1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* psci_test - Tests relating to KVM's PSCI implementation.
*
* Copyright (c) 2021 Google LLC.
*
* This test includes:
* - A regression test for a race between KVM servicing the PSCI CPU_ON call
* and userspace reading the targeted vCPU's registers.
* - A test for KVM's handling of PSCI SYSTEM_SUSPEND and the associated
* KVM_SYSTEM_EVENT_SUSPEND UAPI.
*/
#define _GNU_SOURCE
#include <linux/psci.h>
#include "kvm_util.h"
#include "processor.h"
#include "test_util.h"
#define CPU_ON_ENTRY_ADDR 0xfeedf00dul
#define CPU_ON_CONTEXT_ID 0xdeadc0deul
static uint64_t psci_cpu_on(uint64_t target_cpu, uint64_t entry_addr,
uint64_t context_id)
{
struct arm_smccc_res res;
smccc_hvc(PSCI_0_2_FN64_CPU_ON, target_cpu, entry_addr, context_id,
0, 0, 0, 0, &res);
return res.a0;
}
static uint64_t psci_affinity_info(uint64_t target_affinity,
uint64_t lowest_affinity_level)
{
struct arm_smccc_res res;
smccc_hvc(PSCI_0_2_FN64_AFFINITY_INFO, target_affinity, lowest_affinity_level,
0, 0, 0, 0, 0, &res);
return res.a0;
}
static uint64_t psci_system_suspend(uint64_t entry_addr, uint64_t context_id)
{
struct arm_smccc_res res;
smccc_hvc(PSCI_1_0_FN64_SYSTEM_SUSPEND, entry_addr, context_id,
0, 0, 0, 0, 0, &res);
return res.a0;
}
static uint64_t psci_features(uint32_t func_id)
{
struct arm_smccc_res res;
smccc_hvc(PSCI_1_0_FN_PSCI_FEATURES, func_id, 0, 0, 0, 0, 0, 0, &res);
return res.a0;
}
static void vcpu_power_off(struct kvm_vcpu *vcpu)
{
struct kvm_mp_state mp_state = {
.mp_state = KVM_MP_STATE_STOPPED,
};
vcpu_mp_state_set(vcpu, &mp_state);
}
static struct kvm_vm *setup_vm(void *guest_code, struct kvm_vcpu **source,
struct kvm_vcpu **target)
{
struct kvm_vcpu_init init;
struct kvm_vm *vm;
vm = vm_create(2);
ucall_init(vm, NULL);
vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &init);
init.features[0] |= (1 << KVM_ARM_VCPU_PSCI_0_2);
*source = aarch64_vcpu_add(vm, 0, &init, guest_code);
*target = aarch64_vcpu_add(vm, 1, &init, guest_code);
return vm;
}
static void enter_guest(struct kvm_vcpu *vcpu)
{
struct ucall uc;
vcpu_run(vcpu);
if (get_ucall(vcpu, &uc) == UCALL_ABORT)
REPORT_GUEST_ASSERT(uc);
}
static void assert_vcpu_reset(struct kvm_vcpu *vcpu)
{
uint64_t obs_pc, obs_x0;
vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &obs_pc);
vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.regs[0]), &obs_x0);
TEST_ASSERT(obs_pc == CPU_ON_ENTRY_ADDR,
"unexpected target cpu pc: %lx (expected: %lx)",
obs_pc, CPU_ON_ENTRY_ADDR);
TEST_ASSERT(obs_x0 == CPU_ON_CONTEXT_ID,
"unexpected target context id: %lx (expected: %lx)",
obs_x0, CPU_ON_CONTEXT_ID);
}
static void guest_test_cpu_on(uint64_t target_cpu)
{
uint64_t target_state;
GUEST_ASSERT(!psci_cpu_on(target_cpu, CPU_ON_ENTRY_ADDR, CPU_ON_CONTEXT_ID));
do {
target_state = psci_affinity_info(target_cpu, 0);
GUEST_ASSERT((target_state == PSCI_0_2_AFFINITY_LEVEL_ON) ||
(target_state == PSCI_0_2_AFFINITY_LEVEL_OFF));
} while (target_state != PSCI_0_2_AFFINITY_LEVEL_ON);
GUEST_DONE();
}
static void host_test_cpu_on(void)
{
struct kvm_vcpu *source, *target;
uint64_t target_mpidr;
struct kvm_vm *vm;
struct ucall uc;
vm = setup_vm(guest_test_cpu_on, &source, &target);
/*
* make sure the target is already off when executing the test.
*/
vcpu_power_off(target);
vcpu_get_reg(target, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), &target_mpidr);
vcpu_args_set(source, 1, target_mpidr & MPIDR_HWID_BITMASK);
enter_guest(source);
if (get_ucall(source, &uc) != UCALL_DONE)
TEST_FAIL("Unhandled ucall: %lu", uc.cmd);
assert_vcpu_reset(target);
kvm_vm_free(vm);
}
static void guest_test_system_suspend(void)
{
uint64_t ret;
/* assert that SYSTEM_SUSPEND is discoverable */
GUEST_ASSERT(!psci_features(PSCI_1_0_FN_SYSTEM_SUSPEND));
GUEST_ASSERT(!psci_features(PSCI_1_0_FN64_SYSTEM_SUSPEND));
ret = psci_system_suspend(CPU_ON_ENTRY_ADDR, CPU_ON_CONTEXT_ID);
GUEST_SYNC(ret);
}
static void host_test_system_suspend(void)
{
struct kvm_vcpu *source, *target;
struct kvm_run *run;
struct kvm_vm *vm;
vm = setup_vm(guest_test_system_suspend, &source, &target);
vm_enable_cap(vm, KVM_CAP_ARM_SYSTEM_SUSPEND, 0);
vcpu_power_off(target);
run = source->run;
enter_guest(source);
TEST_ASSERT(run->exit_reason == KVM_EXIT_SYSTEM_EVENT,
"Unhandled exit reason: %u (%s)",
run->exit_reason, exit_reason_str(run->exit_reason));
TEST_ASSERT(run->system_event.type == KVM_SYSTEM_EVENT_SUSPEND,
"Unhandled system event: %u (expected: %u)",
run->system_event.type, KVM_SYSTEM_EVENT_SUSPEND);
kvm_vm_free(vm);
}
int main(void)
{
TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SYSTEM_SUSPEND));
host_test_cpu_on();
host_test_system_suspend();
return 0;
}
|