diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/net/ethernet/intel/ixgb/ixgb_hw.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/ethernet/intel/ixgb/ixgb_hw.c')
-rw-r--r-- | drivers/net/ethernet/intel/ixgb/ixgb_hw.c | 1229 |
1 files changed, 1229 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/ixgb/ixgb_hw.c b/drivers/net/ethernet/intel/ixgb/ixgb_hw.c new file mode 100644 index 000000000..98bd3267b --- /dev/null +++ b/drivers/net/ethernet/intel/ixgb/ixgb_hw.c @@ -0,0 +1,1229 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Copyright(c) 1999 - 2008 Intel Corporation. */ + +/* ixgb_hw.c + * Shared functions for accessing and configuring the adapter + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/pci_ids.h> +#include "ixgb_hw.h" +#include "ixgb_ids.h" + +#include <linux/etherdevice.h> + +/* Local function prototypes */ + +static u32 ixgb_hash_mc_addr(struct ixgb_hw *hw, u8 * mc_addr); + +static void ixgb_mta_set(struct ixgb_hw *hw, u32 hash_value); + +static void ixgb_get_bus_info(struct ixgb_hw *hw); + +static bool ixgb_link_reset(struct ixgb_hw *hw); + +static void ixgb_optics_reset(struct ixgb_hw *hw); + +static void ixgb_optics_reset_bcm(struct ixgb_hw *hw); + +static ixgb_phy_type ixgb_identify_phy(struct ixgb_hw *hw); + +static void ixgb_clear_hw_cntrs(struct ixgb_hw *hw); + +static void ixgb_clear_vfta(struct ixgb_hw *hw); + +static void ixgb_init_rx_addrs(struct ixgb_hw *hw); + +static u16 ixgb_read_phy_reg(struct ixgb_hw *hw, + u32 reg_address, + u32 phy_address, + u32 device_type); + +static bool ixgb_setup_fc(struct ixgb_hw *hw); + +static bool mac_addr_valid(u8 *mac_addr); + +static u32 ixgb_mac_reset(struct ixgb_hw *hw) +{ + u32 ctrl_reg; + + ctrl_reg = IXGB_CTRL0_RST | + IXGB_CTRL0_SDP3_DIR | /* All pins are Output=1 */ + IXGB_CTRL0_SDP2_DIR | + IXGB_CTRL0_SDP1_DIR | + IXGB_CTRL0_SDP0_DIR | + IXGB_CTRL0_SDP3 | /* Initial value 1101 */ + IXGB_CTRL0_SDP2 | + IXGB_CTRL0_SDP0; + +#ifdef HP_ZX1 + /* Workaround for 82597EX reset errata */ + IXGB_WRITE_REG_IO(hw, CTRL0, ctrl_reg); +#else + IXGB_WRITE_REG(hw, CTRL0, ctrl_reg); +#endif + + /* Delay a few ms just to allow the reset to complete */ + msleep(IXGB_DELAY_AFTER_RESET); + ctrl_reg = IXGB_READ_REG(hw, CTRL0); +#ifdef DBG + /* Make sure the self-clearing global reset bit did self clear */ + ASSERT(!(ctrl_reg & IXGB_CTRL0_RST)); +#endif + + if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN) { + ctrl_reg = /* Enable interrupt from XFP and SerDes */ + IXGB_CTRL1_GPI0_EN | + IXGB_CTRL1_SDP6_DIR | + IXGB_CTRL1_SDP7_DIR | + IXGB_CTRL1_SDP6 | + IXGB_CTRL1_SDP7; + IXGB_WRITE_REG(hw, CTRL1, ctrl_reg); + ixgb_optics_reset_bcm(hw); + } + + if (hw->phy_type == ixgb_phy_type_txn17401) + ixgb_optics_reset(hw); + + return ctrl_reg; +} + +/****************************************************************************** + * Reset the transmit and receive units; mask and clear all interrupts. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +bool +ixgb_adapter_stop(struct ixgb_hw *hw) +{ + u32 ctrl_reg; + + ENTER(); + + /* If we are stopped or resetting exit gracefully and wait to be + * started again before accessing the hardware. + */ + if (hw->adapter_stopped) { + pr_debug("Exiting because the adapter is already stopped!!!\n"); + return false; + } + + /* Set the Adapter Stopped flag so other driver functions stop + * touching the Hardware. + */ + hw->adapter_stopped = true; + + /* Clear interrupt mask to stop board from generating interrupts */ + pr_debug("Masking off all interrupts\n"); + IXGB_WRITE_REG(hw, IMC, 0xFFFFFFFF); + + /* Disable the Transmit and Receive units. Then delay to allow + * any pending transactions to complete before we hit the MAC with + * the global reset. + */ + IXGB_WRITE_REG(hw, RCTL, IXGB_READ_REG(hw, RCTL) & ~IXGB_RCTL_RXEN); + IXGB_WRITE_REG(hw, TCTL, IXGB_READ_REG(hw, TCTL) & ~IXGB_TCTL_TXEN); + IXGB_WRITE_FLUSH(hw); + msleep(IXGB_DELAY_BEFORE_RESET); + + /* Issue a global reset to the MAC. This will reset the chip's + * transmit, receive, DMA, and link units. It will not effect + * the current PCI configuration. The global reset bit is self- + * clearing, and should clear within a microsecond. + */ + pr_debug("Issuing a global reset to MAC\n"); + + ctrl_reg = ixgb_mac_reset(hw); + + /* Clear interrupt mask to stop board from generating interrupts */ + pr_debug("Masking off all interrupts\n"); + IXGB_WRITE_REG(hw, IMC, 0xffffffff); + + /* Clear any pending interrupt events. */ + IXGB_READ_REG(hw, ICR); + + return ctrl_reg & IXGB_CTRL0_RST; +} + + +/****************************************************************************** + * Identifies