summaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/broadcom/bnx2x/bnx2x_init.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/net/ethernet/broadcom/bnx2x/bnx2x_init.h
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/ethernet/broadcom/bnx2x/bnx2x_init.h')
-rw-r--r--drivers/net/ethernet/broadcom/bnx2x/bnx2x_init.h787
1 files changed, 787 insertions, 0 deletions
diff --git a/drivers/net/ethernet/broadcom/bnx2x/bnx2x_init.h b/drivers/net/ethernet/broadcom/bnx2x/bnx2x_init.h
new file mode 100644
index 000000000..0a59a09ef
--- /dev/null
+++ b/drivers/net/ethernet/broadcom/bnx2x/bnx2x_init.h
@@ -0,0 +1,787 @@
+/* bnx2x_init.h: Qlogic Everest network driver.
+ * Structures and macroes needed during the initialization.
+ *
+ * Copyright (c) 2007-2013 Broadcom Corporation
+ * Copyright (c) 2014 QLogic Corporation
+ All rights reserved
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation.
+ *
+ * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
+ * Written by: Eliezer Tamir
+ * Modified by: Vladislav Zolotarov
+ */
+
+#ifndef BNX2X_INIT_H
+#define BNX2X_INIT_H
+
+/* Init operation types and structures */
+enum {
+ OP_RD = 0x1, /* read a single register */
+ OP_WR, /* write a single register */
+ OP_SW, /* copy a string to the device */
+ OP_ZR, /* clear memory */
+ OP_ZP, /* unzip then copy with DMAE */
+ OP_WR_64, /* write 64 bit pattern */
+ OP_WB, /* copy a string using DMAE */
+ OP_WB_ZR, /* Clear a string using DMAE or indirect-wr */
+ /* Skip the following ops if all of the init modes don't match */
+ OP_IF_MODE_OR,
+ /* Skip the following ops if any of the init modes don't match */
+ OP_IF_MODE_AND,
+ OP_MAX
+};
+
+enum {
+ STAGE_START,
+ STAGE_END,
+};
+
+/* Returns the index of start or end of a specific block stage in ops array*/
+#define BLOCK_OPS_IDX(block, stage, end) \
+ (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
+
+
+/* structs for the various opcodes */
+struct raw_op {
+ u32 op:8;
+ u32 offset:24;
+ u32 raw_data;
+};
+
+struct op_read {
+ u32 op:8;
+ u32 offset:24;
+ u32 val;
+};
+
+struct op_write {
+ u32 op:8;
+ u32 offset:24;
+ u32 val;
+};
+
+struct op_arr_write {
+ u32 op:8;
+ u32 offset:24;
+#ifdef __BIG_ENDIAN
+ u16 data_len;
+ u16 data_off;
+#else /* __LITTLE_ENDIAN */
+ u16 data_off;
+ u16 data_len;
+#endif
+};
+
+struct op_zero {
+ u32 op:8;
+ u32 offset:24;
+ u32 len;
+};
+
+struct op_if_mode {
+ u32 op:8;
+ u32 cmd_offset:24;
+ u32 mode_bit_map;
+};
+
+
+union init_op {
+ struct op_read read;
+ struct op_write write;
+ struct op_arr_write arr_wr;
+ struct op_zero zero;
+ struct raw_op raw;
+ struct op_if_mode if_mode;
+};
+
+
+/* Init Phases */
+enum {
+ PHASE_COMMON,
+ PHASE_PORT0,
+ PHASE_PORT1,
+ PHASE_PF0,
+ PHASE_PF1,
