1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
|
/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* SGI UV architectural definitions
*
* (C) Copyright 2020 Hewlett Packard Enterprise Development LP
* Copyright (C) 2007-2014 Silicon Graphics, Inc. All rights reserved.
*/
#ifndef _ASM_X86_UV_UV_HUB_H
#define _ASM_X86_UV_UV_HUB_H
#ifdef CONFIG_X86_64
#include <linux/numa.h>
#include <linux/percpu.h>
#include <linux/timer.h>
#include <linux/io.h>
#include <linux/topology.h>
#include <asm/types.h>
#include <asm/percpu.h>
#include <asm/uv/uv.h>
#include <asm/uv/uv_mmrs.h>
#include <asm/uv/bios.h>
#include <asm/irq_vectors.h>
#include <asm/io_apic.h>
/*
* Addressing Terminology
*
* M - The low M bits of a physical address represent the offset
* into the blade local memory. RAM memory on a blade is physically
* contiguous (although various IO spaces may punch holes in
* it)..
*
* N - Number of bits in the node portion of a socket physical
* address.
*
* NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
* routers always have low bit of 1, C/MBricks have low bit
* equal to 0. Most addressing macros that target UV hub chips
* right shift the NASID by 1 to exclude the always-zero bit.
* NASIDs contain up to 15 bits.
*
* GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
* of nasids.
*
* PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
* of the nasid for socket usage.
*
* GPA - (global physical address) a socket physical address converted
* so that it can be used by the GRU as a global address. Socket
* physical addresses 1) need additional NASID (node) bits added
* to the high end of the address, and 2) unaliased if the
* partition does not have a physical address 0. In addition, on
* UV2 rev 1, GPAs need the gnode left shifted to bits 39 or 40.
*
*
* NumaLink Global Physical Address Format:
* +--------------------------------+---------------------+
* |00..000| GNODE | NodeOffset |
* +--------------------------------+---------------------+
* |<-------53 - M bits --->|<--------M bits ----->
*
* M - number of node offset bits (35 .. 40)
*
*
* Memory/UV-HUB Processor Socket Address Format:
* +----------------+---------------+---------------------+
* |00..000000000000| PNODE | NodeOffset |
* +----------------+---------------+---------------------+
* <--- N bits --->|<--------M bits ----->
*
* M - number of node offset bits (35 .. 40)
* N - number of PNODE bits (0 .. 10)
*
* Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
* The actual values are configuration dependent and are set at
* boot time. M & N values are set by the hardware/BIOS at boot.
*
*
* APICID format
* NOTE!!!!!! This is the current format of the APICID. However, code
* should assume that this will change in the future. Use functions
* in this file for all APICID bit manipulations and conversion.
*
* 1111110000000000
* 5432109876543210
* pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
* ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
* pppppppppppcccch SandyBridge (15 bits in hdw reg)
* sssssssssss
*
* p = pnode bits
* l = socket number on board
* c = core
* h = hyperthread
* s = bits that are in the SOCKET_ID CSR
*
* Note: Processor may support fewer bits in the APICID register. The ACPI
* tables hold all 16 bits. Software needs to be aware of this.
*
* Unless otherwise specified, all references to APICID refer to
* the FULL value contained in ACPI tables, not the subset in the
* processor APICID register.
*/
/*
* Maximum number of bricks in all partitions and in all coherency domains.
* This is the total number of bricks accessible in the numalink fabric. It
* includes all C & M bricks. Routers are NOT included.
*
* This value is also the value of the maximum number of non-router NASIDs
* in the numalink fabric.
*
* NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
*/
#define UV_MAX_NUMALINK_BLADES 16384
/*
* Maximum number of C/Mbricks within a software SSI (hardware may support
* more).
*/
#define UV_MAX_SSI_BLADES 256
/*
* The largest possible NASID of a C or M brick (+ 2)
*/
#define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
/* GAM (globally addressed memory) range table */
struct uv_gam_range_s {
u32 limit; /* PA bits 56:26 (GAM_RANGE_SHFT) */
u16 nasid; /* node's global physical address */
s8 base; /* entry index of node's base addr */
u8 reserved;
};
/*
* The following defines attributes of the HUB chip. These attributes are
* frequently referenced and are kept in a common per hub struct.