the vendor of the optics module on the adapter. The SR adapters + * support two different types of XPAK optics, so it is necessary to determine + * which optics are present before applying any optics-specific workarounds. + * + * hw - Struct containing variables accessed by shared code. + * + * Returns: the vendor of the XPAK optics module. + *****************************************************************************/ +static ixgb_xpak_vendor +ixgb_identify_xpak_vendor(struct ixgb_hw *hw) +{ + u32 i; + u16 vendor_name[5]; + ixgb_xpak_vendor xpak_vendor; + + ENTER(); + + /* Read the first few bytes of the vendor string from the XPAK NVR + * registers. These are standard XENPAK/XPAK registers, so all XPAK + * devices should implement them. */ + for (i = 0; i < 5; i++) { + vendor_name[i] = ixgb_read_phy_reg(hw, + MDIO_PMA_PMD_XPAK_VENDOR_NAME + + i, IXGB_PHY_ADDRESS, + MDIO_MMD_PMAPMD); + } + + /* Determine the actual vendor */ + if (vendor_name[0] == 'I' && + vendor_name[1] == 'N' && + vendor_name[2] == 'T' && + vendor_name[3] == 'E' && vendor_name[4] == 'L') { + xpak_vendor = ixgb_xpak_vendor_intel; + } else { + xpak_vendor = ixgb_xpak_vendor_infineon; + } + + return xpak_vendor; +} + +/****************************************************************************** + * Determine the physical layer module on the adapter. + * + * hw - Struct containing variables accessed by shared code. The device_id + * field must be (correctly) populated before calling this routine. + * + * Returns: the phy type of the adapter. + *****************************************************************************/ +static ixgb_phy_type +ixgb_identify_phy(struct ixgb_hw *hw) +{ + ixgb_phy_type phy_type; + ixgb_xpak_vendor xpak_vendor; + + ENTER(); + + /* Infer the transceiver/phy type from the device id */ + switch (hw->device_id) { + case IXGB_DEVICE_ID_82597EX: + pr_debug("Identified TXN17401 optics\n"); + phy_type = ixgb_phy_type_txn17401; + break; + + case IXGB_DEVICE_ID_82597EX_SR: + /* The SR adapters carry two different types of XPAK optics + * modules; read the vendor identifier to determine the exact + * type of optics. */ + xpak_vendor = ixgb_identify_xpak_vendor(hw); + if (xpak_vendor == ixgb_xpak_vendor_intel) { + pr_debug("Identified TXN17201 optics\n"); + phy_type = ixgb_phy_type_txn17201; + } else { + pr_debug("Identified G6005 optics\n"); + phy_type = ixgb_phy_type_g6005; + } + break; + case IXGB_DEVICE_ID_82597EX_LR: + pr_debug("Identified G6104 optics\n"); + phy_type = ixgb_phy_type_g6104; + break; + case IXGB_DEVICE_ID_82597EX_CX4: + pr_debug("Identified CX4\n"); + xpak_vendor = ixgb_identify_xpak_vendor(hw); + if (xpak_vendor == ixgb_xpak_vendor_intel) { + pr_debug("Identified TXN17201 optics\n"); + phy_type = ixgb_phy_type_txn17201; + } else { + pr_debug("Identified G6005 optics\n"); + phy_type = ixgb_phy_type_g6005; + } + break; + default: + pr_debug("Unknown physical layer module\n"); + phy_type = ixgb_phy_type_unknown; + break; + } + + /* update phy type for sun specific board */ + if (hw->subsystem_vendor_id == PCI_VENDOR_ID_SUN) + phy_type = ixgb_phy_type_bcm; + + return phy_type; +} + +/****************************************************************************** + * Performs basic configuration of the adapter. + * + * hw - Struct containing variables accessed by shared code + * + * Resets the controller. + * Reads and validates the EEPROM. + * Initializes the receive address registers. + * Initializes the multicast table. + * Clears all on-chip counters. + * Calls routine to setup flow control settings. + * Leaves the transmit and receive units disabled and uninitialized. + * + * Returns: + * true if successful, + * false if unrecoverable problems were encountered. + *****************************************************************************/ +bool +ixgb_init_hw(struct ixgb_hw *hw) +{ + u32 i; + bool status; + + ENTER(); + + /* Issue a global reset to the MAC. This will reset the chip's + * transmit, receive, DMA, and link units. It will not effect + * the current PCI configuration. The global reset bit is self- + * clearing, and should clear within a microsecond. + */ + pr_debug("Issuing a global reset to MAC\n"); + + ixgb_mac_reset(hw); + + pr_debug("Issuing an EE reset to MAC\n"); +#ifdef HP_ZX1 + /* Workaround for 82597EX reset errata */ + IXGB_WRITE_REG_IO(hw, CTRL1, IXGB_CTRL1_EE_RST); +#else + IXGB_WRITE_REG(hw, CTRL1, IXGB_CTRL1_EE_RST); +#endif + + /* Delay a few ms just to allow the reset to complete */ + msleep(IXGB_DELAY_AFTER_EE_RESET); + + if (!ixgb_get_eeprom_data(hw)) + return false; + + /* Use the device id to determine the type