diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/dma/sun4i-dma.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/dma/sun4i-dma.c')
-rw-r--r-- | drivers/dma/sun4i-dma.c | 1310 |
1 files changed, 1310 insertions, 0 deletions
diff --git a/drivers/dma/sun4i-dma.c b/drivers/dma/sun4i-dma.c new file mode 100644 index 000000000..f291b1b4d --- /dev/null +++ b/drivers/dma/sun4i-dma.c @@ -0,0 +1,1310 @@ +// SPDX-License-Identifier: GPL-2.0-or-later +/* + * Copyright (C) 2014 Emilio López + * Emilio López <emilio@elopez.com.ar> + */ + +#include <linux/bitmap.h> +#include <linux/bitops.h> +#include <linux/clk.h> +#include <linux/dma-mapping.h> +#include <linux/dmaengine.h> +#include <linux/dmapool.h> +#include <linux/interrupt.h> +#include <linux/module.h> +#include <linux/of_dma.h> +#include <linux/platform_device.h> +#include <linux/slab.h> +#include <linux/spinlock.h> + +#include "virt-dma.h" + +/** Common macros to normal and dedicated DMA registers **/ + +#define SUN4I_DMA_CFG_LOADING BIT(31) +#define SUN4I_DMA_CFG_DST_DATA_WIDTH(width) ((width) << 25) +#define SUN4I_DMA_CFG_DST_BURST_LENGTH(len) ((len) << 23) +#define SUN4I_DMA_CFG_DST_ADDR_MODE(mode) ((mode) << 21) +#define SUN4I_DMA_CFG_DST_DRQ_TYPE(type) ((type) << 16) +#define SUN4I_DMA_CFG_SRC_DATA_WIDTH(width) ((width) << 9) +#define SUN4I_DMA_CFG_SRC_BURST_LENGTH(len) ((len) << 7) +#define SUN4I_DMA_CFG_SRC_ADDR_MODE(mode) ((mode) << 5) +#define SUN4I_DMA_CFG_SRC_DRQ_TYPE(type) (type) + +/** Normal DMA register values **/ + +/* Normal DMA source/destination data request type values */ +#define SUN4I_NDMA_DRQ_TYPE_SDRAM 0x16 +#define SUN4I_NDMA_DRQ_TYPE_LIMIT (0x1F + 1) + +/** Normal DMA register layout **/ + +/* Dedicated DMA source/destination address mode values */ +#define SUN4I_NDMA_ADDR_MODE_LINEAR 0 +#define SUN4I_NDMA_ADDR_MODE_IO 1 + +/* Normal DMA configuration register layout */ +#define SUN4I_NDMA_CFG_CONT_MODE BIT(30) +#define SUN4I_NDMA_CFG_WAIT_STATE(n) ((n) << 27) +#define SUN4I_NDMA_CFG_DST_NON_SECURE BIT(22) +#define SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15) +#define SUN4I_NDMA_CFG_SRC_NON_SECURE BIT(6) + +/** Dedicated DMA register values **/ + +/* Dedicated DMA source/destination address mode values */ +#define SUN4I_DDMA_ADDR_MODE_LINEAR 0 +#define SUN4I_DDMA_ADDR_MODE_IO 1 +#define SUN4I_DDMA_ADDR_MODE_HORIZONTAL_PAGE 2 +#define SUN4I_DDMA_ADDR_MODE_VERTICAL_PAGE 3 + +/* Dedicated DMA source/destination data request type values */ +#define SUN4I_DDMA_DRQ_TYPE_SDRAM 0x1 +#define SUN4I_DDMA_DRQ_TYPE_LIMIT (0x1F + 1) + +/** Dedicated DMA register layout **/ + +/* Dedicated DMA configuration register layout */ +#define SUN4I_DDMA_CFG_BUSY BIT(30) +#define SUN4I_DDMA_CFG_CONT_MODE BIT(29) +#define SUN4I_DDMA_CFG_DST_NON_SECURE BIT(28) +#define SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN BIT(15) +#define SUN4I_DDMA_CFG_SRC_NON_SECURE BIT(12) + +/* Dedicated DMA parameter register layout */ +#define SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(n) (((n) - 1) << 24) +#define SUN4I_DDMA_PARA_DST_WAIT_CYCLES(n) (((n) - 1) << 16) +#define SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(n) (((n) - 1) << 8) +#define SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(n) (((n) - 1) << 0) + +/** DMA register offsets **/ + +/* General register offsets */ +#define SUN4I_DMA_IRQ_ENABLE_REG 0x0 +#define SUN4I_DMA_IRQ_PENDING_STATUS_REG 0x4 + +/* Normal DMA register offsets */ +#define SUN4I_NDMA_CHANNEL_REG_BASE(n) (0x100 + (n) * 0x20) +#define SUN4I_NDMA_CFG_REG 0x0 +#define SUN4I_NDMA_SRC_ADDR_REG 0x4 +#define SUN4I_NDMA_DST_ADDR_REG 0x8 +#define SUN4I_NDMA_BYTE_COUNT_REG 0xC + +/* Dedicated DMA register offsets */ +#define SUN4I_DDMA_CHANNEL_REG_BASE(n) (0x300 + (n) * 0x20) +#define SUN4I_DDMA_CFG_REG 0x0 +#define SUN4I_DDMA_SRC_ADDR_REG 0x4 +#define SUN4I_DDMA_DST_ADDR_REG 0x8 +#define SUN4I_DDMA_BYTE_COUNT_REG 0xC +#define SUN4I_DDMA_PARA_REG 0x18 + +/** DMA Driver **/ + +/* + * Normal DMA has 8 channels, and Dedicated DMA has another 8, so + * that's 16 channels. As for endpoints, there's 29 and 21 + * respectively. Given that the Normal DMA endpoints (other than + * SDRAM) can be used as tx/rx, we need 78 vchans in total + */ +#define SUN4I_NDMA_NR_MAX_CHANNELS 8 +#define SUN4I_DDMA_NR_MAX_CHANNELS 8 +#define SUN4I_DMA_NR_MAX_CHANNELS \ + (SUN4I_NDMA_NR_MAX_CHANNELS + SUN4I_DDMA_NR_MAX_CHANNELS) +#define SUN4I_NDMA_NR_MAX_VCHANS (29 * 2 - 1) +#define SUN4I_DDMA_NR_MAX_VCHANS 21 +#define SUN4I_DMA_NR_MAX_VCHANS \ + (SUN4I_NDMA_NR_MAX_VCHANS + SUN4I_DDMA_NR_MAX_VCHANS) + +/* This set of SUN4I_DDMA timing parameters were found experimentally while + * working with the SPI driver and seem to make it behave correctly */ +#define SUN4I_DDMA_MAGIC_SPI_PARAMETERS \ + (SUN4I_DDMA_PARA_DST_DATA_BLK_SIZE(1) | \ + SUN4I_DDMA_PARA_SRC_DATA_BLK_SIZE(1) | \ + SUN4I_DDMA_PARA_DST_WAIT_CYCLES(2) | \ + SUN4I_DDMA_PARA_SRC_WAIT_CYCLES(2)) + +/* + * Normal DMA supports individual transfers (segments) up to 128k. + * Dedicated DMA supports transfers up to 16M. We can only report + * one size limit, so we have to use the smaller value. + */ +#define SUN4I_NDMA_MAX_SEG_SIZE SZ_128K +#define SUN4I_DDMA_MAX_SEG_SIZE SZ_16M +#define SUN4I_DMA_MAX_SEG_SIZE SUN4I_NDMA_MAX_SEG_SIZE + +struct sun4i_dma_pchan { + /* Register base of channel */ + void __iomem *base; + /* vchan currently being serviced */ + struct sun4i_dma_vchan *vchan; + /* Is this a dedicated pchan? */ + int is_dedicated; +}; + +struct sun4i_dma_vchan { + struct virt_dma_chan vc; + struct dma_slave_config cfg; + struct sun4i_dma_pchan *pchan; + struct sun4i_dma_promise *processing; + struct sun4i_dma_contract *contract; + u8 endpoint; + int is_dedicated; +}; + +struct sun4i_dma_promise { + u32 cfg; + u32 para; + dma_addr_t src; + dma_addr_t dst; + size_t len; + struct list_head list; +}; + +/* A contract is a set of promises */ +struct sun4i_dma_contract { + struct virt_dma_desc vd; + struct list_head demands; + struct list_head completed_demands; + bool is_cyclic : 1; + bool use_half_int : 1; +}; + +struct sun4i_dma_dev { + DECLARE_BITMAP(pchans_used, SUN4I_DMA_NR_MAX_CHANNELS); + struct dma_device slave; + struct sun4i_dma_pchan *pchans; + struct sun4i_dma_vchan *vchans; + void __iomem *base; + struct clk *clk; + int irq; + spinlock_t lock; +}; + +static struct sun4i_dma_dev *to_sun4i_dma_dev(struct dma_device *dev) +{ + return container_of(dev, struct sun4i_dma_dev, slave); +} + +static struct sun4i_dma_vchan *to_sun4i_dma_vchan(struct dma_chan *chan) +{ + return container_of(chan, struct sun4i_dma_vchan, vc.chan); +} + +static struct sun4i_dma_contract *to_sun4i_dma_contract(struct virt_dma_desc *vd) +{ + return container_of(vd, struct sun4i_dma_contract, vd); +} + +static struct device *chan2dev(struct dma_chan *chan) +{ + return &chan->dev->device; +} + +static int convert_burst(u32 maxburst) +{ + if (maxburst > 8) + return -EINVAL; + + /* 1 -> 0, 4 -> 1, 8 -> 2 */ + return (maxburst >> 2); +} + +static int convert_buswidth(enum dma_slave_buswidth addr_width) +{ + if (addr_width > DMA_SLAVE_BUSWIDTH_4_BYTES) + return -EINVAL; + + /* 8 (1 byte) -> 0, 16 (2 bytes) -> 1, 32 (4 bytes) -> 2 */ + return (addr_width >> 1); +} + +static void sun4i_dma_free_chan_resources(struct dma_chan *chan) +{ + struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); + + vchan_free_chan_resources(&vchan->vc); +} + +static struct sun4i_dma_pchan *find_and_use_pchan(struct sun4i_dma_dev *priv, + struct sun4i_dma_vchan *vchan) +{ + struct sun4i_dma_pchan *pchan = NULL, *pchans = priv->pchans; + unsigned long flags; + int i, max; + + /* + * pchans 0-SUN4I_NDMA_NR_MAX_CHANNELS are normal, and + * SUN4I_NDMA_NR_MAX_CHANNELS+ are dedicated ones + */ + if (vchan->is_dedicated) { + i = SUN4I_NDMA_NR_MAX_CHANNELS; + max = SUN4I_DMA_NR_MAX_CHANNELS; + } else { + i = 0; + max = SUN4I_NDMA_NR_MAX_CHANNELS; + } + + spin_lock_irqsave(&priv->lock, flags); + for_each_clear_bit_from(i, priv->pchans_used, max) { + pchan = &pchans[i]; + pchan->vchan = vchan; + set_bit(i, priv->pchans_used); + break; + } + spin_unlock_irqrestore(&priv->lock, flags); + + return pchan; +} + +static void release_pchan(struct sun4i_dma_dev *priv, + struct sun4i_dma_pchan *pchan) +{ + unsigned long flags; + int nr = pchan - priv->pchans; + + spin_lock_irqsave(&priv->lock, flags); + + pchan->vchan = NULL; + clear_bit(nr, priv->pchans_used); + + spin_unlock_irqrestore(&priv->lock, flags); +} + +static void configure_pchan(struct sun4i_dma_pchan *pchan, + struct sun4i_dma_promise *d) +{ + /* + * Configure addresses and misc parameters depending on type + * SUN4I_DDMA has an extra field with timing parameters + */ + if (pchan->is_dedicated) { + writel_relaxed(d->src, pchan->base + SUN4I_DDMA_SRC_ADDR_REG); + writel_relaxed(d->dst, pchan->base + SUN4I_DDMA_DST_ADDR_REG); + writel_relaxed(d->len, pchan->base + SUN4I_DDMA_BYTE_COUNT_REG); + writel_relaxed(d->para, pchan->base + SUN4I_DDMA_PARA_REG); + writel_relaxed(d->cfg, pchan->base + SUN4I_DDMA_CFG_REG); + } else { + writel_relaxed(d->src, pchan->base + SUN4I_NDMA_SRC_ADDR_REG); + writel_relaxed(d->dst, pchan->base + SUN4I_NDMA_DST_ADDR_REG); + writel_relaxed(d->len, pchan->base + SUN4I_NDMA_BYTE_COUNT_REG); + writel_relaxed(d->cfg, pchan->base + SUN4I_NDMA_CFG_REG); + } +} + +static void set_pchan_interrupt(struct sun4i_dma_dev *priv, + struct sun4i_dma_pchan *pchan, + int half, int end) +{ + u32 reg; + int pchan_number = pchan - priv->pchans; + unsigned long flags; + + spin_lock_irqsave(&priv->lock, flags); + + reg = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG); + + if (half) + reg |= BIT(pchan_number * 2); + else + reg &= ~BIT(pchan_number * 2); + + if (end) + reg |= BIT(pchan_number * 2 + 1); + else + reg &= ~BIT(pchan_number * 2 + 1); + + writel_relaxed(reg, priv->base + SUN4I_DMA_IRQ_ENABLE_REG); + + spin_unlock_irqrestore(&priv->lock, flags); +} + +/* + * Execute pending operations on a vchan + * + * When given a vchan, this function will try to acquire a suitable + * pchan and, if successful, will configure it to fulfill a promise + * from the next pending contract. + * + * This function must be called with &vchan->vc.lock held. + */ +static int __execute_vchan_pending(struct sun4i_dma_dev *priv, + struct sun4i_dma_vchan *vchan) +{ + struct sun4i_dma_promise *promise = NULL; + struct sun4i_dma_contract *contract = NULL; + struct sun4i_dma_pchan *pchan; + struct virt_dma_desc *vd; + int ret; + + lockdep_assert_held(&vchan->vc.lock); + + /* We need a pchan to do anything, so secure one if available */ + pchan = find_and_use_pchan(priv, vchan); + if (!pchan) + return -EBUSY; + + /* + * Channel endpoints must not be repeated, so if this vchan + * has already submitted some work, we can't do anything else + */ + if (vchan->processing) { + dev_dbg(chan2dev(&vchan->vc.chan), + "processing something to this endpoint already\n"); + ret = -EBUSY; + goto release_pchan; + } + + do { + /* Figure out which contract we're working with today */ + vd = vchan_next_desc(&vchan->vc); + if (!vd) { + dev_dbg(chan2dev(&vchan->vc.chan), + "No pending contract found"); + ret = 0; + goto release_pchan; + } + + contract = to_sun4i_dma_contract(vd); + if (list_empty(&contract->demands)) { + /* The contract has been completed so mark it as such */ + list_del(&contract->vd.node); + vchan_cookie_complete(&contract->vd); + dev_dbg(chan2dev(&vchan->vc.chan), + "Empty contract found and marked complete"); + } + } while (list_empty(&contract->demands)); + + /* Now find out what we need to do */ + promise = list_first_entry(&contract->demands, + struct sun4i_dma_promise, list); + vchan->processing = promise; + + /* ... and make it reality */ + if (promise) { + vchan->contract = contract; + vchan->pchan = pchan; + set_pchan_interrupt(priv, pchan, contract->use_half_int, 1); + configure_pchan(pchan, promise); + } + + return 0; + +release_pchan: + release_pchan(priv, pchan); + return ret; +} + +static int sanitize_config(struct dma_slave_config *sconfig, + enum dma_transfer_direction direction) +{ + switch (direction) { + case DMA_MEM_TO_DEV: + if ((sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) || + !sconfig->dst_maxburst) + return -EINVAL; + + if (sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) + sconfig->src_addr_width = sconfig->dst_addr_width; + + if (!sconfig->src_maxburst) + sconfig->src_maxburst = sconfig->dst_maxburst; + + break; + + case DMA_DEV_TO_MEM: + if ((sconfig->src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) || + !sconfig->src_maxburst) + return -EINVAL; + + if (sconfig->dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) + sconfig->dst_addr_width = sconfig->src_addr_width; + + if (!sconfig->dst_maxburst) + sconfig->dst_maxburst = sconfig->src_maxburst; + + break; + default: + return 0; + } + + return 0; +} + +/* + * Generate a promise, to be used in a normal DMA contract. + * + * A NDMA promise contains all the information required to program the + * normal part of the DMA Engine and get data copied. A non-executed + * promise will live in the demands list on a contract. Once it has been + * completed, it will be moved to the completed demands list for later freeing. + * All linked promises will be freed when the corresponding contract is freed + */ +static struct sun4i_dma_promise * +generate_ndma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest, + size_t len, struct dma_slave_config *sconfig, + enum dma_transfer_direction direction) +{ + struct sun4i_dma_promise *promise; + int ret; + + ret = sanitize_config(sconfig, direction); + if (ret) + return NULL; + + promise = kzalloc(sizeof(*promise), GFP_NOWAIT); + if (!promise) + return NULL; + + promise->src = src; + promise->dst = dest; + promise->len = len; + promise->cfg = SUN4I_DMA_CFG_LOADING | + SUN4I_NDMA_CFG_BYTE_COUNT_MODE_REMAIN; + + dev_dbg(chan2dev(chan), + "src burst %d, dst burst %d, src buswidth %d, dst buswidth %d", + sconfig->src_maxburst, sconfig->dst_maxburst, + sconfig->src_addr_width, sconfig->dst_addr_width); + + /* Source burst */ + ret = convert_burst(sconfig->src_maxburst); + if (ret < 0) + goto fail; + promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret); + + /* Destination burst */ + ret = convert_burst(sconfig->dst_maxburst); + if (ret < 0) + goto fail; + promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret); + + /* Source bus width */ + ret = convert_buswidth(sconfig->src_addr_width); + if (ret < 0) + goto fail; + promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret); + + /* Destination bus width */ + ret = convert_buswidth(sconfig->dst_addr_width); + if (ret < 0) + goto fail; + promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret); + + return promise; + +fail: + kfree(promise); + return NULL; +} + +/* + * Generate a promise, to be used in a dedicated DMA contract. + * + * A DDMA promise contains all the information required to program the + * Dedicated part of the DMA Engine and get data copied. A non-executed + * promise will live in the demands list on a contract. Once it has been + * completed, it will be moved to the completed demands list for later freeing. + * All linked promises will be freed when the corresponding contract is freed + */ +static struct sun4i_dma_promise * +generate_ddma_promise(struct dma_chan *chan, dma_addr_t src, dma_addr_t dest, + size_t len, struct dma_slave_config *sconfig) +{ + struct sun4i_dma_promise *promise; + int ret; + + promise = kzalloc(sizeof(*promise), GFP_NOWAIT); + if (!promise) + return NULL; + + promise->src = src; + promise->dst = dest; + promise->len = len; + promise->cfg = SUN4I_DMA_CFG_LOADING | + SUN4I_DDMA_CFG_BYTE_COUNT_MODE_REMAIN; + + /* Source burst */ + ret = convert_burst(sconfig->src_maxburst); + if (ret < 0) + goto fail; + promise->cfg |= SUN4I_DMA_CFG_SRC_BURST_LENGTH(ret); + + /* Destination burst */ + ret = convert_burst(sconfig->dst_maxburst); + if (ret < 0) + goto fail; + promise->cfg |= SUN4I_DMA_CFG_DST_BURST_LENGTH(ret); + + /* Source bus width */ + ret = convert_buswidth(sconfig->src_addr_width); + if (ret < 0) + goto fail; + promise->cfg |= SUN4I_DMA_CFG_SRC_DATA_WIDTH(ret); + + /* Destination bus width */ + ret = convert_buswidth(sconfig->dst_addr_width); + if (ret < 0) + goto fail; + promise->cfg |= SUN4I_DMA_CFG_DST_DATA_WIDTH(ret); + + return promise; + +fail: + kfree(promise); + return NULL; +} + +/* + * Generate a contract + * + * Contracts function as DMA descriptors. As our hardware does not support + * linked lists, we need to implement SG via software. We use a contract + * to hold all the pieces of the request and process them serially one + * after another. Each piece is represented as a promise. + */ +static struct sun4i_dma_contract *generate_dma_contract(void) +{ + struct sun4i_dma_contract *contract; + + contract = kzalloc(sizeof(*contract), GFP_NOWAIT); + if (!contract) + return NULL; + + INIT_LIST_HEAD(&contract->demands); + INIT_LIST_HEAD(&contract->completed_demands); + + return contract; +} + +/* + * Get next promise on a cyclic transfer + * + * Cyclic contracts contain a series of promises which are executed on a + * loop. This function returns the next promise from a cyclic contract, + * so it can be programmed into the hardware. + */ +static struct sun4i_dma_promise * +get_next_cyclic_promise(struct sun4i_dma_contract *contract) +{ + struct sun4i_dma_promise *promise; + + promise = list_first_entry_or_null(&contract->demands, + struct sun4i_dma_promise, list); + if (!promise) { + list_splice_init(&contract->completed_demands, + &contract->demands); + promise = list_first_entry(&contract->demands, + struct sun4i_dma_promise, list); + } + + return promise; +} + +/* + * Free a contract and all its associated promises + */ +static void sun4i_dma_free_contract(struct virt_dma_desc *vd) +{ + struct sun4i_dma_contract *contract = to_sun4i_dma_contract(vd); + struct sun4i_dma_promise *promise, *tmp; + + /* Free all the demands and completed demands */ + list_for_each_entry_safe(promise, tmp, &contract->demands, list) + kfree(promise); + + list_for_each_entry_safe(promise, tmp, &contract->completed_demands, list) + kfree(promise); + + kfree(contract); +} + +static struct dma_async_tx_descriptor * +sun4i_dma_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, + dma_addr_t src, size_t len, unsigned long flags) +{ + struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); + struct dma_slave_config *sconfig = &vchan->cfg; + struct sun4i_dma_promise *promise; + struct sun4i_dma_contract *contract; + + contract = generate_dma_contract(); + if (!contract) + return NULL; + + /* + * We can only do the copy to bus aligned addresses, so + * choose the best one so we get decent performance. We also + * maximize the burst size for this same reason. + */ + sconfig->src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + sconfig->dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; + sconfig->src_maxburst = 8; + sconfig->dst_maxburst = 8; + + if (vchan->is_dedicated) + promise = generate_ddma_promise(chan, src, dest, len, sconfig); + else + promise = generate_ndma_promise(chan, src, dest, len, sconfig, + DMA_MEM_TO_MEM); + + if (!promise) { + kfree(contract); + return