* After setup, the struct is read only, so it should be readily
* available in the L3 cache on the cpu socket for the node.
*/
struct uv_hub_info_s {
unsigned int hub_type;
unsigned char hub_revision;
unsigned long global_mmr_base;
unsigned long global_mmr_shift;
unsigned long gpa_mask;
unsigned short *socket_to_node;
unsigned short *socket_to_pnode;
unsigned short *pnode_to_socket;
struct uv_gam_range_s *gr_table;
unsigned short min_socket;
unsigned short min_pnode;
unsigned char m_val;
unsigned char n_val;
unsigned char gr_table_len;
unsigned char apic_pnode_shift;
unsigned char gpa_shift;
unsigned char nasid_shift;
unsigned char m_shift;
unsigned char n_lshift;
unsigned int gnode_extra;
unsigned long gnode_upper;
unsigned long lowmem_remap_top;
unsigned long lowmem_remap_base;
unsigned long global_gru_base;
unsigned long global_gru_shift;
unsigned short pnode;
unsigned short pnode_mask;
unsigned short coherency_domain_number;
unsigned short numa_blade_id;
unsigned short nr_possible_cpus;
unsigned short nr_online_cpus;
short memory_nid;
};
/* CPU specific info with a pointer to the hub common info struct */
struct uv_cpu_info_s {
void *p_uv_hub_info;
unsigned char blade_cpu_id;
void *reserved;
};
DECLARE_PER_CPU(struct uv_cpu_info_s, __uv_cpu_info);
#define uv_cpu_info this_cpu_ptr(&__uv_cpu_info)
#define uv_cpu_info_per(cpu) (&per_cpu(__uv_cpu_info, cpu))
/* Node specific hub common info struct */
extern void **__uv_hub_info_list;
static inline struct uv_hub_info_s *uv_hub_info_list(int node)
{
return (struct uv_hub_info_s *)__uv_hub_info_list[node];
}
static inline struct uv_hub_info_s *_uv_hub_info(void)
{
return (struct uv_hub_info_s *)uv_cpu_info->p_uv_hub_info;
}
#define uv_hub_info _uv_hub_info()
static inline struct uv_hub_info_s *uv_cpu_hub_info(int cpu)
{
return (struct uv_hub_info_s *)uv_cpu_info_per(cpu)->p_uv_hub_info;
}
static inline int uv_hub_type(void)
{
return uv_hub_info->hub_type;
}
static inline __init void uv_hub_type_set(int uvmask)
{
uv_hub_info->hub_type = uvmask;
}
/*
* HUB revision ranges for each UV HUB architecture.
* This is a software convention - NOT the hardware revision numbers in
* the hub chip.
*/
#define UV2_HUB_REVISION_BASE 3
#define UV3_HUB_REVISION_BASE 5
#define UV4_HUB_REVISION_BASE 7
#define UV4A_HUB_REVISION_BASE 8 /* UV4 (fixed) rev 2 */
#define UV5_HUB_REVISION_BASE 9
static inline int is_uv(int uvmask) { return uv_hub_type() & uvmask; }
static inline int is_uv1_hub(void) { return 0; }
static inline int is_uv2_hub(void) { return is_uv(UV2); }
static inline int is_uv3_hub(void) { return is_uv(UV3); }
static inline int is_uv4a_hub(void) { return is_uv(UV4A); }
static inline int is_uv4_hub(void) { return is_uv(UV4); }
static inline int is_uv5_hub(void) { return is_uv(UV5); }
/*
* UV4A is a revision of UV4. So on UV4A, both is_uv4_hub() and
* is_uv4a_hub() return true, While on UV4, only is_uv4_hub()
* returns true. So to get true results, first test if is UV4A,
* then test if is UV4.
*/
/* UVX class: UV2,3,4 */
static inline int is_uvx_hub(void) { return is_uv(UVX); }
/* UVY class: UV5,..? */
static inline int is_uvy_hub(void) { return is_uv(UVY); }
/* Any UV Hubbed System */
static inline int is_uv_hub(void) { return is_uv(UV_ANY); }
union uvh_apicid {
unsigned long v;
struct uvh_apicid_s {
unsigned long local_apic_mask : 24;
unsigned long local_apic_shift : 5;
unsigned long unused1 : 3;
unsigned long pnode_mask : 24;
unsigned long pnode_shift : 5;
unsigned long unused2 : 3;
} s;
};
/*
* Local & Global MMR space macros.