of phy/transceiver. */ + hw->device_id = ixgb_get_ee_device_id(hw); + hw->phy_type = ixgb_identify_phy(hw); + + /* Setup the receive addresses. + * Receive Address Registers (RARs 0 - 15). + */ + ixgb_init_rx_addrs(hw); + + /* + * Check that a valid MAC address has been set. + * If it is not valid, we fail hardware init. + */ + if (!mac_addr_valid(hw->curr_mac_addr)) { + pr_debug("MAC address invalid after ixgb_init_rx_addrs\n"); + return(false); + } + + /* tell the routines in this file they can access hardware again */ + hw->adapter_stopped = false; + + /* Fill in the bus_info structure */ + ixgb_get_bus_info(hw); + + /* Zero out the Multicast HASH table */ + pr_debug("Zeroing the MTA\n"); + for (i = 0; i < IXGB_MC_TBL_SIZE; i++) + IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0); + + /* Zero out the VLAN Filter Table Array */ + ixgb_clear_vfta(hw); + + /* Zero all of the hardware counters */ + ixgb_clear_hw_cntrs(hw); + + /* Call a subroutine to setup flow control. */ + status = ixgb_setup_fc(hw); + + /* 82597EX errata: Call check-for-link in case lane deskew is locked */ + ixgb_check_for_link(hw); + + return status; +} + +/****************************************************************************** + * Initializes receive address filters. + * + * hw - Struct containing variables accessed by shared code + * + * Places the MAC address in receive address register 0 and clears the rest + * of the receive address registers. Clears the multicast table. Assumes + * the receiver is in reset when the routine is called. + *****************************************************************************/ +static void +ixgb_init_rx_addrs(struct ixgb_hw *hw) +{ + u32 i; + + ENTER(); + + /* + * If the current mac address is valid, assume it is a software override + * to the permanent address. + * Otherwise, use the permanent address from the eeprom. + */ + if (!mac_addr_valid(hw->curr_mac_addr)) { + + /* Get the MAC address from the eeprom for later reference */ + ixgb_get_ee_mac_addr(hw, hw->curr_mac_addr); + + pr_debug("Keeping Permanent MAC Addr = %pM\n", + hw->curr_mac_addr); + } else { + + /* Setup the receive address. */ + pr_debug("Overriding MAC Address in RAR[0]\n"); + pr_debug("New MAC Addr = %pM\n", hw->curr_mac_addr); + + ixgb_rar_set(hw, hw->curr_mac_addr, 0); + } + + /* Zero out the other 15 receive addresses. */ + pr_debug("Clearing RAR[1-15]\n"); + for (i = 1; i < IXGB_RAR_ENTRIES; i++) { + /* Write high reg first to disable the AV bit first */ + IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + } +} + +/****************************************************************************** + * Updates the MAC's list of multicast addresses. + * + * hw - Struct containing variables accessed by shared code + * mc_addr_list - the list of new multicast addresses + * mc_addr_count - number of addresses + * pad - number of bytes between addresses in the list + * + * The given list replaces any existing list. Clears the last 15 receive + * address registers and the multicast table. Uses receive address registers + * for the first 15 multicast addresses, and hashes the rest into the + * multicast table. + *****************************************************************************/ +void +ixgb_mc_addr_list_update(struct ixgb_hw *hw, + u8 *mc_addr_list, + u32 mc_addr_count, + u32 pad) +{ + u32 hash_value; + u32 i; + u32 rar_used_count = 1; /* RAR[0] is used for our MAC address */ + u8 *mca; + + ENTER(); + + /* Set the new number of MC addresses that we are being requested to use. */ + hw->num_mc_addrs = mc_addr_count; + + /* Clear RAR[1-15] */ + pr_debug("Clearing RAR[1-15]\n"); + for (i = rar_used_count; i < IXGB_RAR_ENTRIES; i++) { + IXGB_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); + IXGB_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); + } + + /* Clear the MTA */ + pr_debug("Clearing MTA\n"); + for (i = 0; i < IXGB_MC_TBL_SIZE; i++) + IXGB_WRITE_REG_ARRAY(hw, MTA, i, 0); + + /* Add the new addresses */ + mca = mc_addr_list; + for (i = 0; i < mc_addr_count; i++) { + pr_debug("Adding the multicast addresses:\n"); + pr_debug("MC Addr #%d = %pM\n", i, mca); + + /* Place this multicast address in the RAR if there is room, * + * else put it in the MTA + */ + if (rar_used_count < IXGB_RAR_ENTRIES) { + ixgb_rar_set(hw, mca, rar_used_count); + pr_debug("Added a multicast address to RAR[%d]\n", i); + rar_used_count++; + } else { + hash_value = ixgb_hash_mc_addr(hw, mca); + + pr_debug("Hash value = 0x%03X\n", hash_value); + + ixgb_mta_set(hw, hash_value); + } + + mca += ETH_ALEN + pad; + } + + pr_debug("MC Update