+ PHASE_PF2,
+ PHASE_PF3,
+ PHASE_PF4,
+ PHASE_PF5,
+ PHASE_PF6,
+ PHASE_PF7,
+ NUM_OF_INIT_PHASES
+};
+
+/* Init Modes */
+enum {
+ MODE_ASIC = 0x00000001,
+ MODE_FPGA = 0x00000002,
+ MODE_EMUL = 0x00000004,
+ MODE_E2 = 0x00000008,
+ MODE_E3 = 0x00000010,
+ MODE_PORT2 = 0x00000020,
+ MODE_PORT4 = 0x00000040,
+ MODE_SF = 0x00000080,
+ MODE_MF = 0x00000100,
+ MODE_MF_SD = 0x00000200,
+ MODE_MF_SI = 0x00000400,
+ MODE_MF_AFEX = 0x00000800,
+ MODE_E3_A0 = 0x00001000,
+ MODE_E3_B0 = 0x00002000,
+ MODE_COS3 = 0x00004000,
+ MODE_COS6 = 0x00008000,
+ MODE_LITTLE_ENDIAN = 0x00010000,
+ MODE_BIG_ENDIAN = 0x00020000,
+};
+
+/* Init Blocks */
+enum {
+ BLOCK_ATC,
+ BLOCK_BRB1,
+ BLOCK_CCM,
+ BLOCK_CDU,
+ BLOCK_CFC,
+ BLOCK_CSDM,
+ BLOCK_CSEM,
+ BLOCK_DBG,
+ BLOCK_DMAE,
+ BLOCK_DORQ,
+ BLOCK_HC,
+ BLOCK_IGU,
+ BLOCK_MISC,
+ BLOCK_NIG,
+ BLOCK_PBF,
+ BLOCK_PGLUE_B,
+ BLOCK_PRS,
+ BLOCK_PXP2,
+ BLOCK_PXP,
+ BLOCK_QM,
+ BLOCK_SRC,
+ BLOCK_TCM,
+ BLOCK_TM,
+ BLOCK_TSDM,
+ BLOCK_TSEM,
+ BLOCK_UCM,
+ BLOCK_UPB,
+ BLOCK_USDM,
+ BLOCK_USEM,
+ BLOCK_XCM,
+ BLOCK_XPB,
+ BLOCK_XSDM,
+ BLOCK_XSEM,
+ BLOCK_MISC_AEU,
+ NUM_OF_INIT_BLOCKS
+};
+
+/* QM queue numbers */
+#define BNX2X_ETH_Q 0
+#define BNX2X_TOE_Q 3
+#define BNX2X_TOE_ACK_Q 6
+#define BNX2X_ISCSI_Q 9
+#define BNX2X_ISCSI_ACK_Q 11
+#define BNX2X_FCOE_Q 10
+
+/* Vnics per mode */
+#define BNX2X_PORT2_MODE_NUM_VNICS 4
+#define BNX2X_PORT4_MODE_NUM_VNICS 2
+
+/* COS offset for port1 in E3 B0 4port mode */
+#define BNX2X_E3B0_PORT1_COS_OFFSET 3
+
+/* QM Register addresses */
+#define BNX2X_Q_VOQ_REG_ADDR(pf_q_num)\
+ (QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
+#define BNX2X_VOQ_Q_REG_ADDR(cos, pf_q_num)\
+ (QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
+#define BNX2X_Q_CMDQ_REG_ADDR(pf_q_num)\
+ (QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
+
+/* extracts the QM queue number for the specified port and vnic */
+#define BNX2X_PF_Q_NUM(q_num, port, vnic)\
+ ((((port) << 1) | (vnic)) * 16 + (q_num))
+
+
+/* Maps the specified queue to the specified COS */
+static inline void bnx2x_map_q_cos(struct bnx2x *bp, u32 q_num, u32 new_cos)
+{
+ /* find current COS mapping */
+ u32 curr_cos = REG_RD(bp, QM_REG_QVOQIDX_0 + q_num * 4);
+
+ /* check if queue->COS mapping has changed */
+ if (curr_cos != new_cos) {
+ u32 num_vnics = BNX2X_PORT2_MODE_NUM_VNICS;
+ u32 reg_addr, reg_bit_map, vnic;
+
+ /* update parameters for 4port mode */
+ if (INIT_MODE_FLAGS(bp) & MODE_PORT4) {
+ num_vnics = BNX2X_PORT4_MODE_NUM_VNICS;
+ if (BP_PORT(bp)) {
+ curr_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
+ new_cos += BNX2X_E3B0_PORT1_COS_OFFSET;
+ }
+ }
+
+ /* change queue mapping for each VNIC */
+ for (vnic = 0; vnic < num_vnics; vnic++) {