* Note: macros are intended to be used ONLY by inline functions
* in this file - not by other kernel code.
* n - NASID (full 15-bit global nasid)
* g - GNODE (full 15-bit global nasid, right shifted 1)
* p - PNODE (local part of nsids, right shifted 1)
*/
#define UV_NASID_TO_PNODE(n) \
(((n) >> uv_hub_info->nasid_shift) & uv_hub_info->pnode_mask)
#define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
#define UV_PNODE_TO_NASID(p) \
(UV_PNODE_TO_GNODE(p) << uv_hub_info->nasid_shift)
#define UV2_LOCAL_MMR_BASE 0xfa000000UL
#define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
#define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
#define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
#define UV3_LOCAL_MMR_BASE 0xfa000000UL
#define UV3_GLOBAL_MMR32_BASE 0xfc000000UL
#define UV3_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
#define UV3_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
#define UV4_LOCAL_MMR_BASE 0xfa000000UL
#define UV4_GLOBAL_MMR32_BASE 0
#define UV4_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
#define UV4_GLOBAL_MMR32_SIZE 0
#define UV5_LOCAL_MMR_BASE 0xfa000000UL
#define UV5_GLOBAL_MMR32_BASE 0
#define UV5_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
#define UV5_GLOBAL_MMR32_SIZE 0
#define UV_LOCAL_MMR_BASE ( \
is_uv(UV2) ? UV2_LOCAL_MMR_BASE : \
is_uv(UV3) ? UV3_LOCAL_MMR_BASE : \
is_uv(UV4) ? UV4_LOCAL_MMR_BASE : \
is_uv(UV5) ? UV5_LOCAL_MMR_BASE : \
0)
#define UV_GLOBAL_MMR32_BASE ( \
is_uv(UV2) ? UV2_GLOBAL_MMR32_BASE : \
is_uv(UV3) ? UV3_GLOBAL_MMR32_BASE : \
is_uv(UV4) ? UV4_GLOBAL_MMR32_BASE : \
is_uv(UV5) ? UV5_GLOBAL_MMR32_BASE : \
0)
#define UV_LOCAL_MMR_SIZE ( \
is_uv(UV2) ? UV2_LOCAL_MMR_SIZE : \
is_uv(UV3) ? UV3_LOCAL_MMR_SIZE : \
is_uv(UV4) ? UV4_LOCAL_MMR_SIZE : \
is_uv(UV5) ? UV5_LOCAL_MMR_SIZE : \
0)
#define UV_GLOBAL_MMR32_SIZE ( \
is_uv(UV2) ? UV2_GLOBAL_MMR32_SIZE : \
is_uv(UV3) ? UV3_GLOBAL_MMR32_SIZE : \
is_uv(UV4) ? UV4_GLOBAL_MMR32_SIZE : \
is_uv(UV5) ? UV5_GLOBAL_MMR32_SIZE : \
0)
#define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
#define UV_GLOBAL_GRU_MMR_BASE 0x4000000
#define UV_GLOBAL_MMR32_PNODE_SHIFT 15
#define _UV_GLOBAL_MMR64_PNODE_SHIFT 26
#define UV_GLOBAL_MMR64_PNODE_SHIFT (uv_hub_info->global_mmr_shift)
#define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
#define UV_GLOBAL_MMR64_PNODE_BITS(p) \
(((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
#define UVH_APICID 0x002D0E00L
#define UV_APIC_PNODE_SHIFT 6
/* Local Bus from cpu's perspective */
#define LOCAL_BUS_BASE 0x1c00000
#define LOCAL_BUS_SIZE (4 * 1024 * 1024)
/*
* System Controller Interface Reg
*
* Note there are NO leds on a UV system. This register is only
* used by the system controller to monitor system-wide operation.
* There are 64 regs per node. With Nehalem cpus (2 cores per node,
* 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
* a node.
