diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /arch/arm64/kvm/sys_regs.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/arm64/kvm/sys_regs.c')
-rw-r--r-- | arch/arm64/kvm/sys_regs.c | 3005 |
1 files changed, 3005 insertions, 0 deletions
diff --git a/arch/arm64/kvm/sys_regs.c b/arch/arm64/kvm/sys_regs.c new file mode 100644 index 000000000..457e74f1f --- /dev/null +++ b/arch/arm64/kvm/sys_regs.c @@ -0,0 +1,3005 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * Copyright (C) 2012,2013 - ARM Ltd + * Author: Marc Zyngier <marc.zyngier@arm.com> + * + * Derived from arch/arm/kvm/coproc.c: + * Copyright (C) 2012 - Virtual Open Systems and Columbia University + * Authors: Rusty Russell <rusty@rustcorp.com.au> + * Christoffer Dall <c.dall@virtualopensystems.com> + */ + +#include <linux/bitfield.h> +#include <linux/bsearch.h> +#include <linux/kvm_host.h> +#include <linux/mm.h> +#include <linux/printk.h> +#include <linux/uaccess.h> + +#include <asm/cacheflush.h> +#include <asm/cputype.h> +#include <asm/debug-monitors.h> +#include <asm/esr.h> +#include <asm/kvm_arm.h> +#include <asm/kvm_emulate.h> +#include <asm/kvm_hyp.h> +#include <asm/kvm_mmu.h> +#include <asm/perf_event.h> +#include <asm/sysreg.h> + +#include <trace/events/kvm.h> + +#include "sys_regs.h" + +#include "trace.h" + +/* + * For AArch32, we only take care of what is being trapped. Anything + * that has to do with init and userspace access has to go via the + * 64bit interface. + */ + +static u64 sys_reg_to_index(const struct sys_reg_desc *reg); + +static bool read_from_write_only(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *r) +{ + WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n"); + print_sys_reg_instr(params); + kvm_inject_undefined(vcpu); + return false; +} + +static bool write_to_read_only(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *r) +{ + WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n"); + print_sys_reg_instr(params); + kvm_inject_undefined(vcpu); + return false; +} + +u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg) +{ + u64 val = 0x8badf00d8badf00d; + + if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) && + __vcpu_read_sys_reg_from_cpu(reg, &val)) + return val; + + return __vcpu_sys_reg(vcpu, reg); +} + +void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg) +{ + if (vcpu_get_flag(vcpu, SYSREGS_ON_CPU) && + __vcpu_write_sys_reg_to_cpu(val, reg)) + return; + + __vcpu_sys_reg(vcpu, reg) = val; +} + +/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */ +static u32 cache_levels; + +/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */ +#define CSSELR_MAX 14 + +/* Which cache CCSIDR represents depends on CSSELR value. */ +static u32 get_ccsidr(u32 csselr) +{ + u32 ccsidr; + + /* Make sure noone else changes CSSELR during this! */ + local_irq_disable(); + write_sysreg(csselr, csselr_el1); + isb(); + ccsidr = read_sysreg(ccsidr_el1); + local_irq_enable(); + + return ccsidr; +} + +/* + * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized). + */ +static bool access_dcsw(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (!p->is_write) + return read_from_write_only(vcpu, p, r); + + /* + * Only track S/W ops if we don't have FWB. It still indicates + * that the guest is a bit broken (S/W operations should only + * be done by firmware, knowing that there is only a single + * CPU left in the system, and certainly not from non-secure + * software). + */ + if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB)) + kvm_set_way_flush(vcpu); + + return true; +} + +static void get_access_mask(const struct sys_reg_desc *r, u64 *mask, u64 *shift) +{ + switch (r->aarch32_map) { + case AA32_LO: + *mask = GENMASK_ULL(31, 0); + *shift = 0; + break; + case AA32_HI: + *mask = GENMASK_ULL(63, 32); + *shift = 32; + break; + default: + *mask = GENMASK_ULL(63, 0); + *shift = 0; + break; + } +} + +/* + * Generic accessor for VM registers. Only called as long as HCR_TVM + * is set. If the guest enables the MMU, we stop trapping the VM + * sys_regs and leave it in complete control of the caches. + */ +static bool access_vm_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + bool was_enabled = vcpu_has_cache_enabled(vcpu); + u64 val, mask, shift; + + BUG_ON(!p->is_write); + + get_access_mask(r, &mask, &shift); + + if (~mask) { + val = vcpu_read_sys_reg(vcpu, r->reg); + val &= ~mask; + } else { + val = 0; + } + + val |= (p->regval & (mask >> shift)) << shift; + vcpu_write_sys_reg(vcpu, val, r->reg); + + kvm_toggle_cache(vcpu, was_enabled); + return true; +} + +static bool access_actlr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 mask, shift; + + if (p->is_write) + return ignore_write(vcpu, p); + + get_access_mask(r, &mask, &shift); + p->regval = (vcpu_read_sys_reg(vcpu, r->reg) & mask) >> shift; + + return true; +} + +/* + * Trap handler for the GICv3 SGI generation system register. + * Forward the request to the VGIC emulation. + * The cp15_64 code makes sure this automatically works + * for both AArch64 and AArch32 accesses. + */ +static bool access_gic_sgi(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + bool g1; + + if (!p->is_write) + return read_from_write_only(vcpu, p, r); + + /* + * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates + * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group, + * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively + * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure + * group. + */ + if (p->Op0 == 0) { /* AArch32 */ + switch (p->Op1) { + default: /* Keep GCC quiet */ + case 0: /* ICC_SGI1R */ + g1 = true; + break; + case 1: /* ICC_ASGI1R */ + case 2: /* ICC_SGI0R */ + g1 = false; + break; + } + } else { /* AArch64 */ + switch (p->Op2) { + default: /* Keep GCC quiet */ + case 5: /* ICC_SGI1R_EL1 */ + g1 = true; + break; + case 6: /* ICC_ASGI1R_EL1 */ + case 7: /* ICC_SGI0R_EL1 */ + g1 = false; + break; + } + } + + vgic_v3_dispatch_sgi(vcpu, p->regval, g1); + + return true; +} + +static bool access_gic_sre(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return ignore_write(vcpu, p); + + p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre; + return true; +} + +static bool trap_raz_wi(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return ignore_write(vcpu, p); + else + return read_zero(vcpu, p); +} + +/* + * ARMv8.1 mandates at least a trivial LORegion implementation, where all the + * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0 + * system, these registers should UNDEF. LORID_EL1 being a RO register, we + * treat it separately. + */ +static bool trap_loregion(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1); + u32 sr = reg_to_encoding(r); + + if (!(val & (0xfUL << ID_AA64MMFR1_EL1_LO_SHIFT))) { + kvm_inject_undefined(vcpu); + return false; + } + + if (p->is_write && sr == SYS_LORID_EL1) + return write_to_read_only(vcpu, p, r); + + return trap_raz_wi(vcpu, p, r); +} + +static bool trap_oslar_el1(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 oslsr; + + if (!p->is_write) + return read_from_write_only(vcpu, p, r); + + /* Forward the OSLK bit to OSLSR */ + oslsr = __vcpu_sys_reg(vcpu, OSLSR_EL1) & ~SYS_OSLSR_OSLK; + if (p->regval & SYS_OSLAR_OSLK) + oslsr |= SYS_OSLSR_OSLK; + + __vcpu_sys_reg(vcpu, OSLSR_EL1) = oslsr; + return true; +} + +static bool trap_oslsr_el1(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = __vcpu_sys_reg(vcpu, r->reg); + return true; +} + +static int set_oslsr_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + /* + * The only modifiable bit is the OSLK bit. Refuse the write if + * userspace attempts to change any other bit in the register. + */ + if ((val ^ rd->val) & ~SYS_OSLSR_OSLK) + return -EINVAL; + + __vcpu_sys_reg(vcpu, rd->reg) = val; + return 0; +} + +static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + return ignore_write(vcpu, p); + } else { + p->regval = read_sysreg(dbgauthstatus_el1); + return true; + } +} + +/* + * We want to avoid world-switching all the DBG registers all the + * time: + * + * - If we've touched any debug register, it is likely that we're + * going to touch more of them. It then makes sense to disable the + * traps and start doing the save/restore dance + * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is + * then mandatory to save/restore the registers, as the guest + * depends on them. + * + * For this, we use a DIRTY bit, indicating the guest has modified the + * debug registers, used as follow: + * + * On guest entry: + * - If the dirty bit is set (because we're coming back from trapping), + * disable the traps, save host registers, restore guest registers. + * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), + * set the dirty bit, disable the traps, save host registers, + * restore guest registers. + * - Otherwise, enable the traps + * + * On guest exit: + * - If the dirty bit is set, save guest registers, restore host + * registers and clear the dirty bit. This ensure that the host can + * now use the debug registers. + */ +static bool trap_debug_regs(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + vcpu_write_sys_reg(vcpu, p->regval, r->reg); + vcpu_set_flag(vcpu, DEBUG_DIRTY); + } else { + p->regval = vcpu_read_sys_reg(vcpu, r->reg); + } + + trace_trap_reg(__func__, r->reg, p->is_write, p->regval); + + return true; +} + +/* + * reg_to_dbg/dbg_to_reg + * + * A 32 bit write to a debug register leave top bits alone + * A 32 bit read from a debug register only returns the bottom bits + * + * All writes will set the DEBUG_DIRTY flag to ensure the hyp code + * switches between host and guest values in future. + */ +static void reg_to_dbg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd, + u64 *dbg_reg) +{ + u64 mask, shift, val; + + get_access_mask(rd, &mask, &shift); + + val = *dbg_reg; + val &= ~mask; + val |= (p->regval & (mask >> shift)) << shift; + *dbg_reg = val; + + vcpu_set_flag(vcpu, DEBUG_DIRTY); +} + +static void dbg_to_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd, + u64 *dbg_reg) +{ + u64 mask, shift; + + get_access_mask(rd, &mask, &shift); + p->regval = (*dbg_reg & mask) >> shift; +} + +static bool trap_bvr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; + + if (p->is_write) + reg_to_dbg(vcpu, p, rd, dbg_reg); + else + dbg_to_reg(vcpu, p, rd, dbg_reg); + + trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); + + return true; +} + +static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = val; + return 0; +} + +static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) +{ + *val = vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm]; + return 0; +} + +static void reset_bvr(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + vcpu->arch.vcpu_debug_state.dbg_bvr[rd->CRm] = rd->val; +} + +static bool trap_bcr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; + + if (p->is_write) + reg_to_dbg(vcpu, p, rd, dbg_reg); + else + dbg_to_reg(vcpu, p, rd, dbg_reg); + + trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); + + return true; +} + +static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = val; + return 0; +} + +static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) +{ + *val = vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm]; + return 0; +} + +static void reset_bcr(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + vcpu->arch.vcpu_debug_state.dbg_bcr[rd->CRm] = rd->val; +} + +static bool trap_wvr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; + + if (p->is_write) + reg_to_dbg(vcpu, p, rd, dbg_reg); + else + dbg_to_reg(vcpu, p, rd, dbg_reg); + + trace_trap_reg(__func__, rd->CRm, p->is_write, + vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]); + + return true; +} + +static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = val; + return 0; +} + +static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) +{ + *val = vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm]; + return 0; +} + +static void reset_wvr(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + vcpu->arch.vcpu_debug_state.dbg_wvr[rd->CRm] = rd->val; +} + +static bool trap_wcr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *rd) +{ + u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; + + if (p->is_write) + reg_to_dbg(vcpu, p, rd, dbg_reg); + else + dbg_to_reg(vcpu, p, rd, dbg_reg); + + trace_trap_reg(__func__, rd->CRm, p->is_write, *dbg_reg); + + return true; +} + +static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = val; + return 0; +} + +static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) +{ + *val = vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm]; + return 0; +} + +static void reset_wcr(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + vcpu->arch.vcpu_debug_state.dbg_wcr[rd->CRm] = rd->val; +} + +static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 amair = read_sysreg(amair_el1); + vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1); +} + +static void reset_actlr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 actlr = read_sysreg(actlr_el1); + vcpu_write_sys_reg(vcpu, actlr, ACTLR_EL1); +} + +static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 mpidr; + + /* + * Map the vcpu_id into the first three affinity level fields of + * the MPIDR. We limit the number of VCPUs in level 0 due to a + * limitation to 16 CPUs in that level in the ICC_SGIxR registers + * of the GICv3 to be able to address each CPU directly when + * sending IPIs. + */ + mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0); + mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1); + mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2); + vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1); +} + +static unsigned int pmu_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + if (kvm_vcpu_has_pmu(vcpu)) + return 0; + + return REG_HIDDEN; +} + +static void reset_pmu_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 n, mask = BIT(ARMV8_PMU_CYCLE_IDX); + + /* No PMU available, any PMU reg may UNDEF... */ + if (!kvm_arm_support_pmu_v3()) + return; + + n = read_sysreg(pmcr_el0) >> ARMV8_PMU_PMCR_N_SHIFT; + n &= ARMV8_PMU_PMCR_N_MASK; + if (n) + mask |= GENMASK(n - 1, 0); + + reset_unknown(vcpu, r); + __vcpu_sys_reg(vcpu, r->reg) &= mask; +} + +static void reset_pmevcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + reset_unknown(vcpu, r); + __vcpu_sys_reg(vcpu, r->reg) &= GENMASK(31, 0); +} + +static void reset_pmevtyper(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + reset_unknown(vcpu, r); + __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_EVTYPE_MASK; +} + +static void reset_pmselr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + reset_unknown(vcpu, r); + __vcpu_sys_reg(vcpu, r->reg) &= ARMV8_PMU_COUNTER_MASK; +} + +static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r) +{ + u64 pmcr, val; + + /* No PMU available, PMCR_EL0 may UNDEF... */ + if (!kvm_arm_support_pmu_v3()) + return; + + pmcr = read_sysreg(pmcr_el0); + /* + * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN + * except PMCR.E resetting to zero. + */ + val = ((pmcr & ~ARMV8_PMU_PMCR_MASK) + | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E); + if (!kvm_supports_32bit_el0()) + val |= ARMV8_PMU_PMCR_LC; + __vcpu_sys_reg(vcpu, r->reg) = val; +} + +static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags) +{ + u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0); + bool enabled = (reg & flags) || vcpu_mode_priv(vcpu); + + if (!enabled) + kvm_inject_undefined(vcpu); + + return !enabled; +} + +static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu) +{ + return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN); +} + +static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu) +{ + return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN); +} + +static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu) +{ + return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN); +} + +static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu) +{ + return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN); +} + +static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 val; + + if (pmu_access_el0_disabled(vcpu)) + return false; + + if (p->is_write) { + /* + * Only update writeable bits of PMCR (continuing into + * kvm_pmu_handle_pmcr() as well) + */ + val = __vcpu_sys_reg(vcpu, PMCR_EL0); + val &= ~ARMV8_PMU_PMCR_MASK; + val |= p->regval & ARMV8_PMU_PMCR_MASK; + if (!kvm_supports_32bit_el0()) + val |= ARMV8_PMU_PMCR_LC; + kvm_pmu_handle_pmcr(vcpu, val); + } else { + /* PMCR.P & PMCR.C are RAZ */ + val = __vcpu_sys_reg(vcpu, PMCR_EL0) + & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C); + p->regval = val; + } + + return true; +} + +static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (pmu_access_event_counter_el0_disabled(vcpu)) + return false; + + if (p->is_write) + __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval; + else + /* return PMSELR.SEL field */ + p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0) + & ARMV8_PMU_COUNTER_MASK; + + return true; +} + +static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 pmceid, mask, shift; + + BUG_ON(p->is_write); + + if (pmu_access_el0_disabled(vcpu)) + return false; + + get_access_mask(r, &mask, &shift); + + pmceid = kvm_pmu_get_pmceid(vcpu, (p->Op2 & 1)); + pmceid &= mask; + pmceid >>= shift; + + p->regval = pmceid; + + return true; +} + +static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx) +{ + u64 pmcr, val; + + pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0); + val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK; + if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) { + kvm_inject_undefined(vcpu); + return false; + } + + return true; +} + +static int get_pmu_evcntr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r, + u64 *val) +{ + u64 idx; + + if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 0) + /* PMCCNTR_EL0 */ + idx = ARMV8_PMU_CYCLE_IDX; + else + /* PMEVCNTRn_EL0 */ + idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); + + *val = kvm_pmu_get_counter_value(vcpu, idx); + return 0; +} + +static bool access_pmu_evcntr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 idx = ~0UL; + + if (r->CRn == 9 && r->CRm == 13) { + if (r->Op2 == 2) { + /* PMXEVCNTR_EL0 */ + if (pmu_access_event_counter_el0_disabled(vcpu)) + return false; + + idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) + & ARMV8_PMU_COUNTER_MASK; + } else if (r->Op2 == 0) { + /* PMCCNTR_EL0 */ + if (pmu_access_cycle_counter_el0_disabled(vcpu)) + return false; + + idx = ARMV8_PMU_CYCLE_IDX; + } + } else if (r->CRn == 0 && r->CRm == 9) { + /* PMCCNTR */ + if (pmu_access_event_counter_el0_disabled(vcpu)) + return false; + + idx = ARMV8_PMU_CYCLE_IDX; + } else if (r->CRn == 14 && (r->CRm & 12) == 8) { + /* PMEVCNTRn_EL0 */ + if (pmu_access_event_counter_el0_disabled(vcpu)) + return false; + + idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); + } + + /* Catch any decoding mistake */ + WARN_ON(idx == ~0UL); + + if (!pmu_counter_idx_valid(vcpu, idx)) + return false; + + if (p->is_write) { + if (pmu_access_el0_disabled(vcpu)) + return false; + + kvm_pmu_set_counter_value(vcpu, idx, p->regval); + } else { + p->regval = kvm_pmu_get_counter_value(vcpu, idx); + } + + return true; +} + +static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 idx, reg; + + if (pmu_access_el0_disabled(vcpu)) + return false; + + if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) { + /* PMXEVTYPER_EL0 */ + idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK; + reg = PMEVTYPER0_EL0 + idx; + } else if (r->CRn == 14 && (r->CRm & 12) == 12) { + idx = ((r->CRm & 3) << 3) | (r->Op2 & 7); + if (idx == ARMV8_PMU_CYCLE_IDX) + reg = PMCCFILTR_EL0; + else + /* PMEVTYPERn_EL0 */ + reg = PMEVTYPER0_EL0 + idx; + } else { + BUG(); + } + + if (!pmu_counter_idx_valid(vcpu, idx)) + return false; + + if (p->is_write) { + kvm_pmu_set_counter_event_type(vcpu, p->regval, idx); + __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK; + kvm_vcpu_pmu_restore_guest(vcpu); + } else { + p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK; + } + + return true; +} + +static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 val, mask; + + if (pmu_access_el0_disabled(vcpu)) + return false; + + mask = kvm_pmu_valid_counter_mask(vcpu); + if (p->is_write) { + val = p->regval & mask; + if (r->Op2 & 0x1) { + /* accessing PMCNTENSET_EL0 */ + __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val; + kvm_pmu_enable_counter_mask(vcpu, val); + kvm_vcpu_pmu_restore_guest(vcpu); + } else { + /* accessing PMCNTENCLR_EL0 */ + __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val; + kvm_pmu_disable_counter_mask(vcpu, val); + } + } else { + p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0); + } + + return true; +} + +static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 mask = kvm_pmu_valid_counter_mask(vcpu); + + if (check_pmu_access_disabled(vcpu, 0)) + return false; + + if (p->is_write) { + u64 val = p->regval & mask; + + if (r->Op2 & 0x1) + /* accessing PMINTENSET_EL1 */ + __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val; + else + /* accessing PMINTENCLR_EL1 */ + __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val; + } else { + p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1); + } + + return true; +} + +static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 mask = kvm_pmu_valid_counter_mask(vcpu); + + if (pmu_access_el0_disabled(vcpu)) + return false; + + if (p->is_write) { + if (r->CRm & 0x2) + /* accessing PMOVSSET_EL0 */ + __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask); + else + /* accessing PMOVSCLR_EL0 */ + __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask); + } else { + p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0); + } + + return true; +} + +static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u64 mask; + + if (!p->is_write) + return read_from_write_only(vcpu, p, r); + + if (pmu_write_swinc_el0_disabled(vcpu)) + return false; + + mask = kvm_pmu_valid_counter_mask(vcpu); + kvm_pmu_software_increment(vcpu, p->regval & mask); + return true; +} + +static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + if (!vcpu_mode_priv(vcpu)) { + kvm_inject_undefined(vcpu); + return false; + } + + __vcpu_sys_reg(vcpu, PMUSERENR_EL0) = + p->regval & ARMV8_PMU_USERENR_MASK; + } else { + p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0) + & ARMV8_PMU_USERENR_MASK; + } + + return true; +} + +/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */ +#define DBG_BCR_BVR_WCR_WVR_EL1(n) \ + { SYS_DESC(SYS_DBGBVRn_EL1(n)), \ + trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr }, \ + { SYS_DESC(SYS_DBGBCRn_EL1(n)), \ + trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr }, \ + { SYS_DESC(SYS_DBGWVRn_EL1(n)), \ + trap_wvr, reset_wvr, 0, 0, get_wvr, set_wvr }, \ + { SYS_DESC(SYS_DBGWCRn_EL1(n)), \ + trap_wcr, reset_wcr, 0, 0, get_wcr, set_wcr } + +#define PMU_SYS_REG(r) \ + SYS_DESC(r), .reset = reset_pmu_reg, .visibility = pmu_visibility + +/* Macro to expand the PMEVCNTRn_EL0 register */ +#define PMU_PMEVCNTR_EL0(n) \ + { PMU_SYS_REG(SYS_PMEVCNTRn_EL0(n)), \ + .reset = reset_pmevcntr, .get_user = get_pmu_evcntr, \ + .access = access_pmu_evcntr, .reg = (PMEVCNTR0_EL0 + n), } + +/* Macro to expand the PMEVTYPERn_EL0 register */ +#define PMU_PMEVTYPER_EL0(n) \ + { PMU_SYS_REG(SYS_PMEVTYPERn_EL0(n)), \ + .reset = reset_pmevtyper, \ + .access = access_pmu_evtyper, .reg = (PMEVTYPER0_EL0 + n), } + +static bool undef_access(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + kvm_inject_undefined(vcpu); + + return false; +} + +/* Macro to expand the AMU counter and type registers*/ +#define AMU_AMEVCNTR0_EL0(n) { SYS_DESC(SYS_AMEVCNTR0_EL0(n)), undef_access } +#define AMU_AMEVTYPER0_EL0(n) { SYS_DESC(SYS_AMEVTYPER0_EL0(n)), undef_access } +#define AMU_AMEVCNTR1_EL0(n) { SYS_DESC(SYS_AMEVCNTR1_EL0(n)), undef_access } +#define AMU_AMEVTYPER1_EL0(n) { SYS_DESC(SYS_AMEVTYPER1_EL0(n)), undef_access } + +static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN; +} + +/* + * If we land here on a PtrAuth access, that is because we didn't + * fixup the access on exit by allowing the PtrAuth sysregs. The only + * way this happens is when the guest does not have PtrAuth support + * enabled. + */ +#define __PTRAUTH_KEY(k) \ + { SYS_DESC(SYS_## k), undef_access, reset_unknown, k, \ + .visibility = ptrauth_visibility} + +#define PTRAUTH_KEY(k) \ + __PTRAUTH_KEY(k ## KEYLO_EL1), \ + __PTRAUTH_KEY(k ## KEYHI_EL1) + +static bool access_arch_timer(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + enum kvm_arch_timers tmr; + enum kvm_arch_timer_regs treg; + u64 reg = reg_to_encoding(r); + + switch (reg) { + case SYS_CNTP_TVAL_EL0: + case SYS_AARCH32_CNTP_TVAL: + tmr = TIMER_PTIMER; + treg = TIMER_REG_TVAL; + break; + case SYS_CNTP_CTL_EL0: + case SYS_AARCH32_CNTP_CTL: + tmr = TIMER_PTIMER; + treg = TIMER_REG_CTL; + break; + case SYS_CNTP_CVAL_EL0: + case SYS_AARCH32_CNTP_CVAL: + tmr = TIMER_PTIMER; + treg = TIMER_REG_CVAL; + break; + default: + BUG(); + } + + if (p->is_write) + kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval); + else + p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg); + + return true; +} + +/* Read a sanitised cpufeature ID register by sys_reg_desc */ +static u64 read_id_reg(const struct kvm_vcpu *vcpu, struct sys_reg_desc const *r) +{ + u32 id = reg_to_encoding(r); + u64 val; + + if (sysreg_visible_as_raz(vcpu, r)) + return 0; + + val = read_sanitised_ftr_reg(id); + + switch (id) { + case SYS_ID_AA64PFR0_EL1: + if (!vcpu_has_sve(vcpu)) + val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_SVE); + val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_AMU); + val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2); + val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2), (u64)vcpu->kvm->arch.pfr0_csv2); + val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3); + val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3), (u64)vcpu->kvm->arch.pfr0_csv3); + if (kvm_vgic_global_state.type == VGIC_V3) { + val &= ~ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC); + val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_GIC), 1); + } + break; + case SYS_ID_AA64PFR1_EL1: + if (!kvm_has_mte(vcpu->kvm)) + val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_MTE); + + val &= ~ARM64_FEATURE_MASK(ID_AA64PFR1_EL1_SME); + break; + case SYS_ID_AA64ISAR1_EL1: + if (!vcpu_has_ptrauth(vcpu)) + val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_APA) | + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_API) | + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPA) | + ARM64_FEATURE_MASK(ID_AA64ISAR1_EL1_GPI)); + break; + case SYS_ID_AA64ISAR2_EL1: + if (!vcpu_has_ptrauth(vcpu)) + val &= ~(ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_APA3) | + ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_GPA3)); + if (!cpus_have_final_cap(ARM64_HAS_WFXT)) + val &= ~ARM64_FEATURE_MASK(ID_AA64ISAR2_EL1_WFxT); + break; + case SYS_ID_AA64DFR0_EL1: + /* Limit debug to ARMv8.0 */ + val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer); + val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_DebugVer), 6); + /* Limit guests to PMUv3 for ARMv8.4 */ + val = cpuid_feature_cap_perfmon_field(val, + ID_AA64DFR0_EL1_PMUVer_SHIFT, + kvm_vcpu_has_pmu(vcpu) ? ID_AA64DFR0_EL1_PMUVer_V3P4 : 0); + /* Hide SPE from guests */ + val &= ~ARM64_FEATURE_MASK(ID_AA64DFR0_EL1_PMSVer); + break; + case SYS_ID_DFR0_EL1: + /* Limit guests to PMUv3 for ARMv8.4 */ + val = cpuid_feature_cap_perfmon_field(val, + ID_DFR0_PERFMON_SHIFT, + kvm_vcpu_has_pmu(vcpu) ? ID_DFR0_PERFMON_8_4 : 0); + break; + } + + return val; +} + +static unsigned int id_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + u32 id = reg_to_encoding(r); + + switch (id) { + case SYS_ID_AA64ZFR0_EL1: + if (!vcpu_has_sve(vcpu)) + return REG_RAZ; + break; + } + + return 0; +} + +static unsigned int aa32_id_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + /* + * AArch32 ID registers are UNKNOWN if AArch32 isn't implemented at any + * EL. Promote to RAZ/WI in order to guarantee consistency between + * systems. + */ + if (!kvm_supports_32bit_el0()) + return REG_RAZ | REG_USER_WI; + + return id_visibility(vcpu, r); +} + +static unsigned int raz_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *r) +{ + return REG_RAZ; +} + +/* cpufeature ID register access trap handlers */ + +static bool access_id_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = read_id_reg(vcpu, r); + return true; +} + +/* Visibility overrides for SVE-specific control registers */ +static unsigned int sve_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + if (vcpu_has_sve(vcpu)) + return 0; + + return REG_HIDDEN; +} + +static int set_id_aa64pfr0_el1(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd, + u64 val) +{ + u8 csv2, csv3; + + /* + * Allow AA64PFR0_EL1.CSV2 to be set from userspace as long as + * it doesn't promise more than what is actually provided (the + * guest could otherwise be covered in ectoplasmic residue). + */ + csv2 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV2_SHIFT); + if (csv2 > 1 || + (csv2 && arm64_get_spectre_v2_state() != SPECTRE_UNAFFECTED)) + return -EINVAL; + + /* Same thing for CSV3 */ + csv3 = cpuid_feature_extract_unsigned_field(val, ID_AA64PFR0_EL1_CSV3_SHIFT); + if (csv3 > 1 || + (csv3 && arm64_get_meltdown_state() != SPECTRE_UNAFFECTED)) + return -EINVAL; + + /* We can only differ with CSV[23], and anything else is an error */ + val ^= read_id_reg(vcpu, rd); + val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) | + ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3)); + if (val) + return -EINVAL; + + vcpu->kvm->arch.pfr0_csv2 = csv2; + vcpu->kvm->arch.pfr0_csv3 = csv3; + + return 0; +} + +/* + * cpufeature ID register user accessors + * + * For now, these registers are immutable for userspace, so no values + * are stored, and