+ u32 pf_q_num =
+ BNX2X_PF_Q_NUM(q_num, BP_PORT(bp), vnic);
+ u32 q_bit_map = 1 << (pf_q_num & 0x1f);
+
+ /* overwrite queue->VOQ mapping */
+ REG_WR(bp, BNX2X_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
+
+ /* clear queue bit from current COS bit map */
+ reg_addr = BNX2X_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
+ reg_bit_map = REG_RD(bp, reg_addr);
+ REG_WR(bp, reg_addr, reg_bit_map & (~q_bit_map));
+
+ /* set queue bit in new COS bit map */
+ reg_addr = BNX2X_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
+ reg_bit_map = REG_RD(bp, reg_addr);
+ REG_WR(bp, reg_addr, reg_bit_map | q_bit_map);
+
+ /* set/clear queue bit in command-queue bit map
+ * (E2/E3A0 only, valid COS values are 0/1)
+ */
+ if (!(INIT_MODE_FLAGS(bp) & MODE_E3_B0)) {
+ reg_addr = BNX2X_Q_CMDQ_REG_ADDR(pf_q_num);
+ reg_bit_map = REG_RD(bp, reg_addr);
+ q_bit_map = 1 << (2 * (pf_q_num & 0xf));
+ reg_bit_map = new_cos ?
+ (reg_bit_map | q_bit_map) :
+ (reg_bit_map & (~q_bit_map));
+ REG_WR(bp, reg_addr, reg_bit_map);
+ }
+ }
+ }
+}
+
+/* Configures the QM according to the specified per-traffic-type COSes */
+static inline void bnx2x_dcb_config_qm(struct bnx2x *bp, enum cos_mode mode,
+ struct priority_cos *traffic_cos)
+{
+ bnx2x_map_q_cos(bp, BNX2X_FCOE_Q,
+ traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
+ bnx2x_map_q_cos(bp, BNX2X_ISCSI_Q,
+ traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
+ bnx2x_map_q_cos(bp, BNX2X_ISCSI_ACK_Q,
+ traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
+ if (mode != STATIC_COS) {
+ /* required only in backward compatible COS mode */
+ bnx2x_map_q_cos(bp, BNX2X_ETH_Q,
+ traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
+ bnx2x_map_q_cos(bp, BNX2X_TOE_Q,
+ traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
+ bnx2x_map_q_cos(bp, BNX2X_TOE_ACK_Q,
+ traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
+ }
+}
+
+
+/* congestion management port init api description
+ * the api works as follows:
+ * the driver should pass the cmng_init_input struct, the port_init function
+ * will prepare the required internal ram structure which will be passed back
+ * to the driver (cmng_init) that will write it into the internal ram.
+ *
+ * IMPORTANT REMARKS:
+ * 1. the cmng_init struct does not represent the contiguous internal ram
+ * structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
+ * offset in order to write the port sub struct and the
+ * PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
+ * words - don't use memcpy!).
+ * 2. although the cmng_init struct is filled for the maximal vnic number
+ * possible, the driver should only write the valid vnics into the internal
+ * ram according to the appropriate port mode.