Complete\n"); +} + +/****************************************************************************** + * Hashes an address to determine its location in the multicast table + * + * hw - Struct containing variables accessed by shared code + * mc_addr - the multicast address to hash + * + * Returns: + * The hash value + *****************************************************************************/ +static u32 +ixgb_hash_mc_addr(struct ixgb_hw *hw, + u8 *mc_addr) +{ + u32 hash_value = 0; + + ENTER(); + + /* The portion of the address that is used for the hash table is + * determined by the mc_filter_type setting. + */ + switch (hw->mc_filter_type) { + /* [0] [1] [2] [3] [4] [5] + * 01 AA 00 12 34 56 + * LSB MSB - According to H/W docs */ + case 0: + /* [47:36] i.e. 0x563 for above example address */ + hash_value = + ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4)); + break; + case 1: /* [46:35] i.e. 0xAC6 for above example address */ + hash_value = + ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5)); + break; + case 2: /* [45:34] i.e. 0x5D8 for above example address */ + hash_value = + ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6)); + break; + case 3: /* [43:32] i.e. 0x634 for above example address */ + hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8)); + break; + default: + /* Invalid mc_filter_type, what should we do? */ + pr_debug("MC filter type param set incorrectly\n"); + ASSERT(0); + break; + } + + hash_value &= 0xFFF; + return hash_value; +} + +/****************************************************************************** + * Sets the bit in the multicast table corresponding to the hash value. + * + * hw - Struct containing variables accessed by shared code + * hash_value - Multicast address hash value + *****************************************************************************/ +static void +ixgb_mta_set(struct ixgb_hw *hw, + u32 hash_value) +{ + u32 hash_bit, hash_reg; + u32 mta_reg; + + /* The MTA is a register array of 128 32-bit registers. + * It is treated like an array of 4096 bits. We want to set + * bit BitArray[hash_value]. So we figure out what register + * the bit is in, read it, OR in the new bit, then write + * back the new value. The register is determined by the + * upper 7 bits of the hash value and the bit within that + * register are determined by the lower 5 bits of the value. + */ + hash_reg = (hash_value >> 5) & 0x7F; + hash_bit = hash_value & 0x1F; + + mta_reg = IXGB_READ_REG_ARRAY(hw, MTA, hash_reg); + + mta_reg |= (1 << hash_bit); + + IXGB_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta_reg); +} + +/****************************************************************************** + * Puts an ethernet address into a receive address register. + * + * hw - Struct containing variables accessed by shared code + * addr - Address to put into receive address register + * index - Receive address register to write + *****************************************************************************/ +void +ixgb_rar_set(struct ixgb_hw *hw, + const u8 *addr, + u32 index) +{ + u32 rar_low, rar_high; + + ENTER(); + + /* HW expects these in little endian so we reverse the byte order + * from network order (big endian) to little endian + */ + rar_low = ((u32) addr[0] | + ((u32)addr[1] << 8) | + ((u32)addr[2] << 16) | + ((u32)addr[3] << 24)); + + rar_high = ((u32) addr[4] | + ((u32)addr[5] << 8) | + IXGB_RAH_AV); + + IXGB_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); + IXGB_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); +} + +/****************************************************************************** + * Writes a value to the specified offset in the VLAN filter table. + * + * hw - Struct containing variables accessed by shared code + * offset - Offset in VLAN filter table to write + * value - Value to write into VLAN filter table + *****************************************************************************/ +void +ixgb_write_vfta(struct ixgb_hw *hw, + u32 offset, + u32 value) +{ + IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, value); +} + +/****************************************************************************** + * Clears the VLAN filter table + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +ixgb_clear_vfta(struct ixgb_hw *hw) +{ + u32 offset; + + for (offset = 0; offset < IXGB_VLAN_FILTER_TBL_SIZE; offset++) + IXGB_WRITE_REG_ARRAY(hw, VFTA, offset, 0); +} + +/****************************************************************************** + * Configures the flow control settings based on SW configuration. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ + +static bool +ixgb_setup_fc(struct ixgb_hw *hw) +{ + u32 ctrl_reg; + u32 pap_reg = 0; /* by default, assume no pause time */ + bool status = true; + + ENTER(); + + /* Get the current control reg 0 settings */ + ctrl_reg = IXGB_READ_REG(hw, CTRL0); + + /* Clear the Receive Pause Enable and Transmit Pause Enable bits */ + ctrl_reg &= ~(IXGB_CTRL0_RPE | IXGB_CTRL0_TPE); + + /* The possible values of the "flow_control" parameter are: + * 0: Flow control is completely disabled + * 1: Rx flow control is enabled (we can receive pause frames + * but not send pause frames). + * 2: Tx flow control is enabled (we can send pause frames + * but we do not support receiving pause frames). + * 3: Both Rx and TX flow control (symmetric) are enabled. + * other: Invalid. + */ + switch (hw->fc.type) { + case ixgb_fc_none: /* 0 */ + /* Set CMDC bit to disable Rx Flow control */ + ctrl_reg |= (IXGB_CTRL0_CMDC); + break; + case ixgb_fc_rx_pause: /* 1 */ + /* RX Flow control is enabled, and TX Flow control is + * disabled. + */ + ctrl_reg |= (IXGB_CTRL0_RPE); + break; + case ixgb_fc_tx_pause: /* 2 */ + /* TX Flow control is enabled, and RX Flow control is + * disabled, by a software over-ride. + */ + ctrl_reg |= (IXGB_CTRL0_TPE); + pap_reg = hw->fc.pause_time; + break; + case ixgb_fc_full: /* 3 */ + /* Flow control (both RX and TX) is enabled by a software + * over-ride. + */ + ctrl_reg |= (IXGB_CTRL0_RPE | IXGB_CTRL0_TPE); + pap_reg = hw->fc.pause_time; + break; + default: + /* We should never get here. The value should be 0-3. */ + pr_debug("Flow control param set incorrectly\n"); + ASSERT(0); + break; + } + + /* Write the new settings */ + IXGB_WRITE_REG(hw, CTRL0, ctrl_reg); + + if (pap_reg != 0) + IXGB_WRITE_REG(hw, PAP, pap_reg); + + /* Set the flow control receive threshold registers. Normally, + * these registers will be set to a default threshold that may be + * adjusted later by the driver's runtime code. However, if the + * ability to transmit pause frames in not enabled, then these + * registers will be set to 0. + */ + if (!(hw->fc.type & ixgb_fc_tx_pause)) { + IXGB_WRITE_REG(hw, FCRTL, 0); + IXGB_WRITE_REG(hw, FCRTH, 0); + } else { + /* We need to set up the Receive Threshold high and low water + * marks as well as (optionally) enabling the transmission of XON + * frames. */ + if (hw->fc.send_xon) { + IXGB_WRITE_REG(hw, FCRTL, + (hw->fc.low_water | IXGB_FCRTL_XONE)); + } else { + IXGB_WRITE_REG(hw, FCRTL, hw->fc.low_water); + } + IXGB_WRITE_REG(hw, FCRTH, hw->fc.high_water); + } + return status; +} + +/****************************************************************************** + * Reads a word from a device over the Management Data Interface (MDI) bus. + * This interface is used to manage Physical layer devices. + * + * hw - Struct containing variables accessed by hw code + * reg_address - Offset of device register being read. + * phy_address - Address of device on MDI. + * + * Returns: Data word (16 bits) from MDI device. + * + * The 82597EX has support for several MDI access methods. This routine + * uses the new protocol MDI Single Command and Address Operation. + * This requires that first an address cycle command is sent, followed by a + * read command. + *****************************************************************************/ +static u16 +ixgb_read_phy_reg(struct ixgb_hw *hw, + u32 reg_address, + u32 phy_address, + u32 device_type) +{ + u32 i; + u32 data; + u32 command = 0; + + ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS); + ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS); + ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE); + + /* Setup and write the address cycle command */ + command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | + (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | + (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | + (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND)); + + IXGB_WRITE_REG(hw, MSCA, command); + + /************************************************************** + ** Check every 10 usec to see if the address cycle completed + ** The COMMAND bit will clear when the operation is complete. + ** This may take as long as 64 usecs (we'll wait 100 usecs max) + ** from the CPU Write to the Ready bit assertion. + **************************************************************/ + + for (i = 0; i < 10; i++) + { + udelay(10); + + command = IXGB_READ_REG(hw, MSCA); + + if ((command & IXGB_MSCA_MDI_COMMAND) == 0) + break; + } + + ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); + + /* Address cycle complete, setup and write the read command */ + command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | + (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | + (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | + (IXGB_MSCA_READ | IXGB_MSCA_MDI_COMMAND)); + + IXGB_WRITE_REG(hw, MSCA, command); + + /************************************************************** + ** Check every 10 usec to see if the read command completed + ** The COMMAND bit will clear when the operation is complete. + ** The read may take as long as 64 usecs (we'll wait 100 usecs max) + ** from the CPU Write to the Ready bit assertion. + **************************************************************/ + + for (i = 0; i < 10; i++) + { + udelay(10); + + command = IXGB_READ_REG(hw, MSCA); + + if ((command & IXGB_MSCA_MDI_COMMAND) == 0) + break; + } + + ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); + + /* Operation is complete, get the data from the MDIO Read/Write Data + * register and return. + */ + data = IXGB_READ_REG(hw, MSRWD); + data >>= IXGB_MSRWD_READ_DATA_SHIFT; + return((u16) data); +} + +/****************************************************************************** + * Writes a word to a device over the Management Data Interface (MDI) bus. + * This interface is used to manage Physical layer devices. + * + * hw - Struct containing variables accessed by hw code + * reg_address - Offset of device register being read. + * phy_address - Address of device on MDI. + * device_type - Also known as the Device ID or DID. + * data - 16-bit value to be written + * + * Returns: void. + * + * The 82597EX has support for several MDI access methods. This routine + * uses the new protocol MDI Single Command and Address Operation. + * This requires that first an address cycle command is sent, followed by a + * write command. + *****************************************************************************/ +static void +ixgb_write_phy_reg(struct ixgb_hw *hw, + u32 reg_address, + u32 phy_address, + u32 device_type, + u16 data) +{ + u32 i; + u32 command = 0; + + ASSERT(reg_address <= IXGB_MAX_PHY_REG_ADDRESS); + ASSERT(phy_address <= IXGB_MAX_PHY_ADDRESS); + ASSERT(device_type <= IXGB_MAX_PHY_DEV_TYPE); + + /* Put the data in the MDIO Read/Write Data register */ + IXGB_WRITE_REG(hw, MSRWD, (u32)data); + + /* Setup and write the address cycle command */ + command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | + (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | + (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | + (IXGB_MSCA_ADDR_CYCLE | IXGB_MSCA_MDI_COMMAND)); + + IXGB_WRITE_REG(hw, MSCA, command); + + /************************************************************** + ** Check every 10 usec to see if the address cycle completed + ** The COMMAND bit will clear when the operation is complete. + ** This may take as long as 64 usecs (we'll wait 100 usecs max) + ** from the CPU Write to the Ready bit assertion. + **************************************************************/ + + for (i = 0; i < 10; i++) + { + udelay(10); + + command = IXGB_READ_REG(hw, MSCA); + + if ((command & IXGB_MSCA_MDI_COMMAND) == 0) + break; + } + + ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); + + /* Address cycle complete, setup and write the write command */ + command = ((reg_address << IXGB_MSCA_NP_ADDR_SHIFT) | + (device_type << IXGB_MSCA_DEV_TYPE_SHIFT) | + (phy_address << IXGB_MSCA_PHY_ADDR_SHIFT) | + (IXGB_MSCA_WRITE | IXGB_MSCA_MDI_COMMAND)); + + IXGB_WRITE_REG(hw, MSCA, command); + + /************************************************************** + ** Check every 10 usec to see if the read command completed + ** The COMMAND bit will clear when the operation is complete. + ** The write may take as long as 64 usecs (we'll wait 100 usecs max) + ** from the CPU Write to the Ready bit assertion. + **************************************************************/ + + for (i = 0; i < 10; i++) + { + udelay(10); + + command = IXGB_READ_REG(hw, MSCA); + + if ((command & IXGB_MSCA_MDI_COMMAND) == 0) + break; + } + + ASSERT((command & IXGB_MSCA_MDI_COMMAND) == 0); + + /* Operation is complete, return. */ +} + +/****************************************************************************** + * Checks to see if the link status of the hardware has changed. + * + * hw - Struct containing variables accessed by hw code + * + * Called by any function that needs to check the link status of the adapter. + *****************************************************************************/ +void +ixgb_check_for_link(struct ixgb_hw *hw) +{ + u32 status_reg; + u32 xpcss_reg; + + ENTER(); + + xpcss_reg = IXGB_READ_REG(hw, XPCSS); + status_reg = IXGB_READ_REG(hw, STATUS); + + if ((xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) && + (status_reg & IXGB_STATUS_LU)) { + hw->link_up = true; + } else if (!