for set_id_reg() we don't allow the effective value + * to be changed. + */ +static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) +{ + *val = read_id_reg(vcpu, rd); + return 0; +} + +static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + /* This is what we mean by invariant: you can't change it. */ + if (val != read_id_reg(vcpu, rd)) + return -EINVAL; + + return 0; +} + +static int get_raz_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 *val) +{ + *val = 0; + return 0; +} + +static int set_wi_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd, + u64 val) +{ + return 0; +} + +static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0); + return true; +} + +static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + p->regval = read_sysreg(clidr_el1); + return true; +} + +static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + int reg = r->reg; + + if (p->is_write) + vcpu_write_sys_reg(vcpu, p->regval, reg); + else + p->regval = vcpu_read_sys_reg(vcpu, reg); + return true; +} + +static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + u32 csselr; + + if (p->is_write) + return write_to_read_only(vcpu, p, r); + + csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1); + p->regval = get_ccsidr(csselr); + + /* + * Guests should not be doing cache operations by set/way at all, and + * for this reason, we trap them and attempt to infer the intent, so + * that we can flush the entire guest's address space at the appropriate + * time. + * To prevent this trapping from causing performance problems, let's + * expose the geometry of all data and unified caches (which are + * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way. + * [If guests should attempt to infer aliasing properties from the + * geometry (which is not permitted by the architecture), they would + * only do so for virtually indexed caches.] + */ + if (!(csselr & 1)) // data or unified cache + p->regval &= ~GENMASK(27, 3); + return true; +} + +static unsigned int mte_visibility(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd) +{ + if (kvm_has_mte(vcpu->kvm)) + return 0; + + return REG_HIDDEN; +} + +#define MTE_REG(name) { \ + SYS_DESC(SYS_##name), \ + .access = undef_access, \ + .reset = reset_unknown, \ + .reg = name, \ + .visibility = mte_visibility, \ +} + +/* sys_reg_desc initialiser for known cpufeature ID registers */ +#define ID_SANITISED(name) { \ + SYS_DESC(SYS_##name), \ + .access = access_id_reg, \ + .get_user = get_id_reg, \ + .set_user = set_id_reg, \ + .visibility = id_visibility, \ +} + +/* sys_reg_desc initialiser for known cpufeature ID registers */ +#define AA32_ID_SANITISED(name) { \ + SYS_DESC(SYS_##name), \ + .access = access_id_reg, \ + .get_user = get_id_reg, \ + .set_user = set_id_reg, \ + .visibility = aa32_id_visibility, \ +} + +/* + * sys_reg_desc initialiser for architecturally unallocated cpufeature ID + * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2 + * (1 <= crm < 8, 0 <= Op2 < 8). + */ +#define ID_UNALLOCATED(crm, op2) { \ + Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2), \ + .access = access_id_reg, \ + .get_user = get_id_reg, \ + .set_user = set_id_reg, \ + .visibility = raz_visibility \ +} + +/* + * sys_reg_desc initialiser for known ID registers that we hide from guests. + * For now, these are exposed just like unallocated ID regs: they appear + * RAZ for the guest. + */ +#define ID_HIDDEN(name) { \ + SYS_DESC(SYS_##name), \ + .access = access_id_reg, \ + .get_user = get_id_reg, \ + .set_user = set_id_reg, \ + .visibility = raz_visibility, \ +} + +/* + * Architected system registers. + * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2 + * + * Debug handling: We do trap most, if not all debug related system + * registers. The implementation is good enough to ensure that a guest + * can use these with minimal performance degradation. The drawback is + * that we don't implement any of the external debug architecture. + * This should be revisited if we ever encounter a more demanding + * guest... + */ +static const struct sys_reg_desc sys_reg_descs[] = { + { SYS_DESC(SYS_DC_ISW), access_dcsw }, + { SYS_DESC(SYS_DC_CSW), access_dcsw }, + { SYS_DESC(SYS_DC_CISW), access_dcsw }, + + DBG_BCR_BVR_WCR_WVR_EL1(0), + DBG_BCR_BVR_WCR_WVR_EL1(1), + { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 }, + { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 }, + DBG_BCR_BVR_WCR_WVR_EL1(2), + DBG_BCR_BVR_WCR_WVR_EL1(3), + DBG_BCR_BVR_WCR_WVR_EL1(4), + DBG_BCR_BVR_WCR_WVR_EL1(5), + DBG_BCR_BVR_WCR_WVR_EL1(6), + DBG_BCR_BVR_WCR_WVR_EL1(7), + DBG_BCR_BVR_WCR_WVR_EL1(8), + DBG_BCR_BVR_WCR_WVR_EL1(9), + DBG_BCR_BVR_WCR_WVR_EL1(10), + DBG_BCR_BVR_WCR_WVR_EL1(11), + DBG_BCR_BVR_WCR_WVR_EL1(12), + DBG_BCR_BVR_WCR_WVR_EL1(13), + DBG_BCR_BVR_WCR_WVR_EL1(14), + DBG_BCR_BVR_WCR_WVR_EL1(15), + + { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_OSLAR_EL1), trap_oslar_el1 }, + { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1, reset_val, OSLSR_EL1, + SYS_OSLSR_OSLM_IMPLEMENTED, .set_user = set_oslsr_el1, }, + { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi }, + { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 }, + + { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi }, + { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi }, + // DBGDTR[TR]X_EL0 share the same encoding + { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi }, + + { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 }, + + { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 }, + + /* + * ID regs: all ID_SANITISED() entries here must have corresponding + * entries in arm64_ftr_regs[]. + */ + + /* AArch64 mappings of the AArch32 ID registers */ + /* CRm=1 */ + AA32_ID_SANITISED(ID_PFR0_EL1), + AA32_ID_SANITISED(ID_PFR1_EL1), + AA32_ID_SANITISED(ID_DFR0_EL1), + ID_HIDDEN(ID_AFR0_EL1), + AA32_ID_SANITISED(ID_MMFR0_EL1), + AA32_ID_SANITISED(ID_MMFR1_EL1), + AA32_ID_SANITISED(ID_MMFR2_EL1), + AA32_ID_SANITISED(ID_MMFR3_EL1), + + /* CRm=2 */ + AA32_ID_SANITISED(ID_ISAR0_EL1), + AA32_ID_SANITISED(ID_ISAR1_EL1), + AA32_ID_SANITISED(ID_ISAR2_EL1), + AA32_ID_SANITISED(ID_ISAR3_EL1), + AA32_ID_SANITISED(ID_ISAR4_EL1), + AA32_ID_SANITISED(ID_ISAR5_EL1), + AA32_ID_SANITISED(ID_MMFR4_EL1), + AA32_ID_SANITISED(ID_ISAR6_EL1), + + /* CRm=3 */ + AA32_ID_SANITISED(MVFR0_EL1), + AA32_ID_SANITISED(MVFR1_EL1), + AA32_ID_SANITISED(MVFR2_EL1), + ID_UNALLOCATED(3,3), + AA32_ID_SANITISED(ID_PFR2_EL1), + ID_HIDDEN(ID_DFR1_EL1), + AA32_ID_SANITISED(ID_MMFR5_EL1), + ID_UNALLOCATED(3,7), + + /* AArch64 ID registers */ + /* CRm=4 */ + { SYS_DESC(SYS_ID_AA64PFR0_EL1), .access = access_id_reg, + .get_user = get_id_reg, .set_user = set_id_aa64pfr0_el1, }, + ID_SANITISED(ID_AA64PFR1_EL1), + ID_UNALLOCATED(4,2), + ID_UNALLOCATED(4,3), + ID_SANITISED(ID_AA64ZFR0_EL1), + ID_HIDDEN(ID_AA64SMFR0_EL1), + ID_UNALLOCATED(4,6), + ID_UNALLOCATED(4,7), + + /* CRm=5 */ + ID_SANITISED(ID_AA64DFR0_EL1), + ID_SANITISED(ID_AA64DFR1_EL1), + ID_UNALLOCATED(5,2), + ID_UNALLOCATED(5,3), + ID_HIDDEN(ID_AA64AFR0_EL1), + ID_HIDDEN(ID_AA64AFR1_EL1), + ID_UNALLOCATED(5,6), + ID_UNALLOCATED(5,7), + + /* CRm=6 */ + ID_SANITISED(ID_AA64ISAR0_EL1), + ID_SANITISED(ID_AA64ISAR1_EL1), + ID_SANITISED(ID_AA64ISAR2_EL1), + ID_UNALLOCATED(6,3), + ID_UNALLOCATED(6,4), + ID_UNALLOCATED(6,5), + ID_UNALLOCATED(6,6), + ID_UNALLOCATED(6,7), + + /* CRm=7 */ + ID_SANITISED(ID_AA64MMFR0_EL1), + ID_SANITISED(ID_AA64MMFR1_EL1), + ID_SANITISED(ID_AA64MMFR2_EL1), + ID_UNALLOCATED(7,3), + ID_UNALLOCATED(7,4), + ID_UNALLOCATED(7,5), + ID_UNALLOCATED(7,6), + ID_UNALLOCATED(7,7), + + { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 }, + { SYS_DESC(SYS_ACTLR_EL1), access_actlr, reset_actlr, ACTLR_EL1 }, + { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 }, + + MTE_REG(RGSR_EL1), + MTE_REG(GCR_EL1), + + { SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility }, + { SYS_DESC(SYS_TRFCR_EL1), undef_access }, + { SYS_DESC(SYS_SMPRI_EL1), undef_access }, + { SYS_DESC(SYS_SMCR_EL1), undef_access }, + { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 }, + { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 }, + { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 }, + + PTRAUTH_KEY(APIA), + PTRAUTH_KEY(APIB), + PTRAUTH_KEY(APDA), + PTRAUTH_KEY(APDB), + PTRAUTH_KEY(APGA), + + { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 }, + { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 }, + { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 }, + + { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi }, + { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi }, + + MTE_REG(TFSR_EL1), + MTE_REG(TFSRE0_EL1), + + { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 }, + { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 }, + + { SYS_DESC(SYS_PMSCR_EL1), undef_access }, + { SYS_DESC(SYS_PMSNEVFR_EL1), undef_access }, + { SYS_DESC(SYS_PMSICR_EL1), undef_access }, + { SYS_DESC(SYS_PMSIRR_EL1), undef_access }, + { SYS_DESC(SYS_PMSFCR_EL1), undef_access }, + { SYS_DESC(SYS_PMSEVFR_EL1), undef_access }, + { SYS_DESC(SYS_PMSLATFR_EL1), undef_access }, + { SYS_DESC(SYS_PMSIDR_EL1), undef_access }, + { SYS_DESC(SYS_PMBLIMITR_EL1), undef_access }, + { SYS_DESC(SYS_PMBPTR_EL1), undef_access }, + { SYS_DESC(SYS_PMBSR_EL1), undef_access }, + /* PMBIDR_EL1 is not trapped */ + + { PMU_SYS_REG(SYS_PMINTENSET_EL1), + .access = access_pminten, .reg = PMINTENSET_EL1 }, + { PMU_SYS_REG(SYS_PMINTENCLR_EL1), + .access = access_pminten, .reg = PMINTENSET_EL1 }, + { SYS_DESC(SYS_PMMIR_EL1), trap_raz_wi }, + + { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 }, + { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 }, + + { SYS_DESC(SYS_LORSA_EL1), trap_loregion }, + { SYS_DESC(SYS_LOREA_EL1), trap_loregion }, + { SYS_DESC(SYS_LORN_EL1), trap_loregion }, + { SYS_DESC(SYS_LORC_EL1), trap_loregion }, + { SYS_DESC(SYS_LORID_EL1), trap_loregion }, + + { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 }, + { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 }, + + { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only }, + { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only }, + { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi }, + { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi }, + { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi }, + { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only }, + { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only }, + { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre }, + + { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 }, + { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 }, + + { SYS_DESC(SYS_SCXTNUM_EL1), undef_access }, + + { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0}, + + { SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr }, + { SYS_DESC(SYS_CLIDR_EL1), access_clidr }, + { SYS_DESC(SYS_SMIDR_EL1), undef_access }, + { SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 }, + { SYS_DESC(SYS_CTR_EL0), access_ctr }, + { SYS_DESC(SYS_SVCR), undef_access }, + + { PMU_SYS_REG(SYS_PMCR_EL0), .access = access_pmcr, + .reset = reset_pmcr, .reg = PMCR_EL0 }, + { PMU_SYS_REG(SYS_PMCNTENSET_EL0), + .access = access_pmcnten, .reg = PMCNTENSET_EL0 }, + { PMU_SYS_REG(SYS_PMCNTENCLR_EL0), + .access = access_pmcnten, .reg = PMCNTENSET_EL0 }, + { PMU_SYS_REG(SYS_PMOVSCLR_EL0), + .access = access_pmovs, .reg = PMOVSSET_EL0 }, + /* + * PM_SWINC_EL0 is exposed to userspace as RAZ/WI, as it was + * previously (and pointlessly) advertised in the past... + */ + { PMU_SYS_REG(SYS_PMSWINC_EL0), + .get_user = get_raz_reg, .set_user = set_wi_reg, + .access = access_pmswinc, .reset = NULL }, + { PMU_SYS_REG(SYS_PMSELR_EL0), + .access = access_pmselr, .reset = reset_pmselr, .reg = PMSELR_EL0 }, + { PMU_SYS_REG(SYS_PMCEID0_EL0), + .access = access_pmceid, .reset = NULL }, + { PMU_SYS_REG(SYS_PMCEID1_EL0), + .access = access_pmceid, .reset = NULL }, + { PMU_SYS_REG(SYS_PMCCNTR_EL0), + .access = access_pmu_evcntr, .reset = reset_unknown, + .reg = PMCCNTR_EL0, .get_user = get_pmu_evcntr}, + { PMU_SYS_REG(SYS_PMXEVTYPER_EL0), + .access = access_pmu_evtyper, .reset = NULL }, + { PMU_SYS_REG(SYS_PMXEVCNTR_EL0), + .access = access_pmu_evcntr, .reset = NULL }, + /* + * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero + * in 32bit mode. Here we choose to reset it as zero for consistency. + */ + { PMU_SYS_REG(SYS_PMUSERENR_EL0), .access = access_pmuserenr, + .reset = reset_val, .reg = PMUSERENR_EL0, .val = 0 }, + { PMU_SYS_REG(SYS_PMOVSSET_EL0), + .access = access_pmovs, .reg = PMOVSSET_EL0 }, + + { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 }, + { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 }, + { SYS_DESC(SYS_TPIDR2_EL0), undef_access }, + + { SYS_DESC(SYS_SCXTNUM_EL0), undef_access }, + + { SYS_DESC(SYS_AMCR_EL0), undef_access }, + { SYS_DESC(SYS_AMCFGR_EL0), undef_access }, + { SYS_DESC(SYS_AMCGCR_EL0), undef_access }, + { SYS_DESC(SYS_AMUSERENR_EL0), undef_access }, + { SYS_DESC(SYS_AMCNTENCLR0_EL0), undef_access }, + { SYS_DESC(SYS_AMCNTENSET0_EL0), undef_access }, + { SYS_DESC(SYS_AMCNTENCLR1_EL0), undef_access }, + { SYS_DESC(SYS_AMCNTENSET1_EL0), undef_access }, + AMU_AMEVCNTR0_EL0(0), + AMU_AMEVCNTR0_EL0(1), + AMU_AMEVCNTR0_EL0(2), + AMU_AMEVCNTR0_EL0(3), + AMU_AMEVCNTR0_EL0(4), + AMU_AMEVCNTR0_EL0(5), + AMU_AMEVCNTR0_EL0(6), + AMU_AMEVCNTR0_EL0(7), + AMU_AMEVCNTR0_EL0(8), + AMU_AMEVCNTR0_EL0(9), + AMU_AMEVCNTR0_EL0(10), + AMU_AMEVCNTR0_EL0(11), + AMU_AMEVCNTR0_EL0(12), + AMU_AMEVCNTR0_EL0(13), + AMU_AMEVCNTR0_EL0(14), + AMU_AMEVCNTR0_EL0(15), + AMU_AMEVTYPER0_EL0(0), + AMU_AMEVTYPER0_EL0(1), + AMU_AMEVTYPER0_EL0(2), + AMU_AMEVTYPER0_EL0(3), + AMU_AMEVTYPER0_EL0(4), + AMU_AMEVTYPER0_EL0(5), + AMU_AMEVTYPER0_EL0(6), + AMU_AMEVTYPER0_EL0(7), + AMU_AMEVTYPER0_EL0(8), + AMU_AMEVTYPER0_EL0(9), + AMU_AMEVTYPER0_EL0(10), + AMU_AMEVTYPER0_EL0(11), + AMU_AMEVTYPER0_EL0(12), + AMU_AMEVTYPER0_EL0(13), + AMU_AMEVTYPER0_EL0(14), + AMU_AMEVTYPER0_EL0(15), + AMU_AMEVCNTR1_EL0(0), + AMU_AMEVCNTR1_EL0(1), + AMU_AMEVCNTR1_EL0(2), + AMU_AMEVCNTR1_EL0(3), + AMU_AMEVCNTR1_EL0(4), + AMU_AMEVCNTR1_EL0(5), + AMU_AMEVCNTR1_EL0(6), + AMU_AMEVCNTR1_EL0(7), + AMU_AMEVCNTR1_EL0(8), + AMU_AMEVCNTR1_EL0(9), + AMU_AMEVCNTR1_EL0(10), + AMU_AMEVCNTR1_EL0(11), + AMU_AMEVCNTR1_EL0(12), + AMU_AMEVCNTR1_EL0(13), + AMU_AMEVCNTR1_EL0(14), + AMU_AMEVCNTR1_EL0(15), + AMU_AMEVTYPER1_EL0(0), + AMU_AMEVTYPER1_EL0(1), + AMU_AMEVTYPER1_EL0(2), + AMU_AMEVTYPER1_EL0(3), + AMU_AMEVTYPER1_EL0(4), + AMU_AMEVTYPER1_EL0(5), + AMU_AMEVTYPER1_EL0(6), + AMU_AMEVTYPER1_EL0(7), + AMU_AMEVTYPER1_EL0(8), + AMU_AMEVTYPER1_EL0(9), + AMU_AMEVTYPER1_EL0(10), + AMU_AMEVTYPER1_EL0(11), + AMU_AMEVTYPER1_EL0(12), + AMU_AMEVTYPER1_EL0(13), + AMU_AMEVTYPER1_EL0(14), + AMU_AMEVTYPER1_EL0(15), + + { SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer }, + { SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer }, + { SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer }, + + /* PMEVCNTRn_EL0 */ + PMU_PMEVCNTR_EL0(0), + PMU_PMEVCNTR_EL0(1), + PMU_PMEVCNTR_EL0(2), + PMU_PMEVCNTR_EL0(3), + PMU_PMEVCNTR_EL0(4), + PMU_PMEVCNTR_EL0(5), + PMU_PMEVCNTR_EL0(6), + PMU_PMEVCNTR_EL0(7), + PMU_PMEVCNTR_EL0(8), + PMU_PMEVCNTR_EL0(9), + PMU_PMEVCNTR_EL0(10), + PMU_PMEVCNTR_EL0(11), + PMU_PMEVCNTR_EL0(12), + PMU_PMEVCNTR_EL0(13), + PMU_PMEVCNTR_EL0(14), + PMU_PMEVCNTR_EL0(15), + PMU_PMEVCNTR_EL0(16), + PMU_PMEVCNTR_EL0(17), + PMU_PMEVCNTR_EL0(18), + PMU_PMEVCNTR_EL0(19), + PMU_PMEVCNTR_EL0(20), + PMU_PMEVCNTR_EL0(21), + PMU_PMEVCNTR_EL0(22), + PMU_PMEVCNTR_EL0(23), + PMU_PMEVCNTR_EL0(24), + PMU_PMEVCNTR_EL0(25), + PMU_PMEVCNTR_EL0(26), + PMU_PMEVCNTR_EL0(27), + PMU_PMEVCNTR_EL0(28), + PMU_PMEVCNTR_EL0(29), + PMU_PMEVCNTR_EL0(30), + /* PMEVTYPERn_EL0 */ + PMU_PMEVTYPER_EL0(0), + PMU_PMEVTYPER_EL0(1), + PMU_PMEVTYPER_EL0(2), + PMU_PMEVTYPER_EL0(3), + PMU_PMEVTYPER_EL0(4), + PMU_PMEVTYPER_EL0(5), + PMU_PMEVTYPER_EL0(6), + PMU_PMEVTYPER_EL0(7), + PMU_PMEVTYPER_EL0(8), + PMU_PMEVTYPER_EL0(9), + PMU_PMEVTYPER_EL0(10), + PMU_PMEVTYPER_EL0(11), + PMU_PMEVTYPER_EL0(12), + PMU_PMEVTYPER_EL0(13), + PMU_PMEVTYPER_EL0(14), + PMU_PMEVTYPER_EL0(15), + PMU_PMEVTYPER_EL0(16), + PMU_PMEVTYPER_EL0(17), + PMU_PMEVTYPER_EL0(18), + PMU_PMEVTYPER_EL0(19), + PMU_PMEVTYPER_EL0(20), + PMU_PMEVTYPER_EL0(21), + PMU_PMEVTYPER_EL0(22), + PMU_PMEVTYPER_EL0(23), + PMU_PMEVTYPER_EL0(24), + PMU_PMEVTYPER_EL0(25), + PMU_PMEVTYPER_EL0(26), + PMU_PMEVTYPER_EL0(27), + PMU_PMEVTYPER_EL0(28), + PMU_PMEVTYPER_EL0(29), + PMU_PMEVTYPER_EL0(30), + /* + * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero + * in 32bit mode. Here we choose to reset it as zero for consistency. + */ + { PMU_SYS_REG(SYS_PMCCFILTR_EL0), .access = access_pmu_evtyper, + .reset = reset_val, .reg = PMCCFILTR_EL0, .val = 0 }, + + { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 }, + { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 }, + { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 }, +}; + +static bool trap_dbgdidr(struct kvm_vcpu *vcpu, + struct sys_reg_params *p, + const struct sys_reg_desc *r) +{ + if (p->is_write) { + return ignore_write(vcpu, p); + } else { + u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1); + u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1); + u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL1_EL3_SHIFT); + + p->regval = ((((dfr >> ID_AA64DFR0_EL1_WRPs_SHIFT) & 0xf) << 28) | + (((dfr >> ID_AA64DFR0_EL1_BRPs_SHIFT) & 0xf) << 24) | + (((dfr >> ID_AA64DFR0_EL1_CTX_CMPs_SHIFT) & 0xf) << 20) + | (6 << 16) | (1 << 15) | (el3 << 14) | (el3 << 12)); + return true; + } +} + +/* + * AArch32 debug register mappings + * + * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0] + * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32] + * + * None of the other registers share their location, so treat them as + * if they were 64bit. + */ +#define DBG_BCR_BVR_WCR_WVR(n) \ + /* DBGBVRn */ \ + { AA32(LO), Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, \ + /* DBGBCRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n }, \ + /* DBGWVRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n }, \ + /* DBGWCRn */ \ + { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n } + +#define DBGBXVR(n) \ + { AA32(HI), Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_bvr, NULL, n } + +/* + * Trapped cp14 registers. We generally ignore most of the external + * debug, on the principle that they don't really make sense to a + * guest. Revisit this one day, would this principle change. + */ +static const struct sys_reg_desc cp14_regs[] = { + /* DBGDIDR */ + { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgdidr }, + /* DBGDTRRXext */ + { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi }, + + DBG_BCR_BVR_WCR_WVR(0), + /* DBGDSCRint */ + { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi }, + DBG_BCR_BVR_WCR_WVR(1), + /* DBGDCCINT */ + { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug_regs, NULL, MDCCINT_EL1 }, + /* DBGDSCRext */ + { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug_regs, NULL, MDSCR_EL1 }, + DBG_BCR_BVR_WCR_WVR(2), + /* DBGDTR[RT]Xint */ + { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi }, + /* DBGDTR[RT]Xext */ + { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi }, + DBG_BCR_BVR_WCR_WVR(3), + DBG_BCR_BVR_WCR_WVR(4), + DBG_BCR_BVR_WCR_WVR(5), + /* DBGWFAR */ + { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi }, + /* DBGOSECCR */ + { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi }, + DBG_BCR_BVR_WCR_WVR(6), + /* DBGVCR */ + { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug_regs, NULL, DBGVCR32_EL2 }, + DBG_BCR_BVR_WCR_WVR(7), + DBG_BCR_BVR_WCR_WVR(8), + DBG_BCR_BVR_WCR_WVR(9), + DBG_BCR_BVR_WCR_WVR(10), + DBG_BCR_BVR_WCR_WVR(11), + DBG_BCR_BVR_WCR_WVR(12), + DBG_BCR_BVR_WCR_WVR(13), + DBG_BCR_BVR_WCR_WVR(14), + DBG_BCR_BVR_WCR_WVR(15), + + /* DBGDRAR (32bit) */ + { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi }, + + DBGBXVR(0), + /* DBGOSLAR */ + { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_oslar_el1 }, + DBGBXVR(1), + /* DBGOSLSR */ + { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1, NULL, OSLSR_EL1 }, + DBGBXVR(2), + DBGBXVR(3), + /* DBGOSDLR */ + { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi }, + DBGBXVR(4), + /* DBGPRCR */ + { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi }, + DBGBXVR(5), + DBGBXVR(6), + DBGBXVR(7), + DBGBXVR(8), + DBGBXVR(9), + DBGBXVR(10), + DBGBXVR(11), + DBGBXVR(12), + DBGBXVR(13), + DBGBXVR(14), + DBGBXVR(15), + + /* DBGDSAR (32bit) */ + { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi }, + + /* DBGDEVID2 */ + { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi }, + /* DBGDEVID1 */ + { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi }, + /* DBGDEVID */ + { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi }, + /* DBGCLAIMSET */ + { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi }, + /* DBGCLAIMCLR */ + { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi }, + /* DBGAUTHSTATUS */ + { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 }, +}; + +/* Trapped cp14 64bit registers */ +static const struct sys_reg_desc cp14_64_regs[] = { + /* DBGDRAR (64bit) */ + { Op1( 0), CRm( 1), .access = trap_raz_wi }, + + /* DBGDSAR (64bit) */ + { Op1( 0), CRm( 2), .access = trap_raz_wi }, +}; + +#define CP15_PMU_SYS_REG(_map, _Op1, _CRn, _CRm, _Op2) \ + AA32(_map), \ + Op1(_Op1), CRn(_CRn), CRm(_CRm), Op2(_Op2), \ + .visibility = pmu_visibility + +/* Macro to expand the PMEVCNTRn register */ +#define PMU_PMEVCNTR(n) \ + { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ + (0b1000 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ + .access = access_pmu_evcntr } + +/* Macro to expand the PMEVTYPERn register */ +#define PMU_PMEVTYPER(n) \ + { CP15_PMU_SYS_REG(DIRECT, 0, 0b1110, \ + (0b1100 | (((n) >> 3) & 0x3)), ((n) & 0x7)), \ + .access = access_pmu_evtyper } +/* + * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding, + * depending on the way they are accessed (as a 32bit or a 64bit + * register). + */ +static const struct sys_reg_desc cp15_regs[] = { + { Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr }, + { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, SCTLR_EL1 }, + /* ACTLR */ + { AA32(LO), Op1( 0), CRn( 1), CRm( 0), Op2( 1), access_actlr, NULL, ACTLR_EL1 }, + /* ACTLR2 */ + { AA32(HI), Op1( 0), CRn( 1), CRm( 0), Op2( 3), access_actlr, NULL, ACTLR_EL1 }, + { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, + { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, TTBR1_EL1 }, + /* TTBCR */ + { AA32(LO), Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, TCR_EL1 }, + /* TTBCR2 */ + { AA32(HI), Op1( 0), CRn( 2), CRm( 0), Op2( 3), access_vm_reg, NULL, TCR_EL1 }, + { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, DACR32_EL2 }, + /* DFSR */ + { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, ESR_EL1 }, + { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, IFSR32_EL2 }, + /* ADFSR */ + { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, AFSR0_EL1 }, + /* AIFSR */ + { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, AFSR1_EL1 }, + /* DFAR */ + { AA32(LO), Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, FAR_EL1 }, + /* IFAR */ + { AA32(HI), Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, FAR_EL1 }, + + /* + * DC{C,I,CI}SW operations: + */ + { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw }, + { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw }, + { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw }, + + /* PMU */ + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 0), .access = access_pmcr }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 1), .access = access_pmcnten }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 2), .access = access_pmcnten }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 3), .access = access_pmovs }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 4), .access = access_pmswinc }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 12, 5), .access = access_pmselr }, + { CP15_PMU_SYS_REG(LO, 0, 9, 12, 6), .access = access_pmceid }, + { CP15_PMU_SYS_REG(LO, 0, 9, 12, 7), .access = access_pmceid }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 0), .access = access_pmu_evcntr }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 1), .access = access_pmu_evtyper }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 13, 2), .access = access_pmu_evcntr }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 0), .access = access_pmuserenr }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 1), .access = access_pminten }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 2), .access = access_pminten }, + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 3), .access = access_pmovs }, + { CP15_PMU_SYS_REG(HI, 0, 9, 14, 4), .access = access_pmceid }, + { CP15_PMU_SYS_REG(HI, 0, 9, 14, 5), .access = access_pmceid }, + /* PMMIR */ + { CP15_PMU_SYS_REG(DIRECT, 0, 9, 14, 6), .access = trap_raz_wi }, + + /* PRRR/MAIR0 */ + { AA32(LO), Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, MAIR_EL1 }, + /* NMRR/MAIR1 */ + { AA32(HI), Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, MAIR_EL1 }, + /* AMAIR0 */ + { AA32(LO), Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, AMAIR_EL1 }, + /* AMAIR1 */ + { AA32(HI), Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, AMAIR_EL1 }, + + /* ICC_SRE */ + { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre }, + + { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, CONTEXTIDR_EL1 }, + + /* Arch Tmers */ + { SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer }, + { SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer }, + + /* PMEVCNTRn */ + PMU_PMEVCNTR(0), + PMU_PMEVCNTR(1), + PMU_PMEVCNTR(2), + PMU_PMEVCNTR(3), + PMU_PMEVCNTR(4), + PMU_PMEVCNTR(5), + PMU_PMEVCNTR(6), + PMU_PMEVCNTR(7), + PMU_PMEVCNTR(8), + PMU_PMEVCNTR(9), + PMU_PMEVCNTR(10), + PMU_PMEVCNTR(11), + PMU_PMEVCNTR(12), + PMU_PMEVCNTR(13), + PMU_PMEVCNTR(14), + PMU_PMEVCNTR(15), + PMU_PMEVCNTR(16), + PMU_PMEVCNTR(17), + PMU_PMEVCNTR(18), + PMU_PMEVCNTR(19), + PMU_PMEVCNTR(20), + PMU_PMEVCNTR(21), + PMU_PMEVCNTR(22), + PMU_PMEVCNTR(23), + PMU_PMEVCNTR(24), + PMU_PMEVCNTR(25), + PMU_PMEVCNTR(26), + PMU_PMEVCNTR(27), + PMU_PMEVCNTR(28), + PMU_PMEVCNTR(29), + PMU_PMEVCNTR(30), + /* PMEVTYPERn */ + PMU_PMEVTYPER(0), + PMU_PMEVTYPER(1), + PMU_PMEVTYPER(2), + PMU_PMEVTYPER(3), + PMU_PMEVTYPER(4), + PMU_PMEVTYPER(5), + PMU_PMEVTYPER(6), + PMU_PMEVTYPER(7), + PMU_PMEVTYPER(8), + PMU_PMEVTYPER(9), + PMU_PMEVTYPER(10), + PMU_PMEVTYPER(11), + PMU_PMEVTYPER(12), + PMU_PMEVTYPER(13), + PMU_PMEVTYPER(14), + PMU_PMEVTYPER(15), + PMU_PMEVTYPER(16), + PMU_PMEVTYPER(17), + PMU_PMEVTYPER(18), + PMU_PMEVTYPER(19), + PMU_PMEVTYPER(20), + PMU_PMEVTYPER(21), + PMU_PMEVTYPER(22), + PMU_PMEVTYPER(23), + PMU_PMEVTYPER(24), + PMU_PMEVTYPER(25), + PMU_PMEVTYPER(26), + PMU_PMEVTYPER(27), + PMU_PMEVTYPER(28), + PMU_PMEVTYPER(29), + PMU_PMEVTYPER(30), + /* PMCCFILTR */ + { CP15_PMU_SYS_REG(DIRECT, 0, 14, 15, 7), .access = access_pmu_evtyper }, + + { Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr }, + { Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr }, + { Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, CSSELR_EL1 }, +}; + +static const struct sys_reg_desc cp15_64_regs[] = { + { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR0_EL1 }, + { CP15_PMU_SYS_REG(DIRECT, 0, 0, 9, 0), .access = access_pmu_evcntr }, + { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */ + { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, TTBR1_EL1 }, + { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */ + { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */ + { SYS_DESC(SYS_AARCH32_CNTP_CVAL), access_arch_timer }, +}; + +static bool check_sysreg_table(const struct sys_reg_desc *table, unsigned int n, + bool is_32) +{ + unsigned int i; + + for (i = 0; i < n; i++) { + if (!is_32 && table[i].reg && !table[i].reset) { + kvm_err("sys_reg table %pS entry %d lacks reset\n", &table[i], i); + return false; + } + + if (i && cmp_sys_reg(&table[i-1], &table[i]) >= 0) { + kvm_err("sys_reg table %pS entry %d out of order\n", &table[i - 1], i - 1); + return false; + } + } + + return true; +} + +int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu) +{ + kvm_inject_undefined(vcpu); + return 1; +} + +static void perform_access(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *r) +{ + trace_kvm_sys_access(*vcpu_pc(vcpu), params, r); + + /* Check for regs disabled by runtime config */ + if (sysreg_hidden(vcpu, r)) { + kvm_inject_undefined(vcpu); + return; + } + + /* + * Not having an accessor means that we have configured a trap + * that we don't know how to handle. This certainly qualifies + * as a gross bug that should be fixed right away. + */ + BUG_ON(!r->access); + + /* Skip instruction if instructed so */ + if (likely(r->access(vcpu, params, r))) + kvm_incr_pc(vcpu); +} + +/* + * emulate_cp -- tries to match a sys_reg access in a handling table, and + * call the corresponding trap handler. + * + * @params: pointer to the descriptor of the access + * @table: array of trap descriptors + * @num: size of the trap descriptor array + * + * Return true if the access has been handled, false if not. + */ +static bool emulate_cp(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *table, + size_t num) +{ + const struct sys_reg_desc *r; + + if (!table) + return false; /* Not handled */ + + r = find_reg(params, table, num); + + if (r) { + perform_access(vcpu, params, r); + return true; + } + + /* Not handled */ + return false; +} + +static void unhandled_cp_access(struct kvm_vcpu *vcpu, + struct sys_reg_params *params) +{ + u8 esr_ec = kvm_vcpu_trap_get_class(vcpu); + int cp = -1; + + switch (esr_ec) { + case ESR_ELx_EC_CP15_32: + case ESR_ELx_EC_CP15_64: + cp = 15; + break; + case ESR_ELx_EC_CP14_MR: + case ESR_ELx_EC_CP14_64: + cp = 14; + break; + default: + WARN_ON(1); + } + + print_sys_reg_msg(params, + "Unsupported guest CP%d access at: %08lx [%08lx]\n", + cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); + kvm_inject_undefined(vcpu); +} + +/** + * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access + * @vcpu: The VCPU pointer + * @run: The kvm_run struct + */ +static int kvm_handle_cp_64(struct kvm_vcpu *vcpu, + const struct sys_reg_desc *global, + size_t nr_global) +{ + struct sys_reg_params params; + u64 esr = kvm_vcpu_get_esr(vcpu); + int Rt = kvm_vcpu_sys_get_rt(vcpu); + int Rt2 = (esr >> 10) & 0x1f; + + params.CRm = (esr >> 1) & 0xf; + params.is_write = ((esr & 1) == 0); + + params.Op0 = 0; + params.Op1 = (esr >> 16) & 0xf; + params.Op2 = 0; + params.CRn = 0; + + /* + * Make a 64-bit value out of Rt and Rt2. As we use the same trap + * backends between AArch32 and AArch64, we get away with it. + */ + if (params.is_write) { + params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff; + params.regval |= vcpu_get_reg(vcpu, Rt2) << 32; + } + + /* + * If the table contains a handler, handle the + * potential register operation in the case of a read and return + * with success. + */ + if (emulate_cp(vcpu, ¶ms, global, nr_global)) { + /* Split up the value between registers for the read side */ + if (!params.is_write) { + vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval)); + vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval)); + } + + return 1; + } + + unhandled_cp_access(vcpu, ¶ms); + return 1; +} + +static bool emulate_sys_reg(struct kvm_vcpu *vcpu, struct sys_reg_params *params); + +/* + * The CP10 ID registers are architecturally mapped to AArch64 feature + * registers. Abuse that fact so we can rely on the AArch64 handler for accesses + * from AArch32. + */ +static bool kvm_esr_cp10_id_to_sys64(u64 esr, struct sys_reg_params *params) +{ + u8 reg_id = (esr >> 10) & 0xf; + bool valid; + + params->is_write = ((esr & 1) == 0); + params->Op0 = 3; + params->Op1 = 0; + params->CRn = 0; + params->CRm = 3; + + /* CP10 ID registers are read-only */ + valid = !params->is_write; + + switch (reg_id) { + /* MVFR0 */ + case 0b0111: + params->Op2 = 0; + break; + /* MVFR1 */ + case 0b0110: + params->Op2 = 1; + break; + /* MVFR2 */ + case 0b0101: + params->Op2 = 2; + break; + default: + valid = false; + } + + if (valid) + return true; + + kvm_pr_unimpl("Unhandled cp10 register %s: %u\n", + params->is_write ? "write" : "read", reg_id); + return false; +} + +/** + * kvm_handle_cp10_id() - Handles a VMRS trap on guest access to a 'Media and + * VFP Register' from AArch32. + * @vcpu: The vCPU pointer + * + * MVFR{0-2} are architecturally mapped to the AArch64 MVFR{0-2}_EL1 registers. + * Work out the correct AArch64 system register encoding and reroute to the + * AArch64 system register emulation. + */ +int kvm_handle_cp10_id(struct kvm_vcpu *vcpu) +{ + int Rt = kvm_vcpu_sys_get_rt(vcpu); + u64 esr = kvm_vcpu_get_esr(vcpu); + struct sys_reg_params params; + + /* UNDEF on any unhandled register access */ + if (!kvm_esr_cp10_id_to_sys64(esr, ¶ms)) { + kvm_inject_undefined(vcpu); + return 1; + } + + if (emulate_sys_reg(vcpu, ¶ms)) + vcpu_set_reg(vcpu, Rt, params.regval); + + return 1; +} + +/** + * kvm_emulate_cp15_id_reg() - Handles an MRC trap on a guest CP15 access where + * CRn=0, which corresponds to the AArch32 feature + * registers. + * @vcpu: the vCPU pointer + * @params: the system register access parameters. + * + * Our cp15 system register tables do not enumerate the AArch32 feature + * registers. Conveniently, our AArch64 table does, and the AArch32 system + * register encoding can be trivially remapped into the AArch64 for the feature + * registers: Append op0=3, leaving op1, CRn, CRm, and op2 the same. + * + * According to DDI0487G.b G7.3.1, paragraph "Behavior of VMSAv8-32 32-bit + * System registers with (coproc=0b1111, CRn==c0)", read accesses from this + * range are either UNKNOWN or RES0. Rerouting remains architectural as we + * treat undefined registers in this range as RAZ. + */ +static int kvm_emulate_cp15_id_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *params) +{ + int Rt = kvm_vcpu_sys_get_rt(vcpu); + + /* Treat impossible writes to RO registers as UNDEFINED */ + if (params->is_write) { + unhandled_cp_access(vcpu, params); + return 1; + } + + params->Op0 = 3; + + /* + * All registers where CRm > 3 are known to be UNKNOWN/RAZ from AArch32. + * Avoid conflicting with future expansion of AArch64 feature registers + * and simply treat them as RAZ here. + */ + if (params->CRm > 3) + params->regval = 0; + else if (!emulate_sys_reg(vcpu, params)) + return 1; + + vcpu_set_reg(vcpu, Rt, params->regval); + return 1; +} + +/** + * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access + * @vcpu: The VCPU pointer + * @run: The kvm_run struct + */ +static int kvm_handle_cp_32(struct kvm_vcpu *vcpu, + struct sys_reg_params *params, + const struct sys_reg_desc *global, + size_t nr_global) +{ + int Rt = kvm_vcpu_sys_get_rt(vcpu); + + params->regval = vcpu_get_reg(vcpu, Rt); + + if (emulate_cp(vcpu, params, global, nr_global)) { + if (!params->is_write) + vcpu_set_reg(vcpu, Rt, params->regval); + return 1; + } + + unhandled_cp_access(vcpu, params); + return 1; +} + +int kvm_handle_cp15_64(struct kvm_vcpu *vcpu) +{ + return kvm_handle_cp_64(vcpu, cp15_64_regs, ARRAY_SIZE(cp15_64_regs)); +} + +int kvm_handle_cp15_32(struct kvm_vcpu *vcpu) +{ + struct sys_reg_params params; + + params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); + + /* + * Certain AArch32 ID registers are handled by rerouting to the AArch64 + * system register table. Registers in the ID range where CRm=0 are + * excluded from this scheme as they do not trivially map into AArch64 + * system register encodings. + */ + if (params.Op1 == 0 && params.CRn == 0 && params.CRm) + return kvm_emulate_cp15_id_reg(vcpu, ¶ms); + + return kvm_handle_cp_32(vcpu, ¶ms, cp15_regs, ARRAY_SIZE(cp15_regs)); +} + +int kvm_handle_cp14_64(struct kvm_vcpu *vcpu) +{ + return kvm_handle_cp_64(vcpu, cp14_64_regs, ARRAY_SIZE(cp14_64_regs)); +} + +int kvm_handle_cp14_32(struct kvm_vcpu *vcpu) +{ + struct sys_reg_params params; + + params = esr_cp1x_32_to_params(kvm_vcpu_get_esr(vcpu)); + + return kvm_handle_cp_32(vcpu, ¶ms, cp14_regs, ARRAY_SIZE(cp14_regs)); +} + +static bool is_imp_def_sys_reg(struct sys_reg_params *params) +{ + // See ARM DDI 0487E.a, section D12.3.2 + return params->Op0 == 3 && (params->CRn & 0b1011) == 0b1011; +} + +/** + * emulate_sys_reg - Emulate a guest access to an AArch64 system register + * @vcpu: The VCPU pointer + * @params: Decoded system register parameters + * + * Return: true if the system register access was successful, false otherwise. + */ +static bool emulate_sys_reg(struct kvm_vcpu *vcpu, + struct sys_reg_params *params) +{ + const struct sys_reg_desc *r; + + r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); + + if (likely(r)) { + perform_access(vcpu, params, r); + return true; + } + + if (is_imp_def_sys_reg(params)) { + kvm_inject_undefined(vcpu); + } else { + print_sys_reg_msg(params, + "Unsupported guest sys_reg access at: %lx [%08lx]\n", + *vcpu_pc(vcpu), *vcpu_cpsr(vcpu)); + kvm_inject_undefined(vcpu); + } + return false; +} + +/** + * kvm_reset_sys_regs - sets system registers to reset value + * @vcpu: The VCPU pointer + * + * This function finds the right table above and sets the registers on the + * virtual CPU struct to their architecturally defined reset values. + */ +void kvm_reset_sys_regs(struct kvm_vcpu *vcpu) +{ + unsigned long i; + + for (i = 0; i < ARRAY_SIZE(sys_reg_descs); i++) + if (sys_reg_descs[i].reset) + sys_reg_descs[i].reset(vcpu, &sys_reg_descs[i]); +} + +/** + * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access + * @vcpu: The VCPU pointer + */ +int kvm_handle_sys_reg(struct kvm_vcpu *vcpu) +{ + struct sys_reg_params params; + unsigned long esr = kvm_vcpu_get_esr(vcpu); + int Rt = kvm_vcpu_sys_get_rt(vcpu); + + trace_kvm_handle_sys_reg(esr); + + params = esr_sys64_to_params(esr); + params.regval = vcpu_get_reg(vcpu, Rt); + + if (!emulate_sys_reg(vcpu, ¶ms)) + return 1; + + if (!params.is_write) + vcpu_set_reg(vcpu, Rt, params.regval); + return 1; +} + +/****************************************************************************** + * Userspace API + *****************************************************************************/ + +static bool index_to_params(u64 id, struct sys_reg_params *params) +{ + switch (id & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U64: + /* Any unused index bits means it's not valid. */ + if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK + | KVM_REG_ARM_COPROC_MASK + | KVM_REG_ARM64_SYSREG_OP0_MASK + | KVM_REG_ARM64_SYSREG_OP1_MASK + | KVM_REG_ARM64_SYSREG_CRN_MASK + | KVM_REG_ARM64_SYSREG_CRM_MASK + | KVM_REG_ARM64_SYSREG_OP2_MASK)) + return false; + params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK) + >> KVM_REG_ARM64_SYSREG_OP0_SHIFT); + params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK) + >> KVM_REG_ARM64_SYSREG_OP1_SHIFT); + params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK) + >> KVM_REG_ARM64_SYSREG_CRN_SHIFT); + params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK) + >> KVM_REG_ARM64_SYSREG_CRM_SHIFT); + params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK) + >> KVM_REG_ARM64_SYSREG_OP2_SHIFT); + return true; + default: + return false; + } +} + +const struct sys_reg_desc *get_reg_by_id(u64 id, + const struct sys_reg_desc table[], + unsigned int num) +{ + struct sys_reg_params params; + + if (!index_to_params(id, ¶ms)) + return NULL; + + return find_reg(¶ms, table, num); +} + +/* Decode an index value, and find the sys_reg_desc entry. */ +static const struct sys_reg_desc * +id_to_sys_reg_desc(struct kvm_vcpu *vcpu, u64 id, + const struct sys_reg_desc table[], unsigned int num) + +{ + const struct sys_reg_desc *r; + + /* We only do sys_reg for now. */ + if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG) + return NULL; + + r = get_reg_by_id(id, table, num); + + /* Not saved in the sys_reg array and not otherwise accessible? */ + if (r && (!