1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
// SPDX-License-Identifier: GPL-2.0
/*
* RISC-V code
*
* Copyright (C) 2021 Western Digital Corporation or its affiliates.
*/
#include <linux/compiler.h>
#include <assert.h>
#include "kvm_util.h"
#include "processor.h"
#define DEFAULT_RISCV_GUEST_STACK_VADDR_MIN 0xac0000
static uint64_t page_align(struct kvm_vm *vm, uint64_t v)
{
return (v + vm->page_size) & ~(vm->page_size - 1);
}
static uint64_t pte_addr(struct kvm_vm *vm, uint64_t entry)
{
return ((entry & PGTBL_PTE_ADDR_MASK) >> PGTBL_PTE_ADDR_SHIFT) <<
PGTBL_PAGE_SIZE_SHIFT;
}
static uint64_t ptrs_per_pte(struct kvm_vm *vm)
{
return PGTBL_PAGE_SIZE / sizeof(uint64_t);
}
static uint64_t pte_index_mask[] = {
PGTBL_L0_INDEX_MASK,
PGTBL_L1_INDEX_MASK,
PGTBL_L2_INDEX_MASK,
PGTBL_L3_INDEX_MASK,
};
static uint32_t pte_index_shift[] = {
PGTBL_L0_INDEX_SHIFT,
PGTBL_L1_INDEX_SHIFT,
PGTBL_L2_INDEX_SHIFT,
PGTBL_L3_INDEX_SHIFT,
};
static uint64_t pte_index(struct kvm_vm *vm, vm_vaddr_t gva, int level)
{
TEST_ASSERT(level > -1,
"Negative page table level (%d) not possible", level);
TEST_ASSERT(level < vm->pgtable_levels,
"Invalid page table level (%d)", level);
return (gva & pte_index_mask[level]) >> pte_index_shift[level];
}
void virt_arch_pgd_alloc(struct kvm_vm *vm)
{
if (!vm->pgd_created) {
vm_paddr_t paddr = vm_phy_pages_alloc(vm,
page_align(vm, ptrs_per_pte(vm) * 8) / vm->page_size,
KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
vm->pgd = paddr;
vm->pgd_created = true;
}
}
void virt_arch_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr)
{
uint64_t *ptep, next_ppn;
int level = vm->pgtable_levels - 1;
TEST_ASSERT((vaddr % vm->page_size) == 0,
"Virtual address not on page boundary,\n"
" vaddr: 0x%lx vm->page_size: 0x%x", vaddr, vm->page_size);
TEST_ASSERT(sparsebit_is_set(vm->vpages_valid,
(vaddr >> vm->page_shift)),
"Invalid virtual address, vaddr: 0x%lx", vaddr);
TEST_ASSERT((paddr % vm->page_size) == 0,
"Physical address not on page boundary,\n"
" paddr: 0x%lx vm->page_size: 0x%x", paddr, vm->page_size);
TEST_ASSERT((paddr >> vm->page_shift) <= vm->max_gfn,
"Physical address beyond maximum supported,\n"
" paddr: 0x%lx vm->max_gfn: 0x%lx vm->page_size: 0x%x",
paddr, vm->max_gfn, vm->page_size);
ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, vaddr, level) * 8;
if (!*ptep) {
next_ppn = vm_alloc_page_table(vm) >> PGTBL_PAGE_SIZE_SHIFT;
*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
PGTBL_PTE_VALID_MASK;
}
level--;
while (level > -1) {
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
pte_index(vm, vaddr, level) * 8;
if (!*ptep && level > 0) {
next_ppn = vm_alloc_page_table(vm) >>
PGTBL_PAGE_SIZE_SHIFT;
*ptep = (next_ppn << PGTBL_PTE_ADDR_SHIFT) |
PGTBL_PTE_VALID_MASK;
}
level--;
}
paddr = paddr >> PGTBL_PAGE_SIZE_SHIFT;
*ptep = (paddr << PGTBL_PTE_ADDR_SHIFT) |
PGTBL_PTE_PERM_MASK | PGTBL_PTE_VALID_MASK;
}
vm_paddr_t addr_arch_gva2gpa(struct kvm_vm *vm, vm_vaddr_t gva)
{
uint64_t *ptep;
int level = vm->pgtable_levels - 1;
if (!vm->pgd_created)
goto unmapped_gva;
ptep = addr_gpa2hva(vm, vm->pgd) + pte_index(vm, gva, level) * 8;
if (!ptep)
goto unmapped_gva;
level--;
while (level > -1) {
ptep = addr_gpa2hva(vm, pte_addr(vm, *ptep)) +
pte_index(vm, gva, level) * 8;
if (!ptep)
goto unmapped_gva;
level--;
}
return pte_addr(vm, *ptep) + (gva & (vm->page_size - 1));
unmapped_gva:
TEST_FAIL("No mapping for vm virtual address gva: 0x%lx level: %d",
gva, level);
exit(1);
}
static void pte_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent,
uint64_t page, int level)
{
#ifdef DEBUG