(xpcss_reg & IXGB_XPCSS_ALIGN_STATUS) && + (status_reg & IXGB_STATUS_LU)) { + pr_debug("XPCSS Not Aligned while Status:LU is set\n"); + hw->link_up = ixgb_link_reset(hw); + } else { + /* + * 82597EX errata. Since the lane deskew problem may prevent + * link, reset the link before reporting link down. + */ + hw->link_up = ixgb_link_reset(hw); + } + /* Anything else for 10 Gig?? */ +} + +/****************************************************************************** + * Check for a bad link condition that may have occurred. + * The indication is that the RFC / LFC registers may be incrementing + * continually. A full adapter reset is required to recover. + * + * hw - Struct containing variables accessed by hw code + * + * Called by any function that needs to check the link status of the adapter. + *****************************************************************************/ +bool ixgb_check_for_bad_link(struct ixgb_hw *hw) +{ + u32 newLFC, newRFC; + bool bad_link_returncode = false; + + if (hw->phy_type == ixgb_phy_type_txn17401) { + newLFC = IXGB_READ_REG(hw, LFC); + newRFC = IXGB_READ_REG(hw, RFC); + if ((hw->lastLFC + 250 < newLFC) + || (hw->lastRFC + 250 < newRFC)) { + pr_debug("BAD LINK! too many LFC/RFC since last check\n"); + bad_link_returncode = true; + } + hw->lastLFC = newLFC; + hw->lastRFC = newRFC; + } + + return bad_link_returncode; +} + +/****************************************************************************** + * Clears all hardware statistics counters. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +ixgb_clear_hw_cntrs(struct ixgb_hw *hw) +{ + ENTER(); + + /* if we are stopped or resetting exit gracefully */ + if (hw->adapter_stopped) { + pr_debug("Exiting because the adapter is stopped!!!\n"); + return; + } + + IXGB_READ_REG(hw, TPRL); + IXGB_READ_REG(hw, TPRH); + IXGB_READ_REG(hw, GPRCL); + IXGB_READ_REG(hw, GPRCH); + IXGB_READ_REG(hw, BPRCL); + IXGB_READ_REG(hw, BPRCH); + IXGB_READ_REG(hw, MPRCL); + IXGB_READ_REG(hw, MPRCH); + IXGB_READ_REG(hw, UPRCL); + IXGB_READ_REG(hw, UPRCH); + IXGB_READ_REG(hw, VPRCL); + IXGB_READ_REG(hw, VPRCH); + IXGB_READ_REG(hw, JPRCL); + IXGB_READ_REG(hw, JPRCH); + IXGB_READ_REG(hw, GORCL); + IXGB_READ_REG(hw, GORCH); + IXGB_READ_REG(hw, TORL); + IXGB_READ_REG(hw, TORH); + IXGB_READ_REG(hw, RNBC); + IXGB_READ_REG(hw, RUC); + IXGB_READ_REG(hw, ROC); + IXGB_READ_REG(hw, RLEC); + IXGB_READ_REG(hw, CRCERRS); + IXGB_READ_REG(hw, ICBC); + IXGB_READ_REG(hw, ECBC); + IXGB_READ_REG(hw, MPC); + IXGB_READ_REG(hw, TPTL); + IXGB_READ_REG(hw, TPTH); + IXGB_READ_REG(hw, GPTCL); + IXGB_READ_REG(hw, GPTCH); + IXGB_READ_REG(hw, BPTCL); + IXGB_READ_REG(hw, BPTCH); + IXGB_READ_REG(hw, MPTCL); + IXGB_READ_REG(hw, MPTCH); + IXGB_READ_REG(hw, UPTCL); + IXGB_READ_REG(hw, UPTCH); + IXGB_READ_REG(hw, VPTCL); + IXGB_READ_REG(hw, VPTCH); + IXGB_READ_REG(hw, JPTCL); + IXGB_READ_REG(hw, JPTCH); + IXGB_READ_REG(hw, GOTCL); + IXGB_READ_REG(hw, GOTCH); + IXGB_READ_REG(hw, TOTL); + IXGB_READ_REG(hw, TOTH); + IXGB_READ_REG(hw, DC); + IXGB_READ_REG(hw, PLT64C); + IXGB_READ_REG(hw, TSCTC); + IXGB_READ_REG(hw, TSCTFC); + IXGB_READ_REG(hw, IBIC); + IXGB_READ_REG(hw, RFC); + IXGB_READ_REG(hw, LFC); + IXGB_READ_REG(hw, PFRC); + IXGB_READ_REG(hw, PFTC); + IXGB_READ_REG(hw, MCFRC); + IXGB_READ_REG(hw, MCFTC); + IXGB_READ_REG(hw, XONRXC); + IXGB_READ_REG(hw, XONTXC); + IXGB_READ_REG(hw, XOFFRXC); + IXGB_READ_REG(hw, XOFFTXC); + IXGB_READ_REG(hw, RJC); +} + +/****************************************************************************** + * Turns on the software controllable LED + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +ixgb_led_on(struct ixgb_hw *hw) +{ + u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0); + + /* To turn on the LED, clear software-definable pin 0 (SDP0). */ + ctrl0_reg &= ~IXGB_CTRL0_SDP0; + IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg); +} + +/****************************************************************************** + * Turns off the software controllable LED + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +ixgb_led_off(struct ixgb_hw *hw) +{ + u32 ctrl0_reg = IXGB_READ_REG(hw, CTRL0); + + /* To turn off the LED, set software-definable pin 0 (SDP0). */ + ctrl0_reg |= IXGB_CTRL0_SDP0; + IXGB_WRITE_REG(hw, CTRL0, ctrl0_reg); +} + +/****************************************************************************** + * Gets the current PCI bus type, speed, and width of the hardware + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +ixgb_get_bus_info(struct ixgb_hw *hw) +{ + u32 