(r->reg || r->get_user) || sysreg_hidden(vcpu, r))) + r = NULL; + + return r; +} + +/* + * These are the invariant sys_reg registers: we let the guest see the + * host versions of these, so they're part of the guest state. + * + * A future CPU may provide a mechanism to present different values to + * the guest, or a future kvm may trap them. + */ + +#define FUNCTION_INVARIANT(reg) \ + static void get_##reg(struct kvm_vcpu *v, \ + const struct sys_reg_desc *r) \ + { \ + ((struct sys_reg_desc *)r)->val = read_sysreg(reg); \ + } + +FUNCTION_INVARIANT(midr_el1) +FUNCTION_INVARIANT(revidr_el1) +FUNCTION_INVARIANT(clidr_el1) +FUNCTION_INVARIANT(aidr_el1) + +static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r) +{ + ((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0); +} + +/* ->val is filled in by kvm_sys_reg_table_init() */ +static struct sys_reg_desc invariant_sys_regs[] = { + { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 }, + { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 }, + { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 }, + { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 }, + { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 }, +}; + +static int get_invariant_sys_reg(u64 id, u64 __user *uaddr) +{ + const struct sys_reg_desc *r; + + r = get_reg_by_id(id, invariant_sys_regs, + ARRAY_SIZE(invariant_sys_regs)); + if (!r) + return -ENOENT; + + return put_user(r->val, uaddr); +} + +static int set_invariant_sys_reg(u64 id, u64 __user *uaddr) +{ + const struct sys_reg_desc *r; + u64 val; + + r = get_reg_by_id(id, invariant_sys_regs, + ARRAY_SIZE(invariant_sys_regs)); + if (!r) + return -ENOENT; + + if (get_user(val, uaddr)) + return -EFAULT; + + /* This is what we mean by invariant: you can't change it. */ + if (r->val != val) + return -EINVAL; + + return 0; +} + +static bool is_valid_cache(u32 val) +{ + u32 level, ctype; + + if (val >= CSSELR_MAX) + return false; + + /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */ + level = (val >> 1); + ctype = (cache_levels >> (level * 3)) & 7; + + switch (ctype) { + case 0: /* No cache */ + return false; + case 1: /* Instruction cache only */ + return (val & 1); + case 2: /* Data cache only */ + case 4: /* Unified cache */ + return !(val & 1); + case 3: /* Separate instruction and data caches */ + return true; + default: /* Reserved: we can't know instruction or data. */ + return false; + } +} + +static int demux_c15_get(u64 id, void __user *uaddr) +{ + u32 val; + u32 __user *uval = uaddr; + + /* Fail if we have unknown bits set. */ + if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK + | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) + return -ENOENT; + + switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { + case KVM_REG_ARM_DEMUX_ID_CCSIDR: + if (KVM_REG_SIZE(id) != 4) + return -ENOENT; + val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) + >> KVM_REG_ARM_DEMUX_VAL_SHIFT; + if (!is_valid_cache(val)) + return -ENOENT; + + return put_user(get_ccsidr(val), uval); + default: + return -ENOENT; + } +} + +static int demux_c15_set(u64 id, void __user *uaddr) +{ + u32 val, newval; + u32 __user *uval = uaddr; + + /* Fail if we have unknown bits set. */ + if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK + | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1))) + return -ENOENT; + + switch (id & KVM_REG_ARM_DEMUX_ID_MASK) { + case KVM_REG_ARM_DEMUX_ID_CCSIDR: + if (KVM_REG_SIZE(id) != 4) + return -ENOENT; + val = (id & KVM_REG_ARM_DEMUX_VAL_MASK) + >> KVM_REG_ARM_DEMUX_VAL_SHIFT; + if (!is_valid_cache(val)) + return -ENOENT; + + if (get_user(newval, uval)) + return -EFAULT; + + /* This is also invariant: you can't change it. */ + if (newval != get_ccsidr(val)) + return -EINVAL; + return 0; + default: + return -ENOENT; + } +} + +int kvm_sys_reg_get_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, + const struct sys_reg_desc table[], unsigned int num) +{ + u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; + const struct sys_reg_desc *r; + u64 val; + int ret; + + r = id_to_sys_reg_desc(vcpu, reg->id, table, num); + if (!r) + return -ENOENT; + + if (r->get_user) { + ret = (r->get_user)(vcpu, r, &val); + } else { + val = __vcpu_sys_reg(vcpu, r->reg); + ret = 0; + } + + if (!ret) + ret = put_user(val, uaddr); + + return ret; +} + +int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + void __user *uaddr = (void __user *)(unsigned long)reg->addr; + int err; + + if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) + return demux_c15_get(reg->id, uaddr); + + err = get_invariant_sys_reg(reg->id, uaddr); + if (err != -ENOENT) + return err; + + return kvm_sys_reg_get_user(vcpu, reg, + sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); +} + +int kvm_sys_reg_set_user(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg, + const struct sys_reg_desc table[], unsigned int num) +{ + u64 __user *uaddr = (u64 __user *)(unsigned long)reg->addr; + const struct sys_reg_desc *r; + u64 val; + int ret; + + if (get_user(val, uaddr)) + return -EFAULT; + + r = id_to_sys_reg_desc(vcpu, reg->id, table, num); + if (!r) + return -ENOENT; + + if (sysreg_user_write_ignore(vcpu, r)) + return 0; + + if (r->set_user) { + ret = (r->set_user)(vcpu, r, val); + } else { + __vcpu_sys_reg(vcpu, r->reg) = val; + ret = 0; + } + + return ret; +} + +int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg) +{ + void __user *uaddr = (void __user *)(unsigned long)reg->addr; + int err; + + if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) + return demux_c15_set(reg->id, uaddr); + + err = set_invariant_sys_reg(reg->id, uaddr); + if (err != -ENOENT) + return err; + + return kvm_sys_reg_set_user(vcpu, reg, + sys_reg_descs, ARRAY_SIZE(sys_reg_descs)); +} + +static unsigned int num_demux_regs(void) +{ + unsigned int i, count = 0; + + for (i = 0; i < CSSELR_MAX; i++) + if (is_valid_cache(i)) + count++; + + return count; +} + +static int write_demux_regids(u64 __user *uindices) +{ + u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX; + unsigned int i; + + val |= KVM_REG_ARM_DEMUX_ID_CCSIDR; + for (i = 0; i < CSSELR_MAX; i++) { + if (!is_valid_cache(i)) + continue; + if (put_user(val | i, uindices)) + return -EFAULT; + uindices++; + } + return 0; +} + +static u64 sys_reg_to_index(const struct sys_reg_desc *reg) +{ + return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | + KVM_REG_ARM64_SYSREG | + (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) | + (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) | + (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) | + (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) | + (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT)); +} + +static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind) +{ + if (!*uind) + return true; + + if (put_user(sys_reg_to_index(reg), *uind)) + return false; + + (*uind)++; + return true; +} + +static int walk_one_sys_reg(const struct kvm_vcpu *vcpu, + const struct sys_reg_desc *rd, + u64 __user **uind, + unsigned int *total) +{ + /* + * Ignore registers we trap but don't save, + * and for which no custom user accessor is provided. + */ + if (!(rd->reg || rd->get_user)) + return 0; + + if (sysreg_hidden(vcpu, rd)) + return 0; + + if (!copy_reg_to_user(rd, uind)) + return -EFAULT; + + (*total)++; + return 0; +} + +/* Assumed ordered tables, see kvm_sys_reg_table_init. */ +static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind) +{ + const struct sys_reg_desc *i2, *end2; + unsigned int total = 0; + int err; + + i2 = sys_reg_descs; + end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs); + + while (i2 != end2) { + err = walk_one_sys_reg(vcpu, i2++, &uind, &total); + if (err) + return err; + } + return total; +} + +unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu) +{ + return ARRAY_SIZE(invariant_sys_regs) + + num_demux_regs() + + walk_sys_regs(vcpu, (u64 __user *)NULL); +} + +int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices) +{ + unsigned int i; + int err; + + /* Then give them all the invariant registers' indices. */ + for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) { + if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices)) + return -EFAULT; + uindices++; + } + + err = walk_sys_regs(vcpu, uindices); + if (err < 0) + return err; + uindices += err; + + return write_demux_regids(uindices); +} + +int kvm_sys_reg_table_init(void) +{ + bool valid = true; + unsigned int i; + struct sys_reg_desc clidr; + + /* Make sure tables are unique and in order. */ + valid &= check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs), false); + valid &= check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs), true); + valid &= check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs), true); + valid &= check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs), true); + valid &= check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs), true); + valid &= check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs), false); + + if (!valid) + return -EINVAL; + + /* We abuse the reset function to overwrite the table itself. */ + for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) + invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]); + + /* + * CLIDR format is awkward, so clean it up. See ARM B4.1.20: + * + * If software reads the Cache Type fields from Ctype1 + * upwards, once it has seen a value of 0b000, no caches + * exist at further-out levels of the hierarchy. So, for + * example, if Ctype3 is the first Cache Type field with a + * value of 0b000, the values of Ctype4 to Ctype7 must be + * ignored. + */ + get_clidr_el1(NULL, &clidr); /* Ugly... */ + cache_levels = clidr.val; + for (i = 0; i < 7; i++) + if (((cache_levels >> (i*3)) & 7) == 0) + break; + /* Clear all higher bits. */ + cache_levels &= (1 << (i*3))-1; + + return 0; +} |