+ */
+
+/* CMNG constants, as derived from system spec calculations */
+
+/* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
+#define DEF_MIN_RATE 100
+
+/* resolution of the rate shaping timer - 400 usec */
+#define RS_PERIODIC_TIMEOUT_USEC 400
+
+/* number of bytes in single QM arbitration cycle -
+ * coefficient for calculating the fairness timer
+ */
+#define QM_ARB_BYTES 160000
+
+/* resolution of Min algorithm 1:100 */
+#define MIN_RES 100
+
+/* how many bytes above threshold for
+ * the minimal credit of Min algorithm
+ */
+#define MIN_ABOVE_THRESH 32768
+
+/* Fairness algorithm integration time coefficient -
+ * for calculating the actual Tfair
+ */
+#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
+
+/* Memory of fairness algorithm - 2 cycles */
+#define FAIR_MEM 2
+#define SAFC_TIMEOUT_USEC 52
+
+#define SDM_TICKS 4
+
+
+static inline void bnx2x_init_max(const struct cmng_init_input *input_data,
+ u32 r_param, struct cmng_init *ram_data)
+{
+ u32 vnic;
+ struct cmng_vnic *vdata = &ram_data->vnic;
+ struct cmng_struct_per_port *pdata = &ram_data->port;
+ /* rate shaping per-port variables
+ * 100 micro seconds in SDM ticks = 25
+ * since each tick is 4 microSeconds
+ */
+
+ pdata->rs_vars.rs_periodic_timeout =
+ RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
+
+ /* this is the threshold below which no timer arming will occur.
+ * 1.25 coefficient is for the threshold to be a little bigger
+ * then the real time to compensate for timer in-accuracy
+ */
+ pdata->rs_vars.rs_threshold =
+ (5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
+
+ /* rate shaping per-vnic variables */
+ for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
+ /* global vnic counter */
+ vdata->vnic_max_rate[vnic].vn_counter.rate =
+ input_data->vnic_max_rate[vnic];
+ /* maximal Mbps for this vnic
+ * the quota in each timer period - number of bytes
+ * transmitted in this period
+ */
+ vdata->vnic_max_rate[vnic].vn_counter.quota =
+ RS_PERIODIC_TIMEOUT_USEC *
+ (u32)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
+ }
+
+}
+
+static inline void bnx2x_init_min(const struct cmng_init_input *input_data,
+ u32 r_param, struct cmng_init *ram_data)
+{
+ u32 vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
+ struct cmng_vnic *vdata = &ram_data->vnic;
+ struct cmng_struct_per_port *pdata = &ram_data->port;
+
+ /* this is the resolution of the fairness timer */
+ fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
+
+ /* fairness per-port variables
+ * for 10G it is 1000usec. for 1G it is 10000usec.
+ */
+ tFair = T_FAIR_COEF / input_data->port_rate;
+
+ /* this is the threshold below which we won't arm the timer anymore */
+ pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
+
+ /* we multiply by 1e3/8 to get bytes/msec. We don't want the credits
+ * to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
+ */
+ pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
+
+ /* since each tick is 4 microSeconds */
+ pdata->fair_vars.fairness_timeout =
+ fair_periodic_timeout_usec / SDM_TICKS;
+
+ /* calculate sum of weights */
+ vnicWeightSum = 0;
+
+ for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++)
+ vnicWeightSum += input_data->vnic_min_rate[vnic];
+
+ /* global vnic counter */
+ if (vnicWeightSum > 0) {
+ /* fairness per-vnic variables */
+ for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
+ /* this is the credit for each period of the fairness
+ * algorithm - number of bytes in T_FAIR (this vnic
+ * share of the port rate)
+ */
+ vdata->vnic_min_rate[vnic].vn_credit_delta =
+ (u32)input_data->vnic_min_rate[vnic] * 100 *
+ (T_FAIR_COEF / (8 * 100 * vnicWeightSum));
+ if (vdata->vnic_min_rate[vnic].vn_credit_delta <
+ pdata->fair_vars.fair_threshold +
+ MIN_ABOVE_THRESH) {
+ vdata->vnic_min_rate[vnic].vn_credit_delta =
+ pdata->fair_vars.fair_threshold +
+ MIN_ABOVE_THRESH;
+ }
+ }
+ }
+}
+
+static inline void bnx2x_init_fw_wrr(const struct cmng_init_input *input_data,
+ u32 r_param, struct cmng_init *ram_data)
+{
+ u32 vnic, cos;
+ u32 cosWeightSum = 0;
+ struct cmng_vnic *vdata = &ram_data->vnic;
+ struct cmng_struct_per_port *pdata = &ram_data->port;
+
+ for (cos = 0; cos < MAX_COS_NUMBER; cos++)
+ cosWeightSum += input_data->cos_min_rate[cos];
+
+ if (cosWeightSum > 0) {
+
+ for (vnic = 0; vnic < BNX2X_PORT2_MODE_NUM_VNICS; vnic++) {
+ /* Since cos and vnic shouldn't work together the rate
+ * to divide between the coses is the port rate.