static const char *const type[] = { "pte", "pmd", "pud", "p4d"};
uint64_t pte, *ptep;
if (level < 0)
return;
for (pte = page; pte < page + ptrs_per_pte(vm) * 8; pte += 8) {
ptep = addr_gpa2hva(vm, pte);
if (!*ptep)
continue;
fprintf(stream, "%*s%s: %lx: %lx at %p\n", indent, "",
type[level], pte, *ptep, ptep);
pte_dump(stream, vm, indent + 1,
pte_addr(vm, *ptep), level - 1);
}
#endif
}
void virt_arch_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
{
int level = vm->pgtable_levels - 1;
uint64_t pgd, *ptep;
if (!vm->pgd_created)
return;
for (pgd = vm->pgd; pgd < vm->pgd + ptrs_per_pte(vm) * 8; pgd += 8) {
ptep = addr_gpa2hva(vm, pgd);
if (!*ptep)
continue;
fprintf(stream, "%*spgd: %lx: %lx at %p\n", indent, "",
pgd, *ptep, ptep);
pte_dump(stream, vm, indent + 1,
pte_addr(vm, *ptep), level - 1);
}
}
void riscv_vcpu_mmu_setup(struct kvm_vcpu *vcpu)
{
struct kvm_vm *vm = vcpu->vm;
unsigned long satp;
/*
* The RISC-V Sv48 MMU mode supports 56-bit physical address
* for 48-bit virtual address with 4KB last level page size.
*/
switch (vm->mode) {
case VM_MODE_P52V48_4K:
case VM_MODE_P48V48_4K:
case VM_MODE_P40V48_4K:
break;
default:
TEST_FAIL("Unknown guest mode, mode: 0x%x", vm->mode);
}
satp = (vm->pgd >> PGTBL_PAGE_SIZE_SHIFT) & SATP_PPN;
satp |= SATP_MODE_48;
vcpu_set_reg(vcpu, RISCV_CSR_REG(satp), satp);
}
void vcpu_arch_dump(FILE *stream, struct kvm_vcpu *vcpu, uint8_t indent)
{
struct kvm_riscv_core core;
vcpu_get_reg(vcpu, RISCV_CORE_REG(mode), &core.mode);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.pc), &core.regs.pc);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.ra), &core.regs.ra);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.sp), &core.regs.sp);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.gp), &core.regs.gp);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.tp), &core.regs.tp);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t0), &core.regs.t0);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t1), &core.regs.t1);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t2), &core.regs.t2);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s0), &core.regs.s0);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s1), &core.regs.s1);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a0), &core.regs.a0);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a1), &core.regs.a1);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a2), &core.regs.a2);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a3), &core.regs.a3);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a4), &core.regs.a4);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a5), &core.regs.a5);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a6), &core.regs.a6);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.a7), &core.regs.a7);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s2), &core.regs.s2);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s3), &core.regs.s3);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s4), &core.regs.s4);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s5), &core.regs.s5);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s6), &core.regs.s6);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s7), &core.regs.s7);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s8), &core.regs.s8);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s9), &core.regs.s9);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s10), &core.regs.s10);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.s11), &core.regs.s11);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t3), &core.regs.t3);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t4), &core.regs.t4);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t5), &core.regs.t5);