*
* The window is located at top of ACPI MMR space
*/
#define SCIR_WINDOW_COUNT 64
#define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
LOCAL_BUS_SIZE - \
SCIR_WINDOW_COUNT)
#define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
#define SCIR_CPU_ACTIVITY 0x02 /* not idle */
#define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
/* Loop through all installed blades */
#define for_each_possible_blade(bid) \
for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
/*
* Macros for converting between kernel virtual addresses, socket local physical
* addresses, and UV global physical addresses.
* Note: use the standard __pa() & __va() macros for converting
* between socket virtual and socket physical addresses.
*/
/* global bits offset - number of local address bits in gpa for this UV arch */
static inline unsigned int uv_gpa_shift(void)
{
return uv_hub_info->gpa_shift;
}
#define _uv_gpa_shift
/* Find node that has the address range that contains global address */
static inline struct uv_gam_range_s *uv_gam_range(unsigned long pa)
{
struct uv_gam_range_s *gr = uv_hub_info->gr_table;
unsigned long pal = (pa & uv_hub_info->gpa_mask) >> UV_GAM_RANGE_SHFT;
int i, num = uv_hub_info->gr_table_len;
if (gr) {
for (i = 0; i < num; i++, gr++) {
if (pal < gr->limit)
return gr;
}
}
pr_crit("UV: GAM Range for 0x%lx not found at %p!\n", pa, gr);
BUG();
}
/* Return base address of node that contains global address */
static inline unsigned long uv_gam_range_base(unsigned long pa)
{
struct uv_gam_range_s *gr = uv_gam_range(pa);
int base = gr->base;
if (base < 0)
return 0UL;
return uv_hub_info->gr_table[base].limit;
}
/* socket phys RAM --> UV global NASID (UV4+) */
static inline unsigned long uv_soc_phys_ram_to_nasid(unsigned long paddr)
{
return uv_gam_range(paddr)->nasid;
}
#define _uv_soc_phys_ram_to_nasid
/* socket virtual --> UV global NASID (UV4+) */
static inline unsigned long uv_gpa_nasid(void *v)
{
return uv_soc_phys_ram_to_nasid(__pa(v));
}
/* socket phys RAM --> UV global physical address */
static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
{
unsigned int m_val = uv_hub_info->m_val;
if (paddr < uv_hub_info->lowmem_remap_top)
paddr |= uv_hub_info->lowmem_remap_base;
if (m_val) {
paddr |= uv_hub_info->gnode_upper;
paddr = ((paddr << uv_hub_info->m_shift)
>> uv_hub_info->m_shift) |
((paddr >> uv_hub_info->m_val)
<< uv_hub_info->n_lshift);
} else {
paddr |= uv_soc_phys_ram_to_nasid(paddr)
<< uv_hub_info->gpa_shift;
}
return paddr;
}
/* socket virtual --> UV global physical address */
static inline unsigned long uv_gpa(void *v)
{
return uv_soc_phys_ram_to_gpa(__pa(v));
}
/* Top two bits indicate the requested address is in MMR space. */
static inline int
uv_gpa_in_mmr_space(unsigned long gpa)
{
return (gpa >> 62) == 0x3UL;
}
/* UV global physical address --> socket phys RAM */
static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
{
unsigned long paddr;
unsigned long remap_base = uv_hub_info->lowmem_remap_base;
unsigned long remap_top = uv_hub_info->lowmem_remap_top;
unsigned int m_val = uv_hub_info->m_val;
if (m_val)
gpa = ((gpa << uv_hub_info->m_shift) >> uv_hub_info->m_shift) |
((gpa >> uv_hub_info->n_lshift) << uv_hub_info->m_val);
paddr = gpa & uv_hub_info->gpa_mask;
if (paddr >= remap_base && paddr < remap_base + remap_top)
paddr -= remap_base;
return paddr;
}
/* gpa -> gnode */
static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
{
unsigned int n_lshift = uv_hub_info->n_lshift;
if (n_lshift)
return gpa >> n_lshift;
return uv_gam_range(gpa)->nasid >> 1;
}
/* gpa -> pnode */
static inline int uv_gpa_to_pnode(unsigned long gpa)
{
return uv_gpa_to_gnode(gpa) & uv_hub_info->pnode_mask;
}
/* gpa -> node offset */
static inline unsigned long uv_gpa_to_offset(unsigned long gpa)
{
unsigned int m_shift = uv_hub_info->m_shift;
if (m_shift)
return (gpa << m_shift) >> m_shift;
return (gpa & uv_hub_info->gpa_mask) - uv_gam_range_base(gpa);