+ */
+ u32 *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
+ for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
+ /* this is the credit for each period of
+ * the fairness algorithm - number of bytes
+ * in T_FAIR (this cos share of the vnic rate)
+ */
+ ccd[cos] =
+ (u32)input_data->cos_min_rate[cos] * 100 *
+ (T_FAIR_COEF / (8 * 100 * cosWeightSum));
+ if (ccd[cos] < pdata->fair_vars.fair_threshold
+ + MIN_ABOVE_THRESH) {
+ ccd[cos] =
+ pdata->fair_vars.fair_threshold +
+ MIN_ABOVE_THRESH;
+ }
+ }
+ }
+ }
+}
+
+static inline void bnx2x_init_safc(const struct cmng_init_input *input_data,
+ struct cmng_init *ram_data)
+{
+ /* in microSeconds */
+ ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
+}
+
+/* Congestion management port init */
+static inline void bnx2x_init_cmng(const struct cmng_init_input *input_data,
+ struct cmng_init *ram_data)
+{
+ u32 r_param;
+ memset(ram_data, 0, sizeof(struct cmng_init));
+
+ ram_data->port.flags = input_data->flags;
+
+ /* number of bytes transmitted in a rate of 10Gbps
+ * in one usec = 1.25KB.
+ */
+ r_param = BITS_TO_BYTES(input_data->port_rate);
+ bnx2x_init_max(input_data, r_param, ram_data);
+ bnx2x_init_min(input_data, r_param, ram_data);
+ bnx2x_init_fw_wrr(input_data, r_param, ram_data);
+ bnx2x_init_safc(input_data, ram_data);
+}
+
+
+
+/* Returns the index of start or end of a specific block stage in ops array */
+#define BLOCK_OPS_IDX(block, stage, end) \
+ (2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
+
+
+#define INITOP_SET 0 /* set the HW directly */
+#define INITOP_CLEAR 1 /* clear the HW directly */
+#define INITOP_INIT 2 /* set the init-value array */
+
+/****************************************************************************
+* ILT management
+****************************************************************************/
+struct ilt_line {
+ dma_addr_t page_mapping;
+ void *page;
+ u32 size;
+};
+
+struct ilt_client_info {
+ u32 page_size;
+ u16 start;
+ u16 end;
+ u16 client_num;
+ u16 flags;
+#define ILT_CLIENT_SKIP_INIT 0x1
+#define ILT_CLIENT_SKIP_MEM 0x2
+};
+
+struct bnx2x_ilt {
+ u32 start_line;
+ struct ilt_line *lines;
+ struct ilt_client_info clients[4];
+#define ILT_CLIENT_CDU 0
+#define ILT_CLIENT_QM 1
+#define ILT_CLIENT_SRC 2
+#define ILT_CLIENT_TM 3
+};
+
+/****************************************************************************
+* SRC configuration
+****************************************************************************/
+struct src_ent {
+ u8 opaque[56];
+ u64 next;
+};
+
+/****************************************************************************
+* Parity configuration
+****************************************************************************/
+#define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
+{ \
+ block##_REG_##block##_PRTY_MASK, \
+ block##_REG_##block##_PRTY_STS_CLR, \
+ en_mask, {m1, m1h, m2, m3}, #block \
+}
+
+#define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
+{ \
+ block##_REG_##block##_PRTY_MASK_0, \
+ block##_REG_##block##_PRTY_STS_CLR_0, \
+ en_mask, {m1, m1h, m2, m3}, #block"_0" \
+}
+
+#define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
+{ \
+ block##_REG_##block##_PRTY_MASK_1, \
+ block##_REG_##block##_PRTY_STS_CLR_1, \
+ en_mask, {m1, m1h, m2, m3}, #block"_1" \
+}
+
+static const struct {
+ u32 mask_addr;
+ u32 sts_clr_addr;
+ u32 en_mask; /* Mask to enable parity attentions */
+ struct {
+ u32 e1; /* 57710 */
+ u32 e1h; /* 57711 */
+ u32 e2; /* 57712 */
+ u32 e3; /* 578xx */
+ } reg_mask; /* Register mask (all valid bits) */
+ char name[8]; /* Block's longest name is 7 characters long
+ * (name + suffix)
+ */
+} bnx2x_blocks_parity_data[] = {
+ /* bit 19 masked */
+ /* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
