045	CU	PERF_CTL[2:0]
 * 0x046	CU	PERF_CTL[2:0]
 * 0x054	CU	PERF_CTL[2:0]
 * 0x055	CU	PERF_CTL[2:0]
 * 0x08F	IC	PERF_CTL[0]
 * 0x187	DE	PERF_CTL[0]
 * 0x188	DE	PERF_CTL[0]
 * 0x0DB	EX	PERF_CTL[5:0]
 * 0x0DC	LS	PERF_CTL[5:0]
 * 0x0DD	LS	PERF_CTL[5:0]
 * 0x0DE	LS	PERF_CTL[5:0]
 * 0x0DF	LS	PERF_CTL[5:0]
 * 0x1C0	EX	PERF_CTL[5:3]
 * 0x1D6	EX	PERF_CTL[5:0]
 * 0x1D8	EX	PERF_CTL[5:0]
 *
 * (*)  depending on the umask all FPU counters may be used
 * (**) only one unitmask enabled at a time
 */

static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);

static struct event_constraint *
amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
			       struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	unsigned int event_code = amd_get_event_code(hwc);

	switch (event_code & AMD_EVENT_TYPE_MASK) {
	case AMD_EVENT_FP:
		switch (event_code) {
		case 0x000:
			if (!(hwc->config & 0x0000F000ULL))
				break;
			if (!(hwc->config & 0x00000F00ULL))
				break;
			return &amd_f15_PMC3;
		case 0x004:
			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
				break;
			return &amd_f15_PMC3;
		case 0x003:
		case 0x00B:
		case 0x00D:
			return &amd_f15_PMC3;
		}
		return &amd_f15_PMC53;
	case AMD_EVENT_LS:
	case AMD_EVENT_DC:
	case AMD_EVENT_EX_LS:
		switch (event_code) {
		case 0x023:
		case 0x043:
		case 0x045:
		case 0x046:
		case 0x054:
		case 0x055:
			return &amd_f15_PMC20;
		case 0x02D:
			return &amd_f15_PMC3;
		case 0x02E:
			return &amd_f15_PMC30;
		case 0x031:
			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
				return &amd_f15_PMC20;
			return &emptyconstraint;
		case 0x1C0:
			return &amd_f15_PMC53;
		default:
			return &amd_f15_PMC50;
		}
	case AMD_EVENT_CU:
	case AMD_EVENT_IC_DE:
	case AMD_EVENT_DE:
		switch (event_code) {
		case 0x08F:
		case 0x187:
		case 0x188:
			return &amd_f15_PMC0;
		case 0x0DB ... 0x0DF:
		case 0x1D6:
		case 0x1D8:
			return &amd_f15_PMC50;
		default:
			return &amd_f15_PMC20;
		}
	case AMD_EVENT_NB:
		/* moved to uncore.c */
		return &emptyconstraint;
	default:
		return &emptyconstraint;
	}
}

static struct event_constraint pair_constraint;

static struct event_constraint *
amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
			       struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (amd_is_pair_event_code(hwc))
		return &pair_constraint;

	return &unconstrained;
}

static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
					   struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (is_counter_pair(hwc))
		--cpuc->n_pair;
}

/*
 * Because of the way BRS operates with an inactive and active phases, and
 * the link to one counter, it is not possible to have two events using BRS
 * scheduled at the same time. There would be an issue with enforcing the
 * period of each one and given that the BRS saturates, it would not be possible
 * to guarantee correlated content for all events. Therefore, in situations
 * where multiple events want to use BRS, the kernel enforces mutual exclusion.
 * Exclusion is enforced by chosing only one counter for events using BRS.
 * The event scheduling logic will then automatically multiplex the
 * events and ensure that at most one event is actively using BRS.
 *
 * The BRS counter could be any counter, but there is no constraint on Fam19h,
 * therefore all counters are equal and thus we pick the first one: PMC0
 */
static struct event_constraint amd_fam19h_brs_cntr0_constraint =
	EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK);

static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint =
	__EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR);

static struct event_constraint *
amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	bool has_brs = has_amd_brs(hwc);