status_reg; + + status_reg = IXGB_READ_REG(hw, STATUS); + + hw->bus.type = (status_reg & IXGB_STATUS_PCIX_MODE) ? + ixgb_bus_type_pcix : ixgb_bus_type_pci; + + if (hw->bus.type == ixgb_bus_type_pci) { + hw->bus.speed = (status_reg & IXGB_STATUS_PCI_SPD) ? + ixgb_bus_speed_66 : ixgb_bus_speed_33; + } else { + switch (status_reg & IXGB_STATUS_PCIX_SPD_MASK) { + case IXGB_STATUS_PCIX_SPD_66: + hw->bus.speed = ixgb_bus_speed_66; + break; + case IXGB_STATUS_PCIX_SPD_100: + hw->bus.speed = ixgb_bus_speed_100; + break; + case IXGB_STATUS_PCIX_SPD_133: + hw->bus.speed = ixgb_bus_speed_133; + break; + default: + hw->bus.speed = ixgb_bus_speed_reserved; + break; + } + } + + hw->bus.width = (status_reg & IXGB_STATUS_BUS64) ? + ixgb_bus_width_64 : ixgb_bus_width_32; +} + +/****************************************************************************** + * Tests a MAC address to ensure it is a valid Individual Address + * + * mac_addr - pointer to MAC address. + * + *****************************************************************************/ +static bool +mac_addr_valid(u8 *mac_addr) +{ + bool is_valid = true; + ENTER(); + + /* Make sure it is not a multicast address */ + if (is_multicast_ether_addr(mac_addr)) { + pr_debug("MAC address is multicast\n"); + is_valid = false; + } + /* Not a broadcast address */ + else if (is_broadcast_ether_addr(mac_addr)) { + pr_debug("MAC address is broadcast\n"); + is_valid = false; + } + /* Reject the zero address */ + else if (is_zero_ether_addr(mac_addr)) { + pr_debug("MAC address is all zeros\n"); + is_valid = false; + } + return is_valid; +} + +/****************************************************************************** + * Resets the 10GbE link. Waits the settle time and returns the state of + * the link. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static bool +ixgb_link_reset(struct ixgb_hw *hw) +{ + bool link_status = false; + u8 wait_retries = MAX_RESET_ITERATIONS; + u8 lrst_retries = MAX_RESET_ITERATIONS; + + do { + /* Reset the link */ + IXGB_WRITE_REG(hw, CTRL0, + IXGB_READ_REG(hw, CTRL0) | IXGB_CTRL0_LRST); + + /* Wait for link-up and lane re-alignment */ + do { + udelay(IXGB_DELAY_USECS_AFTER_LINK_RESET); + link_status = + ((IXGB_READ_REG(hw, STATUS) & IXGB_STATUS_LU) + && (IXGB_READ_REG(hw, XPCSS) & + IXGB_XPCSS_ALIGN_STATUS)) ? true : false; + } while (!link_status && --wait_retries); + + } while (!link_status && --lrst_retries); + + return link_status; +} + +/****************************************************************************** + * Resets the 10GbE optics module. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +ixgb_optics_reset(struct ixgb_hw *hw) +{ + if (hw->phy_type == ixgb_phy_type_txn17401) { + ixgb_write_phy_reg(hw, + MDIO_CTRL1, + IXGB_PHY_ADDRESS, + MDIO_MMD_PMAPMD, + MDIO_CTRL1_RESET); + + ixgb_read_phy_reg(hw, MDIO_CTRL1, IXGB_PHY_ADDRESS, MDIO_MMD_PMAPMD); + } +} + +/****************************************************************************** + * Resets the 10GbE optics module for Sun variant NIC. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ + +#define IXGB_BCM8704_USER_PMD_TX_CTRL_REG 0xC803 +#define IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL 0x0164 +#define IXGB_BCM8704_USER_CTRL_REG 0xC800 +#define IXGB_BCM8704_USER_CTRL_REG_VAL 0x7FBF +#define IXGB_BCM8704_USER_DEV3_ADDR 0x0003 +#define IXGB_SUN_PHY_ADDRESS 0x0000 +#define IXGB_SUN_PHY_RESET_DELAY 305 + +static void +ixgb_optics_reset_bcm(struct ixgb_hw *hw) +{ + u32 ctrl = IXGB_READ_REG(hw, CTRL0); + ctrl &= ~IXGB_CTRL0_SDP2; + ctrl |= IXGB_CTRL0_SDP3; + IXGB_WRITE_REG(hw, CTRL0, ctrl); + IXGB_WRITE_FLUSH(hw); + + /* SerDes needs extra delay */ + msleep(IXGB_SUN_PHY_RESET_DELAY); + + /* Broadcom 7408L configuration */ + /* Reference clock config */ + ixgb_write_phy_reg(hw, + IXGB_BCM8704_USER_PMD_TX_CTRL_REG, + IXGB_SUN_PHY_ADDRESS, + IXGB_BCM8704_USER_DEV3_ADDR, + IXGB_BCM8704_USER_PMD_TX_CTRL_REG_VAL); + /* we must read the registers twice */ + ixgb_read_phy_reg(hw, + IXGB_BCM8704_USER_PMD_TX_CTRL_REG, + IXGB_SUN_PHY_ADDRESS, + IXGB_BCM8704_USER_DEV3_ADDR); + ixgb_read_phy_reg(hw, + IXGB_BCM8704_USER_PMD_TX_CTRL_REG, + IXGB_SUN_PHY_ADDRESS, + IXGB_BCM8704_USER_DEV3_ADDR); + + ixgb_write_phy_reg(hw, + IXGB_BCM8704_USER_CTRL_REG, + IXGB_SUN_PHY_ADDRESS, + IXGB_BCM8704_USER_DEV3_ADDR, + IXGB_BCM8704_USER_CTRL_REG_VAL); + ixgb_read_phy_reg(hw, + IXGB_BCM8704_USER_CTRL_REG, + IXGB_SUN_PHY_ADDRESS, + IXGB_BCM8704_USER_DEV3_ADDR); + ixgb_read_phy_reg(hw, + IXGB_BCM8704_USER_CTRL_REG, + IXGB_SUN_PHY_ADDRESS, + IXGB_BCM8704_USER_DEV3_ADDR); + + /* SerDes needs extra delay */ + msleep(IXGB_SUN_PHY_RESET_DELAY); +} |