+ /* bit 5,18,20-31 */
+ /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
+ /* bit 5 */
+ /* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20); */
+ /* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
+ /* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
+
+ /* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
+ * want to handle "system kill" flow at the moment.
+ */
+ BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
+ 0x7ffffff),
+ BLOCK_PRTY_INFO_0(PXP2, 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
+ 0xffffffff),
+ BLOCK_PRTY_INFO_1(PXP2, 0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
+ BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
+ BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
+ BLOCK_PRTY_INFO_0(NIG, 0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
+ BLOCK_PRTY_INFO_1(NIG, 0xffff, 0, 0, 0xff, 0xffff),
+ BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
+ BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
+ BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
+ BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
+ BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
+ BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
+ {GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
+ GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
+ {0xf, 0xf, 0xf, 0xf}, "UPB"},
+ {GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
+ GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
+ {0xf, 0xf, 0xf, 0xf}, "XPB"},
+ BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
+ BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
+ BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
+ BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
+ BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
+ BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
+ BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
+ BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
+ BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
+ BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
+ BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
+ BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
+ BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
+ BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
+ BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
+ BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
+ BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
+ BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
+ 0xffffffff),
+ BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
+ BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
+ 0xffffffff),
+ BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
+ BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
+ 0xffffffff),
+ BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
+ BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
+ 0xffffffff),
+ BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
+};
+
+
+/* [28] MCP Latched rom_parity
+ * [29] MCP Latched ump_rx_parity
+ * [30] MCP Latched ump_tx_parity
+ * [31] MCP Latched scpad_parity
+ */
+#define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS \
+ (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
+ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
+ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
+
+#define MISC_AEU_ENABLE_MCP_PRTY_BITS \
+ (MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
+ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
+
+/* Below registers control the MCP parity attention output. When
+ * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
+ * enabled, when cleared - disabled.