	/*
	 * In case BRS is used with an event requiring a counter pair,
	 * the kernel allows it but only on counter 0 & 1 to enforce
	 * multiplexing requiring to protect BRS in case of multiple
	 * BRS users
	 */
	if (amd_is_pair_event_code(hwc)) {
		return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint
			       : &pair_constraint;
	}

	if (has_brs)
		return &amd_fam19h_brs_cntr0_constraint;

	return &unconstrained;
}


static ssize_t amd_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
		    (config & AMD64_EVENTSEL_EVENT) >> 24;

	return x86_event_sysfs_show(page, config, event);
}

static void amd_pmu_limit_period(struct perf_event *event, s64 *left)
{
	/*
	 * Decrease period by the depth of the BRS feature to get the last N
	 * taken branches and approximate the desired period
	 */
	if (has_branch_stack(event) && *left > x86_pmu.lbr_nr)
		*left -= x86_pmu.lbr_nr;
}

static __initconst const struct x86_pmu amd_pmu = {
	.name			= "AMD",
	.handle_irq		= amd_pmu_handle_irq,
	.disable_all		= amd_pmu_disable_all,
	.enable_all		= amd_pmu_enable_all,
	.enable			= amd_pmu_enable_event,
	.disable		= amd_pmu_disable_event,
	.hw_config		= amd_pmu_hw_config,
	.schedule_events	= x86_schedule_events,
	.eventsel		= MSR_K7_EVNTSEL0,
	.perfctr		= MSR_K7_PERFCTR0,
	.addr_offset            = amd_pmu_addr_offset,
	.event_map		= amd_pmu_event_map,
	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
	.num_counters		= AMD64_NUM_COUNTERS,
	.add			= amd_pmu_add_event,
	.del			= amd_pmu_del_event,
	.cntval_bits		= 48,
	.cntval_mask		= (1ULL << 48) - 1,
	.apic			= 1,
	/* use highest bit to detect overflow */
	.max_period		= (1ULL << 47) - 1,
	.get_event_constraints	= amd_get_event_constraints,
	.put_event_constraints	= amd_put_event_constraints,

	.format_attrs		= amd_format_attr,
	.events_sysfs_show	= amd_event_sysfs_show,

	.cpu_prepare		= amd_pmu_cpu_prepare,
	.cpu_starting		= amd_pmu_cpu_starting,
	.cpu_dead		= amd_pmu_cpu_dead,

	.amd_nb_constraints	= 1,
};

static ssize_t branches_show(struct device *cdev,
			      struct device_attribute *attr,
			      char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
}

static DEVICE_ATTR_RO(branches);

static struct attribute *amd_pmu_branches_attrs[] = {
	&dev_attr_branches.attr,
	NULL,
};

static umode_t
amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return x86_pmu.lbr_nr ? attr->mode : 0;
}

static struct attribute_group group_caps_amd_branches = {
	.name  = "caps",
	.attrs = amd_pmu_branches_attrs,
	.is_visible = amd_branches_is_visible,
};

#ifdef CONFIG_PERF_EVENTS_AMD_BRS

EVENT_ATTR_STR(branch-brs, amd_branch_brs,
	       "event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n");

static struct attribute *amd_brs_events_attrs[] = {
	EVENT_PTR(amd_branch_brs),
	NULL,
};

static umode_t
amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ?
	       attr->mode : 0;
}

static struct attribute_group group_events_amd_brs = {
	.name       = "events",
	.attrs      = amd_brs_events_attrs,
	.is_visible = amd_brs_is_visible,
};

#endif	/* CONFIG_PERF_EVENTS_AMD_BRS */

static const struct attribute_group *amd_attr_update[] = {
	&group_caps_amd_branches,
#ifdef CONFIG_PERF_EVENTS_AMD_BRS
	&group_events_amd_brs,
#endif
	NULL,
};

static int __init amd_core_pmu_init(void)
{
	union cpuid_0x80000022_ebx ebx;
	u64 even_ctr_mask = 0ULL;
	int i;

	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
		return 0;

	/* Avoid calculating the value each time in the NMI handler */
	perf_nmi_window = msecs_to_jiffies(100);

	/*
	 * If core performance counter extensions exists, we must use
	 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
	 * amd_pmu_addr_offset().
	 */
	x86_pmu.eventsel	= MSR_F15H_PERF_CTL;
	x86_pmu.perfctr		= MSR_F15H_PERF_CTR;
	x86_pmu.num_counters	= AMD64_NUM_COUNTERS_CORE;

	/* Check for Performance Monitoring v2 support */
	if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) {
		ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);

		/* Update PMU version for later usage */
		x86_pmu.version = 2;