}
/* Convert socket to node */
static inline int _uv_socket_to_node(int socket, unsigned short *s2nid)
{
return s2nid ? s2nid[socket - uv_hub_info->min_socket] : socket;
}
static inline int uv_socket_to_node(int socket)
{
return _uv_socket_to_node(socket, uv_hub_info->socket_to_node);
}
/* pnode, offset --> socket virtual */
static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
{
unsigned int m_val = uv_hub_info->m_val;
unsigned long base;
unsigned short sockid, node, *p2s;
if (m_val)
return __va(((unsigned long)pnode << m_val) | offset);
p2s = uv_hub_info->pnode_to_socket;
sockid = p2s ? p2s[pnode - uv_hub_info->min_pnode] : pnode;
node = uv_socket_to_node(sockid);
/* limit address of previous socket is our base, except node 0 is 0 */
if (!node)
return __va((unsigned long)offset);
base = (unsigned long)(uv_hub_info->gr_table[node - 1].limit);
return __va(base << UV_GAM_RANGE_SHFT | offset);
}
/* Extract/Convert a PNODE from an APICID (full apicid, not processor subset) */
static inline int uv_apicid_to_pnode(int apicid)
{
int pnode = apicid >> uv_hub_info->apic_pnode_shift;
unsigned short *s2pn = uv_hub_info->socket_to_pnode;
return s2pn ? s2pn[pnode - uv_hub_info->min_socket] : pnode;
}
/*
* Access global MMRs using the low memory MMR32 space. This region supports
* faster MMR access but not all MMRs are accessible in this space.
*/
static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
{
return __va(UV_GLOBAL_MMR32_BASE |
UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
}
static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
{
writeq(val, uv_global_mmr32_address(pnode, offset));
}
static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
{
return readq(uv_global_mmr32_address(pnode, offset));
}
/*
* Access Global MMR space using the MMR space located at the top of physical
* memory.
*/
static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
{
return __va(UV_GLOBAL_MMR64_BASE |
UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
}
static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
{
writeq(val, uv_global_mmr64_address(pnode, offset));
}
static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
{
return readq(uv_global_mmr64_address(pnode, offset));
}
static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
{
writeb(val, uv_global_mmr64_address(pnode, offset));
}
static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
{
return readb(uv_global_mmr64_address(pnode, offset));
}
/*
* Access hub local MMRs. Faster than using global space but only local MMRs
* are accessible.
*/
static inline unsigned long *uv_local_mmr_address(unsigned long offset)
{
return __va(UV_LOCAL_MMR_BASE | offset);
}
static inline unsigned long uv_read_local_mmr(unsigned long offset)
{
return readq(uv_local_mmr_address(offset));
}
static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
{
writeq(val, uv_local_mmr_address(offset));
}
static inline unsigned char uv_read_local_mmr8(unsigned long offset)
{
return readb(uv_local_mmr_address(offset));
}
static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
{
writeb(val, uv_local_mmr_address(offset));
}
/* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
static inline int uv_blade_processor_id(void)
{
return uv_cpu_info->blade_cpu_id;
}
/* Blade-local cpu number of cpu N. Numbered 0 .. <# cpus on the blade> */
static inline int uv_cpu_blade_processor_id(int cpu)
{
return uv_cpu_info_per(cpu)->blade_cpu_id;
}
/* Blade number to Node number (UV2..UV4 is 1:1) */
static inline int uv_blade_to_node(int blade)
{
return blade;
}
/* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
static inline int uv_numa_blade_id(void)
{
return uv_hub_info->numa_blade_id;
}
/*
* Convert linux node number to the UV blade number.
* .. Currently for UV2 thru UV4 the node and the blade are identical.
* .. If this changes then you MUST check references to this function!