+ */
+static const struct {
+ u32 addr;
+ u32 bits;
+} mcp_attn_ctl_regs[] = {
+ { MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
+ MISC_AEU_ENABLE_MCP_PRTY_BITS },
+ { MISC_REG_AEU_ENABLE4_NIG_0,
+ MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
+ { MISC_REG_AEU_ENABLE4_PXP_0,
+ MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
+ { MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
+ MISC_AEU_ENABLE_MCP_PRTY_BITS },
+ { MISC_REG_AEU_ENABLE4_NIG_1,
+ MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
+ { MISC_REG_AEU_ENABLE4_PXP_1,
+ MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
+};
+
+static inline void bnx2x_set_mcp_parity(struct bnx2x *bp, u8 enable)
+{
+ int i;
+ u32 reg_val;
+
+ for (i = 0; i < ARRAY_SIZE(mcp_attn_ctl_regs); i++) {
+ reg_val = REG_RD(bp, mcp_attn_ctl_regs[i].addr);
+
+ if (enable)
+ reg_val |= mcp_attn_ctl_regs[i].bits;
+ else
+ reg_val &= ~mcp_attn_ctl_regs[i].bits;
+
+ REG_WR(bp, mcp_attn_ctl_regs[i].addr, reg_val);
+ }
+}
+
+static inline u32 bnx2x_parity_reg_mask(struct bnx2x *bp, int idx)
+{
+ if (CHIP_IS_E1(bp))
+ return bnx2x_blocks_parity_data[idx].reg_mask.e1;
+ else if (CHIP_IS_E1H(bp))
+ return bnx2x_blocks_parity_data[idx].reg_mask.e1h;
+ else if (CHIP_IS_E2(bp))
+ return bnx2x_blocks_parity_data[idx].reg_mask.e2;
+ else /* CHIP_IS_E3 */
+ return bnx2x_blocks_parity_data[idx].reg_mask.e3;
+}
+
+static inline void bnx2x_disable_blocks_parity(struct bnx2x *bp)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
+ u32 dis_mask = bnx2x_parity_reg_mask(bp, i);
+
+ if (dis_mask) {
+ REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
+ dis_mask);
+ DP(NETIF_MSG_HW, "Setting parity mask "
+ "for %s to\t\t0x%x\n",
+ bnx2x_blocks_parity_data[i].name, dis_mask);
+ }
+ }
+
+ /* Disable MCP parity attentions */
+ bnx2x_set_mcp_parity(bp, false);
+}
+
+/* Clear the parity error status registers. */
+static inline void bnx2x_clear_blocks_parity(struct bnx2x *bp)
+{
+ int i;
+ u32 reg_val, mcp_aeu_bits =
+ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
+ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
+ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
+ AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
+
+ /* Clear SEM_FAST parities */
+ REG_WR(bp, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
+ REG_WR(bp, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
+ REG_WR(bp, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
+ REG_WR(bp, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
+
+ for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
+ u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
+
+ if (reg_mask) {
+ reg_val = REG_RD(bp, bnx2x_blocks_parity_data[i].
+ sts_clr_addr);
+ if (reg_val & reg_mask)
+ DP(NETIF_MSG_HW,
+ "Parity errors in %s: 0x%x\n",
+ bnx2x_blocks_parity_data[i].name,
+ reg_val & reg_mask);
+ }
+ }
+
+ /* Check if there were parity attentions in MCP */
+ reg_val = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_MCP);
+ if (reg_val & mcp_aeu_bits)
+ DP(NETIF_MSG_HW, "Parity error in MCP: 0x%x\n",
+ reg_val & mcp_aeu_bits);
+
+ /* Clear parity attentions in MCP:
+ * [7] clears Latched rom_parity
+ * [8] clears Latched ump_rx_parity
+ * [9] clears Latched ump_tx_parity
+ * [10] clears Latched scpad_parity (both ports)
+ */
+ REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
+}
+
+static inline void bnx2x_enable_blocks_parity(struct bnx2x *bp)
+{
+ int i;
+
+ for (i = 0; i < ARRAY_SIZE(bnx2x_blocks_parity_data); i++) {
+ u32 reg_mask = bnx2x_parity_reg_mask(bp, i);
+
+ if (reg_mask)
+ REG_WR(bp, bnx2x_blocks_parity_data[i].mask_addr,
+ bnx2x_blocks_parity_data[i].en_mask & reg_mask);
+ }
+
+ /* Enable MCP parity attentions */
+ bnx2x_set_mcp_parity(bp, true);
+}
+
+
+#endif /* BNX2X_INIT_H */
+