		/* Find the number of available Core PMCs */
		x86_pmu.num_counters = ebx.split.num_core_pmc;

		amd_pmu_global_cntr_mask = (1ULL << x86_pmu.num_counters) - 1;

		/* Update PMC handling functions */
		x86_pmu.enable_all = amd_pmu_v2_enable_all;
		x86_pmu.disable_all = amd_pmu_v2_disable_all;
		x86_pmu.enable = amd_pmu_v2_enable_event;
		x86_pmu.handle_irq = amd_pmu_v2_handle_irq;
		static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status);
	}

	/*
	 * AMD Core perfctr has separate MSRs for the NB events, see
	 * the amd/uncore.c driver.
	 */
	x86_pmu.amd_nb_constraints = 0;

	if (boot_cpu_data.x86 == 0x15) {
		pr_cont("Fam15h ");
		x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
	}
	if (boot_cpu_data.x86 >= 0x17) {
		pr_cont("Fam17h+ ");
		/*
		 * Family 17h and compatibles have constraints for Large
		 * Increment per Cycle events: they may only be assigned an
		 * even numbered counter that has a consecutive adjacent odd
		 * numbered counter following it.
		 */
		for (i = 0; i < x86_pmu.num_counters - 1; i += 2)
			even_ctr_mask |= BIT_ULL(i);

		pair_constraint = (struct event_constraint)
				    __EVENT_CONSTRAINT(0, even_ctr_mask, 0,
				    x86_pmu.num_counters / 2, 0,
				    PERF_X86_EVENT_PAIR);

		x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
		x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
		x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
		x86_pmu.flags |= PMU_FL_PAIR;
	}

	/* LBR and BRS are mutually exclusive features */
	if (!amd_pmu_lbr_init()) {
		/* LBR requires flushing on context switch */
		x86_pmu.sched_task = amd_pmu_lbr_sched_task;
		static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config);
		static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset);
		static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add);
		static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del);
	} else if (!amd_brs_init()) {
		/*
		 * BRS requires special event constraints and flushing on ctxsw.
		 */
		x86_pmu.get_event_constraints = amd_get_event_constraints_f19h;
		x86_pmu.sched_task = amd_pmu_brs_sched_task;
		x86_pmu.limit_period = amd_pmu_limit_period;

		static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config);
		static_call_update(amd_pmu_branch_reset, amd_brs_reset);
		static_call_update(amd_pmu_branch_add, amd_pmu_brs_add);
		static_call_update(amd_pmu_branch_del, amd_pmu_brs_del);

		/*
		 * put_event_constraints callback same as Fam17h, set above
		 */

		/* branch sampling must be stopped when entering low power */
		amd_brs_lopwr_init();
	}

	x86_pmu.attr_update = amd_attr_update;

	pr_cont("core perfctr, ");
	return 0;
}

__init int amd_pmu_init(void)
{
	int ret;

	/* Performance-monitoring supported from K7 and later: */
	if (boot_cpu_data.x86 < 6)
		return -ENODEV;

	x86_pmu = amd_pmu;

	ret = amd_core_pmu_init();
	if (ret)
		return ret;

	if (num_possible_cpus() == 1) {
		/*
		 * No point in allocating data structures to serialize
		 * against other CPUs, when there is only the one CPU.
		 */
		x86_pmu.amd_nb_constraints = 0;
	}

	if (boot_cpu_data.x86 >= 0x17)
		memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
	else
		memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));

	return 0;
}

static inline void amd_pmu_reload_virt(void)
{
	if (x86_pmu.version >= 2) {
		/*
		 * Clear global enable bits, reprogram the PERF_CTL
		 * registers with updated perf_ctr_virt_mask and then
		 * set global enable bits once again
		 */
		amd_pmu_v2_disable_all();
		amd_pmu_enable_all(0);
		amd_pmu_v2_enable_all(0);
		return;
	}

	amd_pmu_disable_all();
	amd_pmu_enable_all(0);
}

void amd_pmu_enable_virt(void)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	cpuc->perf_ctr_virt_mask = 0;

	/* Reload all events */
	amd_pmu_reload_virt();
}
EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);

void amd_pmu_disable_virt(void)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);

	/*
	 * We only mask out the Host-only bit so that host-only counting works
	 * when SVM is disabled. If someone sets up a guest-only counter when
	 * SVM is disabled the Guest-only bits still gets set and the counter
	 * will not count anything.
	 */
	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;

	/* Reload all events */
	amd_pmu_reload_virt();
}
EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);