diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /arch/x86/math-emu/poly_sin.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'arch/x86/math-emu/poly_sin.c')
-rw-r--r-- | arch/x86/math-emu/poly_sin.c | 379 |
1 files changed, 379 insertions, 0 deletions
diff --git a/arch/x86/math-emu/poly_sin.c b/arch/x86/math-emu/poly_sin.c new file mode 100644 index 000000000..c192fba51 --- /dev/null +++ b/arch/x86/math-emu/poly_sin.c @@ -0,0 +1,379 @@ +// SPDX-License-Identifier: GPL-2.0 +/*---------------------------------------------------------------------------+ + | poly_sin.c | + | | + | Computation of an approximation of the sin function and the cosine | + | function by a polynomial. | + | | + | Copyright (C) 1992,1993,1994,1997,1999 | + | W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia | + | E-mail billm@melbpc.org.au | + | | + | | + +---------------------------------------------------------------------------*/ + +#include "exception.h" +#include "reg_constant.h" +#include "fpu_emu.h" +#include "fpu_system.h" +#include "control_w.h" +#include "poly.h" + +#define N_COEFF_P 4 +#define N_COEFF_N 4 + +static const unsigned long long pos_terms_l[N_COEFF_P] = { + 0xaaaaaaaaaaaaaaabLL, + 0x00d00d00d00cf906LL, + 0x000006b99159a8bbLL, + 0x000000000d7392e6LL +}; + +static const unsigned long long neg_terms_l[N_COEFF_N] = { + 0x2222222222222167LL, + 0x0002e3bc74aab624LL, + 0x0000000b09229062LL, + 0x00000000000c7973LL +}; + +#define N_COEFF_PH 4 +#define N_COEFF_NH 4 +static const unsigned long long pos_terms_h[N_COEFF_PH] = { + 0x0000000000000000LL, + 0x05b05b05b05b0406LL, + 0x000049f93edd91a9LL, + 0x00000000c9c9ed62LL +}; + +static const unsigned long long neg_terms_h[N_COEFF_NH] = { + 0xaaaaaaaaaaaaaa98LL, + 0x001a01a01a019064LL, + 0x0000008f76c68a77LL, + 0x0000000000d58f5eLL +}; + +/*--- poly_sine() -----------------------------------------------------------+ + | | + +---------------------------------------------------------------------------*/ +void poly_sine(FPU_REG *st0_ptr) +{ + int exponent, echange; + Xsig accumulator, argSqrd, argTo4; + unsigned long fix_up, adj; + unsigned long long fixed_arg; + FPU_REG result; + + exponent = exponent(st0_ptr); + + accumulator.lsw = accumulator.midw = accumulator.msw = 0; + + /* Split into two ranges, for arguments below and above 1.0 */ + /* The boundary between upper and lower is approx 0.88309101259 */ + if ((exponent < -1) + || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) { + /* The argument is <= 0.88309101259 */ + + argSqrd.msw = st0_ptr->sigh; + argSqrd.midw = st0_ptr->sigl; + argSqrd.lsw = 0; + mul64_Xsig(&argSqrd, &significand(st0_ptr)); + shr_Xsig(&argSqrd, 2 * (-1 - exponent)); + argTo4.msw = argSqrd.msw; + argTo4.midw = argSqrd.midw; + argTo4.lsw = argSqrd.lsw; + mul_Xsig_Xsig(&argTo4, &argTo4); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, + N_COEFF_N - 1); + mul_Xsig_Xsig(&accumulator, &argSqrd); + negate_Xsig(&accumulator); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, + N_COEFF_P - 1); + + shr_Xsig(&accumulator, 2); /* Divide by four */ + accumulator.msw |= 0x80000000; /* Add 1.0 */ + + mul64_Xsig(&accumulator, &significand(st0_ptr)); + mul64_Xsig(&accumulator, &significand(st0_ptr)); + mul64_Xsig(&accumulator, &significand(st0_ptr)); + + /* Divide by four, FPU_REG compatible, etc */ + exponent = 3 * exponent; + + /* The minimum exponent difference is 3 */ + shr_Xsig(&accumulator, exponent(st0_ptr) - exponent); + + negate_Xsig(&accumulator); + XSIG_LL(accumulator) += significand(st0_ptr); + + echange = round_Xsig(&accumulator); + + setexponentpos(&result, exponent(st0_ptr) + echange); + } else { + /* The argument is > 0.88309101259 */ + /* We use sin(st(0)) = cos(pi/2-st(0)) */ + + fixed_arg = significand(st0_ptr); + + if (exponent == 0) { + /* The argument is >= 1.0 */ + + /* Put the binary point at the left. */ + fixed_arg <<= 1; + } + /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ + fixed_arg = 0x921fb54442d18469LL - fixed_arg; + /* There is a special case which arises due to rounding, to fix here. */ + if (fixed_arg == 0xffffffffffffffffLL) + fixed_arg = 0; + + XSIG_LL(argSqrd) = fixed_arg; + argSqrd.lsw = 0; + mul64_Xsig(&argSqrd, &fixed_arg); + + XSIG_LL(argTo4) = XSIG_LL(argSqrd); + argTo4.lsw = argSqrd.lsw; + mul_Xsig_Xsig(&argTo4, &argTo4); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, + N_COEFF_NH - 1); + mul_Xsig_Xsig(&accumulator, &argSqrd); + negate_Xsig(&accumulator); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, + N_COEFF_PH - 1); + negate_Xsig(&accumulator); + + mul64_Xsig(&accumulator, &fixed_arg); + mul64_Xsig(&accumulator, &fixed_arg); + + shr_Xsig(&accumulator, 3); + negate_Xsig(&accumulator); + + add_Xsig_Xsig(&accumulator, &argSqrd); + + shr_Xsig(&accumulator, 1); + + accumulator.lsw |= 1; /* A zero accumulator here would cause problems */ + negate_Xsig(&accumulator); + + /* The basic computation is complete. Now fix the answer to + compensate for the error due to the approximation used for + pi/2 + */ + + /* This has an exponent of -65 */ + fix_up = 0x898cc517; + /* The fix-up needs to be improved for larger args */ + if (argSqrd.msw & 0xffc00000) { + /* Get about 32 bit precision in these: */ + fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6; + } + fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg)); + + adj = accumulator.lsw; /* temp save */ + accumulator.lsw -= fix_up; + if (accumulator.lsw > adj) + XSIG_LL(accumulator)--; + + echange = round_Xsig(&accumulator); + + setexponentpos(&result, echange - 1); + } + + significand(&result) = XSIG_LL(accumulator); + setsign(&result, getsign(st0_ptr)); + FPU_copy_to_reg0(&result, TAG_Valid); + +#ifdef PARANOID + if ((exponent(&result) >= 0) + && (significand(&result) > 0x8000000000000000LL)) { + EXCEPTION(EX_INTERNAL | 0x150); + } +#endif /* PARANOID */ + +} + +/*--- poly_cos() ------------------------------------------------------------+ + | | + +---------------------------------------------------------------------------*/ +void poly_cos(FPU_REG *st0_ptr) +{ + FPU_REG result; + long int exponent, exp2, echange; + Xsig accumulator, argSqrd, fix_up, argTo4; + unsigned long long fixed_arg; + +#ifdef PARANOID + if ((exponent(st0_ptr) > 0) + || ((exponent(st0_ptr) == 0) + && (significand(st0_ptr) > 0xc90fdaa22168c234LL))) { + EXCEPTION(EX_Invalid); + FPU_copy_to_reg0(&CONST_QNaN, TAG_Special); + return; + } +#endif /* PARANOID */ + + exponent = exponent(st0_ptr); + + accumulator.lsw = accumulator.midw = accumulator.msw = 0; + + if ((exponent < -1) + || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) { + /* arg is < 0.687705 */ + + argSqrd.msw = st0_ptr->sigh; + argSqrd.midw = st0_ptr->sigl; + argSqrd.lsw = 0; + mul64_Xsig(&argSqrd, &significand(st0_ptr)); + + if (exponent < -1) { + /* shift the argument right by the required places */ + shr_Xsig(&argSqrd, 2 * (-1 - exponent)); + } + + argTo4.msw = argSqrd.msw; + argTo4.midw = argSqrd.midw; + argTo4.lsw = argSqrd.lsw; + mul_Xsig_Xsig(&argTo4, &argTo4); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h, + N_COEFF_NH - 