*/
static inline int uv_node_to_blade_id(int nid)
{
return nid;
}
/* Convert a CPU number to the UV blade number */
static inline int uv_cpu_to_blade_id(int cpu)
{
return uv_node_to_blade_id(cpu_to_node(cpu));
}
/* Convert a blade id to the PNODE of the blade */
static inline int uv_blade_to_pnode(int bid)
{
return uv_hub_info_list(uv_blade_to_node(bid))->pnode;
}
/* Nid of memory node on blade. -1 if no blade-local memory */
static inline int uv_blade_to_memory_nid(int bid)
{
return uv_hub_info_list(uv_blade_to_node(bid))->memory_nid;
}
/* Determine the number of possible cpus on a blade */
static inline int uv_blade_nr_possible_cpus(int bid)
{
return uv_hub_info_list(uv_blade_to_node(bid))->nr_possible_cpus;
}
/* Determine the number of online cpus on a blade */
static inline int uv_blade_nr_online_cpus(int bid)
{
return uv_hub_info_list(uv_blade_to_node(bid))->nr_online_cpus;
}
/* Convert a cpu id to the PNODE of the blade containing the cpu */
static inline int uv_cpu_to_pnode(int cpu)
{
return uv_cpu_hub_info(cpu)->pnode;
}
/* Convert a linux node number to the PNODE of the blade */
static inline int uv_node_to_pnode(int nid)
{
return uv_hub_info_list(nid)->pnode;
}
/* Maximum possible number of blades */
extern short uv_possible_blades;
static inline int uv_num_possible_blades(void)
{
return uv_possible_blades;
}
/* Per Hub NMI support */
extern void uv_nmi_setup(void);
extern void uv_nmi_setup_hubless(void);
/* BIOS/Kernel flags exchange MMR */
#define UVH_BIOS_KERNEL_MMR UVH_SCRATCH5
#define UVH_BIOS_KERNEL_MMR_ALIAS UVH_SCRATCH5_ALIAS
#define UVH_BIOS_KERNEL_MMR_ALIAS_2 UVH_SCRATCH5_ALIAS_2
/* TSC sync valid, set by BIOS */
#define UVH_TSC_SYNC_MMR UVH_BIOS_KERNEL_MMR
#define UVH_TSC_SYNC_SHIFT 10
#define UVH_TSC_SYNC_SHIFT_UV2K 16 /* UV2/3k have different bits */
#define UVH_TSC_SYNC_MASK 3 /* 0011 */
#define UVH_TSC_SYNC_VALID 3 /* 0011 */
#define UVH_TSC_SYNC_UNKNOWN 0 /* 0000 */
/* BMC sets a bit this MMR non-zero before sending an NMI */
#define UVH_NMI_MMR UVH_BIOS_KERNEL_MMR
#define UVH_NMI_MMR_CLEAR UVH_BIOS_KERNEL_MMR_ALIAS
#define UVH_NMI_MMR_SHIFT 63
#define UVH_NMI_MMR_TYPE "SCRATCH5"
struct uv_hub_nmi_s {
raw_spinlock_t nmi_lock;
atomic_t in_nmi; /* flag this node in UV NMI IRQ */
atomic_t cpu_owner; /* last locker of this struct */
atomic_t read_mmr_count; /* count of MMR reads */
atomic_t nmi_count; /* count of true UV NMIs */
unsigned long nmi_value; /* last value read from NMI MMR */
bool hub_present; /* false means UV hubless system */
bool pch_owner; /* indicates this hub owns PCH */
};
struct uv_cpu_nmi_s {
struct uv_hub_nmi_s *hub;
int state;
int pinging;
int queries;
int pings;
};
DECLARE_PER_CPU(struct uv_cpu_nmi_s, uv_cpu_nmi);
#define uv_hub_nmi this_cpu_read(uv_cpu_nmi.hub)
#define uv_cpu_nmi_per(cpu) (per_cpu(uv_cpu_nmi, cpu))
#define uv_hub_nmi_per(cpu) (uv_cpu_nmi_per(cpu).hub)
/* uv_cpu_nmi_states */
#define UV_NMI_STATE_OUT 0
#define UV_NMI_STATE_IN 1
#define UV_NMI_STATE_DUMP 2
#define UV_NMI_STATE_DUMP_DONE 3
/*
* Get the minimum revision number of the hub chips within the partition.
* (See UVx_HUB_REVISION_BASE above for specific values.)
*/
static inline int uv_get_min_hub_revision_id(void)
{
return uv_hub_info->hub_revision;
}
#endif /* CONFIG_X86_64 */
#endif /* _ASM_X86_UV_UV_HUB_H */
|