NULL; + } + + /* Configure memcpy mode */ + if (vchan->is_dedicated) { + promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM) | + SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_DDMA_DRQ_TYPE_SDRAM); + } else { + promise->cfg |= SUN4I_DMA_CFG_SRC_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM) | + SUN4I_DMA_CFG_DST_DRQ_TYPE(SUN4I_NDMA_DRQ_TYPE_SDRAM); + } + + /* Fill the contract with our only promise */ + list_add_tail(&promise->list, &contract->demands); + + /* And add it to the vchan */ + return vchan_tx_prep(&vchan->vc, &contract->vd, flags); +} + +static struct dma_async_tx_descriptor * +sun4i_dma_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf, size_t len, + size_t period_len, enum dma_transfer_direction dir, + unsigned long flags) +{ + struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); + struct dma_slave_config *sconfig = &vchan->cfg; + struct sun4i_dma_promise *promise; + struct sun4i_dma_contract *contract; + dma_addr_t src, dest; + u32 endpoints; + int nr_periods, offset, plength, i; + u8 ram_type, io_mode, linear_mode; + + if (!is_slave_direction(dir)) { + dev_err(chan2dev(chan), "Invalid DMA direction\n"); + return NULL; + } + + contract = generate_dma_contract(); + if (!contract) + return NULL; + + contract->is_cyclic = 1; + + if (vchan->is_dedicated) { + io_mode = SUN4I_DDMA_ADDR_MODE_IO; + linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR; + ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM; + } else { + io_mode = SUN4I_NDMA_ADDR_MODE_IO; + linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR; + ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM; + } + + if (dir == DMA_MEM_TO_DEV) { + src = buf; + dest = sconfig->dst_addr; + endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) | + SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) | + SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) | + SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode); + } else { + src = sconfig->src_addr; + dest = buf; + endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) | + SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) | + SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) | + SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode); + } + + /* + * We will be using half done interrupts to make two periods + * out of a promise, so we need to program the DMA engine less + * often + */ + + /* + * The engine can interrupt on half-transfer, so we can use + * this feature to program the engine half as often as if we + * didn't use it (keep in mind the hardware doesn't support + * linked lists). + * + * Say you have a set of periods (| marks the start/end, I for + * interrupt, P for programming the engine to do a new + * transfer), the easy but slow way would be to do + * + * |---|---|---|---| (periods / promises) + * P I,P I,P I,P I + * + * Using half transfer interrupts you can do + * + * |-------|-------| (promises as configured on hw) + * |---|---|---|---| (periods) + * P I I,P I I + * + * Which requires half the engine programming for the same + * functionality. + * + * This only works if two periods fit in a single promise. That will + * always be the case for dedicated DMA, where the hardware has a much + * larger maximum transfer size than advertised to clients. + */ + if (vchan->is_dedicated || period_len <= SUN4I_NDMA_MAX_SEG_SIZE / 2) { + period_len *= 2; + contract->use_half_int = 1; + } + + nr_periods = DIV_ROUND_UP(len, period_len); + for (i = 0; i < nr_periods; i++) { + /* Calculate the offset in the buffer and the length needed */ + offset = i * period_len; + plength = min((len - offset), period_len); + if (dir == DMA_MEM_TO_DEV) + src = buf + offset; + else + dest = buf + offset; + + /* Make the promise */ + if (vchan->is_dedicated) + promise = generate_ddma_promise(chan, src, dest, + plength, sconfig); + else + promise = generate_ndma_promise(chan, src, dest, + plength, sconfig, dir); + + if (!promise) { + /* TODO: should we free everything? */ + return NULL; + } + promise->cfg |= endpoints; + + /* Then add it to the contract */ + list_add_tail(&promise->list, &contract->demands); + } + + /* And add it to the vchan */ + return vchan_tx_prep(&vchan->vc, &contract->vd, flags); +} + +static struct dma_async_tx_descriptor * +sun4i_dma_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, + unsigned int sg_len, enum dma_transfer_direction dir, + unsigned long flags, void *context) +{ + struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); + struct dma_slave_config *sconfig = &vchan->cfg; + struct sun4i_dma_promise *promise; + struct sun4i_dma_contract *contract; + u8 ram_type, io_mode, linear_mode; + struct scatterlist *sg; + dma_addr_t srcaddr, dstaddr; + u32 endpoints, para; + int i; + + if (!sgl) + return NULL; + + if (!is_slave_direction(dir)) { + dev_err(chan2dev(chan), "Invalid DMA direction\n"); + return NULL; + } + + contract = generate_dma_contract(); + if (!contract) + return NULL; + + if (vchan->is_dedicated) { + io_mode = SUN4I_DDMA_ADDR_MODE_IO; + linear_mode = SUN4I_DDMA_ADDR_MODE_LINEAR; + ram_type = SUN4I_DDMA_DRQ_TYPE_SDRAM; + } else { + io_mode = SUN4I_NDMA_ADDR_MODE_IO; + linear_mode = SUN4I_NDMA_ADDR_MODE_LINEAR; + ram_type = SUN4I_NDMA_DRQ_TYPE_SDRAM; + } + + if (dir == DMA_MEM_TO_DEV) + endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(vchan->endpoint) | + SUN4I_DMA_CFG_DST_ADDR_MODE(io_mode) | + SUN4I_DMA_CFG_SRC_DRQ_TYPE(ram_type) | + SUN4I_DMA_CFG_SRC_ADDR_MODE(linear_mode); + else + endpoints = SUN4I_DMA_CFG_DST_DRQ_TYPE(ram_type) | + SUN4I_DMA_CFG_DST_ADDR_MODE(linear_mode) | + SUN4I_DMA_CFG_SRC_DRQ_TYPE(vchan->endpoint) | + SUN4I_DMA_CFG_SRC_ADDR_MODE(io_mode); + + for_each_sg(sgl, sg, sg_len, i) { + /* Figure out addresses */ + if (dir == DMA_MEM_TO_DEV) { + srcaddr = sg_dma_address(sg); + dstaddr = sconfig->dst_addr; + } else { + srcaddr = sconfig->src_addr; + dstaddr = sg_dma_address(sg); + } + + /* + * These are the magic DMA engine timings that keep SPI going. + * I haven't seen any interface on DMAEngine to configure + * timings, and so far they seem to work for everything we + * support, so I've kept them here. I don't know if other + * devices need different timings because, as usual, we only + * have the "para" bitfield meanings, but no comment on what + * the values should be when doing a certain operation :| + */ + para = SUN4I_DDMA_MAGIC_SPI_PARAMETERS; + + /* And make a suitable promise */ + if (vchan->is_dedicated) + promise = generate_ddma_promise(chan, srcaddr, dstaddr, + sg_dma_len(sg), + sconfig); + else + promise = generate_ndma_promise(chan, srcaddr, dstaddr, + sg_dma_len(sg), + sconfig, dir); + + if (!promise) + return NULL; /* TODO: should we free everything? */ + + promise->cfg |= endpoints; + promise->para = para; + + /* Then add it to the contract */ + list_add_tail(&promise->list, &contract->demands); + } + + /* + * Once we've got all the promises ready, add the contract + * to the pending list on the vchan + */ + return vchan_tx_prep(&vchan->vc, &contract->vd, flags); +} + +static int sun4i_dma_terminate_all(struct dma_chan *chan) +{ + struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device); + struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); + struct sun4i_dma_pchan *pchan = vchan->pchan; + LIST_HEAD(head); + unsigned long flags; + + spin_lock_irqsave(&vchan->vc.lock, flags); + vchan_get_all_descriptors(&vchan->vc, &head); + spin_unlock_irqrestore(&vchan->vc.lock, flags); + + /* + * Clearing the configuration register will halt the pchan. Interrupts + * may still trigger, so don't forget to disable them. + */ + if (pchan) { + if (pchan->is_dedicated) + writel(0, pchan->base + SUN4I_DDMA_CFG_REG); + else + writel(0, pchan->base + SUN4I_NDMA_CFG_REG); + set_pchan_interrupt(priv, pchan, 0, 0); + release_pchan(priv, pchan); + } + + spin_lock_irqsave(&vchan->vc.lock, flags); + /* Clear these so the vchan is usable again */ + vchan->processing = NULL; + vchan->pchan = NULL; + spin_unlock_irqrestore(&vchan->vc.lock, flags); + + vchan_dma_desc_free_list(&vchan->vc, &head); + + return 0; +} + +static int sun4i_dma_config(struct dma_chan *chan, + struct dma_slave_config *config) +{ + struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); + + memcpy(&vchan->cfg, config, sizeof(*config)); + + return 0; +} + +static struct dma_chan *sun4i_dma_of_xlate(struct of_phandle_args *dma_spec, + struct of_dma *ofdma) +{ + struct sun4i_dma_dev *priv = ofdma->of_dma_data; + struct sun4i_dma_vchan *vchan; + struct dma_chan *chan; + u8 is_dedicated = dma_spec->args[0]; + u8 endpoint = dma_spec->args[1]; + + /* Check if type is Normal or Dedicated */ + if (is_dedicated != 0 && is_dedicated != 1) + return NULL; + + /* Make sure the endpoint looks sane */ + if ((is_dedicated && endpoint >= SUN4I_DDMA_DRQ_TYPE_LIMIT) || + (!is_dedicated && endpoint >= SUN4I_NDMA_DRQ_TYPE_LIMIT)) + return NULL; + + chan = dma_get_any_slave_channel(&priv->slave); + if (!chan) + return NULL; + + /* Assign the endpoint to the vchan */ + vchan = to_sun4i_dma_vchan(chan); + vchan->is_dedicated = is_dedicated; + vchan->endpoint = endpoint; + + return chan; +} + +static enum dma_status sun4i_dma_tx_status(struct dma_chan *chan, + dma_cookie_t cookie, + struct dma_tx_state *state) +{ + struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); + struct sun4i_dma_pchan *pchan = vchan->pchan; + struct sun4i_dma_contract *contract; + struct sun4i_dma_promise *promise; + struct virt_dma_desc *vd; + unsigned long flags; + enum dma_status ret; + size_t bytes = 0; + + ret = dma_cookie_status(chan, cookie, state); + if (!state || (ret == DMA_COMPLETE)) + return ret; + + spin_lock_irqsave(&vchan->vc.lock, flags); + vd = vchan_find_desc(&vchan->vc, cookie); + if (!vd) + goto exit; + contract = to_sun4i_dma_contract(vd); + + list_for_each_entry(promise, &contract->demands, list) + bytes += promise->len; + + /* + * The hardware is configured to return the remaining byte + * quantity. If possible, replace the first listed element's + * full size with the actual remaining amount + */ + promise = list_first_entry_or_null(&contract->demands, + struct sun4i_dma_promise, list); + if (promise && pchan) { + bytes -= promise->len; + if (pchan->is_dedicated) + bytes += readl(pchan->base + SUN4I_DDMA_BYTE_COUNT_REG); + else + bytes += readl(pchan->base + SUN4I_NDMA_BYTE_COUNT_REG); + } + +exit: + + dma_set_residue(state, bytes); + spin_unlock_irqrestore(&vchan->vc.lock, flags); + + return ret; +} + +static void sun4i_dma_issue_pending(struct dma_chan *chan) +{ + struct sun4i_dma_dev *priv = to_sun4i_dma_dev(chan->device); + struct sun4i_dma_vchan *vchan = to_sun4i_dma_vchan(chan); + unsigned long flags; + + spin_lock_irqsave(&vchan->vc.lock, flags); + + /* + * If there are pending transactions for this vchan, push one of + * them into the engine to get the ball rolling. + */ + if (vchan_issue_pending(&vchan->vc)) + __execute_vchan_pending(priv, vchan); + + spin_unlock_irqrestore(&vchan->vc.lock, flags); +} + +static irqreturn_t sun4i_dma_interrupt(int irq, void *dev_id) +{ + struct sun4i_dma_dev *priv = dev_id; + struct sun4i_dma_pchan *pchans = priv->pchans, *pchan; + struct sun4i_dma_vchan *vchan; + struct sun4i_dma_contract *contract; + struct sun4i_dma_promise *promise; + unsigned long pendirq, irqs, disableirqs; + int bit, i, free_room, allow_mitigation = 1; + + pendirq = readl_relaxed(priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); + +handle_pending: + + disableirqs = 0; + free_room = 0; + + for_each_set_bit(bit, &pendirq, 32) { + pchan = &pchans[bit >> 1]; + vchan = pchan->vchan; + if (!vchan) /* a terminated channel may still interrupt */ + continue; + contract = vchan->contract; + + /* + * Disable the IRQ and free the pchan if it's an end + * interrupt (odd bit) + */ + if (bit & 1) { + spin_lock(&vchan->vc.lock); + + /* + * Move the promise into the completed list now that + * we're done with it + */ + list_move_tail(&vchan->processing->list, + &contract->completed_demands); + + /* + * Cyclic DMA transfers are special: + * - There's always something we can dispatch + * - We need to run the callback + * - Latency is very important, as this is used by audio + * We therefore just cycle through the list and dispatch + * whatever we have here, reusing the pchan. There's + * no need to run the thread after this. + * + * For non-cyclic transfers we need to look around, + * so we can program some more work, or notify the + * client that their transfers have been completed. + */ + if (contract->is_cyclic) { + promise = get_next_cyclic_promise(contract); + vchan->processing = promise; + configure_pchan(pchan, promise); + vchan_cyclic_callback(&contract->vd); + } else { + vchan->processing = NULL; + vchan->pchan = NULL; + + free_room = 1; + disableirqs |= BIT(bit); + release_pchan(priv, pchan); + } + + spin_unlock(&vchan->vc.lock); + } else { + /* Half done interrupt */ + if (contract->is_cyclic) + vchan_cyclic_callback(&contract->vd); + else + disableirqs |= BIT(bit); + } + } + + /* Disable the IRQs for events we handled */ + spin_lock(&priv->lock); + irqs = readl_relaxed(priv->base + SUN4I_DMA_IRQ_ENABLE_REG); + writel_relaxed(irqs & ~disableirqs, + priv->base + SUN4I_DMA_IRQ_ENABLE_REG); + spin_unlock(&priv->lock); + + /* Writing 1 to the pending field will clear the pending interrupt */ + writel_relaxed(pendirq, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); + + /* + * If a pchan was freed, we may be able to schedule something else, + * so have a look around + */ + if (free_room) { + for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) { + vchan = &priv->vchans[i]; + spin_lock(&vchan->vc.lock); + __execute_vchan_pending(priv, vchan); + spin_unlock(&vchan->vc.lock); + } + } + + /* + * Handle newer interrupts if some showed up, but only do it once + * to avoid a too long a loop + */ + if (allow_mitigation) { + pendirq = readl_relaxed(priv->base + + SUN4I_DMA_IRQ_PENDING_STATUS_REG); + if (pendirq) { + allow_mitigation = 0; + goto handle_pending; + } + } + + return IRQ_HANDLED; +} + +static int sun4i_dma_probe(struct platform_device *pdev) +{ + struct sun4i_dma_dev *priv; + struct resource *res; + int i, j, ret; + + priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); + if (!priv) + return -ENOMEM; + + res = platform_get_resource(pdev, IORESOURCE_MEM, 0); + priv->base = devm_ioremap_resource(&pdev->dev, res); + if (IS_ERR(priv->base)) + return PTR_ERR(priv->base); + + priv->irq = platform_get_irq(pdev, 0); + if (priv->irq < 0) + return priv->irq; + + priv->clk = devm_clk_get(&pdev->dev, NULL); + if (IS_ERR(priv->clk)) { + dev_err(&pdev->dev, "No clock specified\n"); + return PTR_ERR(priv->clk); + } + + platform_set_drvdata(pdev, priv); + spin_lock_init(&priv->lock); + + dma_set_max_seg_size(&pdev->dev, SUN4I_DMA_MAX_SEG_SIZE); + + dma_cap_zero(priv->slave.cap_mask); + dma_cap_set(DMA_PRIVATE, priv->slave.cap_mask); + dma_cap_set(DMA_MEMCPY, priv->slave.cap_mask); + dma_cap_set(DMA_CYCLIC, priv->slave.cap_mask); + dma_cap_set(DMA_SLAVE, priv->slave.cap_mask); + + INIT_LIST_HEAD(&priv->slave.channels); + priv->slave.device_free_chan_resources = sun4i_dma_free_chan_resources; + priv->slave.device_tx_status = sun4i_dma_tx_status; + priv->slave.device_issue_pending = sun4i_dma_issue_pending; + priv->slave.device_prep_slave_sg = sun4i_dma_prep_slave_sg; + priv->slave.device_prep_dma_memcpy = sun4i_dma_prep_dma_memcpy; + priv->slave.device_prep_dma_cyclic = sun4i_dma_prep_dma_cyclic; + priv->slave.device_config = sun4i_dma_config; + priv->slave.device_terminate_all = sun4i_dma_terminate_all; + priv->slave.copy_align = 2; + priv->slave.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | + BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | + BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); + priv->slave.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | + BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | + BIT(DMA_SLAVE_BUSWIDTH_4_BYTES); + priv->slave.directions = BIT(DMA_DEV_TO_MEM) | + BIT(DMA_MEM_TO_DEV); + priv->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; + + priv->slave.dev = &pdev->dev; + + priv->pchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_CHANNELS, + sizeof(struct sun4i_dma_pchan), GFP_KERNEL); + priv->vchans = devm_kcalloc(&pdev->dev, SUN4I_DMA_NR_MAX_VCHANS, + sizeof(struct sun4i_dma_vchan), GFP_KERNEL); + if (!priv->vchans || !priv->pchans) + return -ENOMEM; + + /* + * [0..SUN4I_NDMA_NR_MAX_CHANNELS) are normal pchans, and + * [SUN4I_NDMA_NR_MAX_CHANNELS..SUN4I_DMA_NR_MAX_CHANNELS) are + * dedicated ones + */ + for (i = 0; i < SUN4I_NDMA_NR_MAX_CHANNELS; i++) + priv->pchans[i].base = priv->base + + SUN4I_NDMA_CHANNEL_REG_BASE(i); + + for (j = 0; i < SUN4I_DMA_NR_MAX_CHANNELS; i++, j++) { + priv->pchans[i].base = priv->base + + SUN4I_DDMA_CHANNEL_REG_BASE(j); + priv->pchans[i].is_dedicated = 1; + } + + for (i = 0; i < SUN4I_DMA_NR_MAX_VCHANS; i++) { + struct sun4i_dma_vchan *vchan = &priv->vchans[i]; + + spin_lock_init(&vchan->vc.lock); + vchan->vc.desc_free = sun4i_dma_free_contract; + vchan_init(&vchan->vc, &priv->slave); + } + + ret = clk_prepare_enable(priv->clk); + if (ret) { + dev_err(&pdev->dev, "Couldn't enable the clock\n"); + return ret; + } + + /* + * Make sure the IRQs are all disabled and accounted for. The bootloader + * likes to leave these dirty + */ + writel(0, priv->base + SUN4I_DMA_IRQ_ENABLE_REG); + writel(0xFFFFFFFF, priv->base + SUN4I_DMA_IRQ_PENDING_STATUS_REG); + + ret = devm_request_irq(&pdev->dev, priv->irq, sun4i_dma_interrupt, + 0, dev_name(&pdev->dev), priv); + if (ret) { + dev_err(&pdev->dev, "Cannot request IRQ\n"); + goto err_clk_disable; + } + + ret = dma_async_device_register(&priv->slave); + if (ret) { + dev_warn(&pdev->dev, "Failed to register DMA engine device\n"); + goto err_clk_disable; + } + + ret = of_dma_controller_register(pdev->dev.of_node, sun4i_dma_of_xlate, + priv); + if (ret) { + dev_err(&pdev->dev, "of_dma_controller_register failed\n"); + goto err_dma_unregister; + } + + dev_dbg(&pdev->dev, "Successfully probed SUN4I_DMA\n"); + + return 0; + +err_dma_unregister: + dma_async_device_unregister(&priv->slave); +err_clk_disable: + clk_disable_unprepare(priv->clk); + return ret; +} + +static int sun4i_dma_remove(struct platform_device *pdev) +{ + struct sun4i_dma_dev *priv = platform_get_drvdata(pdev); + + /* Disable IRQ so no more work is scheduled */ + disable_irq(priv->irq); + + of_dma_controller_free(pdev->dev.of_node); + dma_async_device_unregister(&priv->slave); + + clk_disable_unprepare(priv->clk); + + return 0; +} + +static const struct of_device_id sun4i_dma_match[] = { + { .compatible = "allwinner,sun4i-a10-dma" }, + { /* sentinel */ }, +}; +MODULE_DEVICE_TABLE(of, sun4i_dma_match); + +static struct platform_driver sun4i_dma_driver = { + .probe = sun4i_dma_probe, + .remove = sun4i_dma_remove, + .driver = { + .name = "sun4i-dma", + .of_match_table = sun4i_dma_match, + }, +}; + +module_platform_driver(sun4i_dma_driver); + +MODULE_DESCRIPTION("Allwinner A10 Dedicated DMA Controller Driver"); +MODULE_AUTHOR("Emilio López <emilio@elopez.com.ar>"); +MODULE_LICENSE("GPL"); |