1); + mul_Xsig_Xsig(&accumulator, &argSqrd); + negate_Xsig(&accumulator); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h, + N_COEFF_PH - 1); + negate_Xsig(&accumulator); + + mul64_Xsig(&accumulator, &significand(st0_ptr)); + mul64_Xsig(&accumulator, &significand(st0_ptr)); + shr_Xsig(&accumulator, -2 * (1 + exponent)); + + shr_Xsig(&accumulator, 3); + negate_Xsig(&accumulator); + + add_Xsig_Xsig(&accumulator, &argSqrd); + + shr_Xsig(&accumulator, 1); + + /* It doesn't matter if accumulator is all zero here, the + following code will work ok */ + negate_Xsig(&accumulator); + + if (accumulator.lsw & 0x80000000) + XSIG_LL(accumulator)++; + if (accumulator.msw == 0) { + /* The result is 1.0 */ + FPU_copy_to_reg0(&CONST_1, TAG_Valid); + return; + } else { + significand(&result) = XSIG_LL(accumulator); + + /* will be a valid positive nr with expon = -1 */ + setexponentpos(&result, -1); + } + } else { + fixed_arg = significand(st0_ptr); + + if (exponent == 0) { + /* The argument is >= 1.0 */ + + /* Put the binary point at the left. */ + fixed_arg <<= 1; + } + /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */ + fixed_arg = 0x921fb54442d18469LL - fixed_arg; + /* There is a special case which arises due to rounding, to fix here. */ + if (fixed_arg == 0xffffffffffffffffLL) + fixed_arg = 0; + + exponent = -1; + exp2 = -1; + + /* A shift is needed here only for a narrow range of arguments, + i.e. for fixed_arg approx 2^-32, but we pick up more... */ + if (!(LL_MSW(fixed_arg) & 0xffff0000)) { + fixed_arg <<= 16; + exponent -= 16; + exp2 -= 16; + } + + XSIG_LL(argSqrd) = fixed_arg; + argSqrd.lsw = 0; + mul64_Xsig(&argSqrd, &fixed_arg); + + if (exponent < -1) { + /* shift the argument right by the required places */ + shr_Xsig(&argSqrd, 2 * (-1 - exponent)); + } + + argTo4.msw = argSqrd.msw; + argTo4.midw = argSqrd.midw; + argTo4.lsw = argSqrd.lsw; + mul_Xsig_Xsig(&argTo4, &argTo4); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l, + N_COEFF_N - 1); + mul_Xsig_Xsig(&accumulator, &argSqrd); + negate_Xsig(&accumulator); + + polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l, + N_COEFF_P - 1); + + shr_Xsig(&accumulator, 2); /* Divide by four */ + accumulator.msw |= 0x80000000; /* Add 1.0 */ + + mul64_Xsig(&accumulator, &fixed_arg); + mul64_Xsig(&accumulator, &fixed_arg); + mul64_Xsig(&accumulator, &fixed_arg); + + /* Divide by four, FPU_REG compatible, etc */ + exponent = 3 * exponent; + + /* The minimum exponent difference is 3 */ + shr_Xsig(&accumulator, exp2 - exponent); + + negate_Xsig(&accumulator); + XSIG_LL(accumulator) += fixed_arg; + + /* The basic computation is complete. Now fix the answer to + compensate for the error due to the approximation used for + pi/2 + */ + + /* This has an exponent of -65 */ + XSIG_LL(fix_up) = 0x898cc51701b839a2ll; + fix_up.lsw = 0; + + /* The fix-up needs to be improved for larger args */ + if (argSqrd.msw & 0xffc00000) { + /* Get about 32 bit precision in these: */ + fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2; + fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24; + } + + exp2 += norm_Xsig(&accumulator); + shr_Xsig(&accumulator, 1); /* Prevent overflow */ + exp2++; + shr_Xsig(&fix_up, 65 + exp2); + + add_Xsig_Xsig(&accumulator, &fix_up); + + echange = round_Xsig(&accumulator); + + setexponentpos(&result, exp2 + echange); + significand(&result) = XSIG_LL(accumulator); + } + + FPU_copy_to_reg0(&result, TAG_Valid); + +#ifdef PARANOID + if ((exponent(&result) >= 0) + && (significand(&result) > 0x8000000000000000LL)) { + EXCEPTION(EX_INTERNAL | 0x151); + } +#endif /* PARANOID */ + +} |