vcpu_get_reg(vcpu, RISCV_CORE_REG(regs.t6), &core.regs.t6);
fprintf(stream,
" MODE: 0x%lx\n", core.mode);
fprintf(stream,
" PC: 0x%016lx RA: 0x%016lx SP: 0x%016lx GP: 0x%016lx\n",
core.regs.pc, core.regs.ra, core.regs.sp, core.regs.gp);
fprintf(stream,
" TP: 0x%016lx T0: 0x%016lx T1: 0x%016lx T2: 0x%016lx\n",
core.regs.tp, core.regs.t0, core.regs.t1, core.regs.t2);
fprintf(stream,
" S0: 0x%016lx S1: 0x%016lx A0: 0x%016lx A1: 0x%016lx\n",
core.regs.s0, core.regs.s1, core.regs.a0, core.regs.a1);
fprintf(stream,
" A2: 0x%016lx A3: 0x%016lx A4: 0x%016lx A5: 0x%016lx\n",
core.regs.a2, core.regs.a3, core.regs.a4, core.regs.a5);
fprintf(stream,
" A6: 0x%016lx A7: 0x%016lx S2: 0x%016lx S3: 0x%016lx\n",
core.regs.a6, core.regs.a7, core.regs.s2, core.regs.s3);
fprintf(stream,
" S4: 0x%016lx S5: 0x%016lx S6: 0x%016lx S7: 0x%016lx\n",
core.regs.s4, core.regs.s5, core.regs.s6, core.regs.s7);
fprintf(stream,
" S8: 0x%016lx S9: 0x%016lx S10: 0x%016lx S11: 0x%016lx\n",
core.regs.s8, core.regs.s9, core.regs.s10, core.regs.s11);
fprintf(stream,
" T3: 0x%016lx T4: 0x%016lx T5: 0x%016lx T6: 0x%016lx\n",
core.regs.t3, core.regs.t4, core.regs.t5, core.regs.t6);
}
static void __aligned(16) guest_unexp_trap(void)
{
sbi_ecall(KVM_RISCV_SELFTESTS_SBI_EXT,
KVM_RISCV_SELFTESTS_SBI_UNEXP,
0, 0, 0, 0, 0, 0);
}
struct kvm_vcpu *vm_arch_vcpu_add(struct kvm_vm *vm, uint32_t vcpu_id,
void *guest_code)
{
int r;
size_t stack_size = vm->page_size == 4096 ?
DEFAULT_STACK_PGS * vm->page_size :
vm->page_size;
unsigned long stack_vaddr = vm_vaddr_alloc(vm, stack_size,
DEFAULT_RISCV_GUEST_STACK_VADDR_MIN);
unsigned long current_gp = 0;
struct kvm_mp_state mps;
struct kvm_vcpu *vcpu;
vcpu = __vm_vcpu_add(vm, vcpu_id);
riscv_vcpu_mmu_setup(vcpu);
/*
* With SBI HSM support in KVM RISC-V, all secondary VCPUs are
* powered-off by default so we ensure that all secondary VCPUs
* are powered-on using KVM_SET_MP_STATE ioctl().
*/
mps.mp_state = KVM_MP_STATE_RUNNABLE;
r = __vcpu_ioctl(vcpu, KVM_SET_MP_STATE, &mps);
TEST_ASSERT(!r, "IOCTL KVM_SET_MP_STATE failed (error %d)", r);
/* Setup global pointer of guest to be same as the host */
asm volatile (
"add %0, gp, zero" : "=r" (current_gp) : : "memory");
vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.gp), current_gp);
/* Setup stack pointer and program counter of guest */
vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.sp), stack_vaddr + stack_size);
vcpu_set_reg(vcpu, RISCV_CORE_REG(regs.pc), (unsigned long)guest_code);
/* Setup default exception vector of guest */
vcpu_set_reg(vcpu, RISCV_CSR_REG(stvec), (unsigned long)guest_unexp_trap);
return vcpu;
}
void vcpu_args_set(struct kvm_vcpu *vcpu, unsigned int num, ...)
{
va_list ap;
uint64_t id = RISCV_CORE_REG(regs.a0);
int i;
TEST_ASSERT(num >= 1 && num <= 8, "Unsupported number of args,\n"
" num: %u\n", num);
va_start(ap, num);
for (i = 0; i < num; i++) {
switch (i) {
case 0:
id = RISCV_CORE_REG(regs.a0);
break;
case 1:
id = RISCV_CORE_REG(regs.a1);
break;
case 2:
id = RISCV_CORE_REG(regs.a2);
break;
case 3:
id = RISCV_CORE_REG(regs.a3);
break;
case 4:
id = RISCV_CORE_REG(regs.a4);
break;
case 5:
id = RISCV_CORE_REG(regs.a5);
break;
case 6:
id = RISCV_CORE_REG(regs.a6);
break;
case 7:
id = RISCV_CORE_REG(regs.a7);
break;
}
vcpu_set_reg(vcpu, id, va_arg(ap, uint64_t));
}
va_end(ap);
}
void assert_on_unhandled_exception(struct kvm_vcpu *vcpu)
{
}
|