diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /drivers/net/ethernet/marvell/octeontx2/af/ptp.c | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'drivers/net/ethernet/marvell/octeontx2/af/ptp.c')
-rw-r--r-- | drivers/net/ethernet/marvell/octeontx2/af/ptp.c | 530 |
1 files changed, 530 insertions, 0 deletions
diff --git a/drivers/net/ethernet/marvell/octeontx2/af/ptp.c b/drivers/net/ethernet/marvell/octeontx2/af/ptp.c new file mode 100644 index 000000000..0ee420a48 --- /dev/null +++ b/drivers/net/ethernet/marvell/octeontx2/af/ptp.c @@ -0,0 +1,530 @@ +// SPDX-License-Identifier: GPL-2.0 +/* Marvell PTP driver + * + * Copyright (C) 2020 Marvell. + * + */ + +#include <linux/bitfield.h> +#include <linux/device.h> +#include <linux/module.h> +#include <linux/pci.h> +#include <linux/hrtimer.h> +#include <linux/ktime.h> + +#include "ptp.h" +#include "mbox.h" +#include "rvu.h" + +#define DRV_NAME "Marvell PTP Driver" + +#define PCI_DEVID_OCTEONTX2_PTP 0xA00C +#define PCI_SUBSYS_DEVID_OCTX2_98xx_PTP 0xB100 +#define PCI_SUBSYS_DEVID_OCTX2_96XX_PTP 0xB200 +#define PCI_SUBSYS_DEVID_OCTX2_95XX_PTP 0xB300 +#define PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP 0xB400 +#define PCI_SUBSYS_DEVID_OCTX2_95MM_PTP 0xB500 +#define PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP 0xB600 +#define PCI_DEVID_OCTEONTX2_RST 0xA085 +#define PCI_DEVID_CN10K_PTP 0xA09E +#define PCI_SUBSYS_DEVID_CN10K_A_PTP 0xB900 +#define PCI_SUBSYS_DEVID_CNF10K_A_PTP 0xBA00 +#define PCI_SUBSYS_DEVID_CNF10K_B_PTP 0xBC00 + +#define PCI_PTP_BAR_NO 0 + +#define PTP_CLOCK_CFG 0xF00ULL +#define PTP_CLOCK_CFG_PTP_EN BIT_ULL(0) +#define PTP_CLOCK_CFG_EXT_CLK_EN BIT_ULL(1) +#define PTP_CLOCK_CFG_EXT_CLK_IN_MASK GENMASK_ULL(7, 2) +#define PTP_CLOCK_CFG_TSTMP_EDGE BIT_ULL(9) +#define PTP_CLOCK_CFG_TSTMP_EN BIT_ULL(8) +#define PTP_CLOCK_CFG_TSTMP_IN_MASK GENMASK_ULL(15, 10) +#define PTP_CLOCK_CFG_PPS_EN BIT_ULL(30) +#define PTP_CLOCK_CFG_PPS_INV BIT_ULL(31) + +#define PTP_PPS_HI_INCR 0xF60ULL +#define PTP_PPS_LO_INCR 0xF68ULL +#define PTP_PPS_THRESH_HI 0xF58ULL + +#define PTP_CLOCK_LO 0xF08ULL +#define PTP_CLOCK_HI 0xF10ULL +#define PTP_CLOCK_COMP 0xF18ULL +#define PTP_TIMESTAMP 0xF20ULL +#define PTP_CLOCK_SEC 0xFD0ULL +#define PTP_SEC_ROLLOVER 0xFD8ULL + +#define CYCLE_MULT 1000 + +static struct ptp *first_ptp_block; +static const struct pci_device_id ptp_id_table[]; + +static bool is_ptp_dev_cnf10kb(struct ptp *ptp) +{ + return (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_B_PTP) ? true : false; +} + +static bool is_ptp_dev_cn10k(struct ptp *ptp) +{ + return (ptp->pdev->device == PCI_DEVID_CN10K_PTP) ? true : false; +} + +static bool cn10k_ptp_errata(struct ptp *ptp) +{ + if (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP || + ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP) + return true; + return false; +} + +static bool is_ptp_tsfmt_sec_nsec(struct ptp *ptp) +{ + if (ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CN10K_A_PTP || + ptp->pdev->subsystem_device == PCI_SUBSYS_DEVID_CNF10K_A_PTP) + return true; + return false; +} + +static enum hrtimer_restart ptp_reset_thresh(struct hrtimer *hrtimer) +{ + struct ptp *ptp = container_of(hrtimer, struct ptp, hrtimer); + ktime_t curr_ts = ktime_get(); + ktime_t delta_ns, period_ns; + u64 ptp_clock_hi; + + /* calculate the elapsed time since last restart */ + delta_ns = ktime_to_ns(ktime_sub(curr_ts, ptp->last_ts)); + + /* if the ptp clock value has crossed 0.5 seconds, + * its too late to update pps threshold value, so + * update threshold after 1 second. + */ + ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI); + if (ptp_clock_hi > 500000000) { + period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - ptp_clock_hi)); + } else { + writeq(500000000, ptp->reg_base + PTP_PPS_THRESH_HI); + period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - delta_ns)); + } + + hrtimer_forward_now(hrtimer, period_ns); + ptp->last_ts = curr_ts; + + return HRTIMER_RESTART; +} + +static void ptp_hrtimer_start(struct ptp *ptp, ktime_t start_ns) +{ + ktime_t period_ns; + + period_ns = ktime_set(0, (NSEC_PER_SEC + 100 - start_ns)); + hrtimer_start(&ptp->hrtimer, period_ns, HRTIMER_MODE_REL); + ptp->last_ts = ktime_get(); +} + +static u64 read_ptp_tstmp_sec_nsec(struct ptp *ptp) +{ + u64 sec, sec1, nsec; + unsigned long flags; + + spin_lock_irqsave(&ptp->ptp_lock, flags); + sec = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL; + nsec = readq(ptp->reg_base + PTP_CLOCK_HI); + sec1 = readq(ptp->reg_base + PTP_CLOCK_SEC) & 0xFFFFFFFFUL; + /* check nsec rollover */ + if (sec1 > sec) { + nsec = readq(ptp->reg_base + PTP_CLOCK_HI); + sec = sec1; + } + spin_unlock_irqrestore(&ptp->ptp_lock, flags); + + return sec * NSEC_PER_SEC + nsec; +} + +static u64 read_ptp_tstmp_nsec(struct ptp *ptp) +{ + return readq(ptp->reg_base + PTP_CLOCK_HI); +} + +static u64 ptp_calc_adjusted_comp(u64 ptp_clock_freq) +{ + u64 comp, adj = 0, cycles_per_sec, ns_drift = 0; + u32 ptp_clock_nsec, cycle_time; + int cycle; + + /* Errata: + * Issue #1: At the time of 1 sec rollover of the nano-second counter, + * the nano-second counter is set to 0. However, it should be set to + * (existing counter_value - 10^9). + * + * Issue #2: The nano-second counter rolls over at 0x3B9A_C9FF. + * It should roll over at 0x3B9A_CA00. + */ + + /* calculate ptp_clock_comp value */ + comp = ((u64)1000000000ULL << 32) / ptp_clock_freq; + /* use CYCLE_MULT to avoid accuracy loss due to integer arithmetic */ + cycle_time = NSEC_PER_SEC * CYCLE_MULT / ptp_clock_freq; + /* cycles per sec */ + cycles_per_sec = ptp_clock_freq; + + /* check whether ptp nanosecond counter rolls over early */ + cycle = cycles_per_sec - 1; + ptp_clock_nsec = (cycle * comp) >> 32; + while (ptp_clock_nsec < NSEC_PER_SEC) { + if (ptp_clock_nsec == 0x3B9AC9FF) + goto calc_adj_comp; + cycle++; + ptp_clock_nsec = (cycle * comp) >> 32; + } + /* compute nanoseconds lost per second when nsec counter rolls over */ + ns_drift = ptp_clock_nsec - NSEC_PER_SEC; + /* calculate ptp_clock_comp adjustment */ + if (ns_drift > 0) { + adj = comp * ns_drift; + adj = adj / 1000000000ULL; + } + /* speed up the ptp clock to account for nanoseconds lost */ + comp += adj; + return comp; + +calc_adj_comp: + /* slow down the ptp clock to not rollover early */ + adj = comp * cycle_time; + adj = adj / 1000000000ULL; + adj = adj / CYCLE_MULT; + comp -= adj; + + return comp; +} + +struct ptp *ptp_get(void) +{ + struct ptp *ptp = first_ptp_block; + + /* Check PTP block is present in hardware */ + if (!pci_dev_present(ptp_id_table)) + return ERR_PTR(-ENODEV); + /* Check driver is bound to PTP block */ + if (!ptp) + ptp = ERR_PTR(-EPROBE_DEFER); + else if (!IS_ERR(ptp)) + pci_dev_get(ptp->pdev); + + return ptp; +} + +void ptp_put(struct ptp *ptp) +{ + if (!ptp) + return; + + pci_dev_put(ptp->pdev); +} + +static int ptp_adjfine(struct ptp *ptp, long scaled_ppm) +{ + bool neg_adj = false; + u32 freq, freq_adj; + u64 comp, adj; + s64 ppb; + + if (scaled_ppm < 0) { + neg_adj = true; + scaled_ppm = -scaled_ppm; + } + + /* The hardware adds the clock compensation value to the PTP clock + * on every coprocessor clock cycle. Typical convention is that it + * represent number of nanosecond betwen each cycle. In this + * convention compensation value is in 64 bit fixed-point + * representation where upper 32 bits are number of nanoseconds + * and lower is fractions of nanosecond. + * The scaled_ppm represent the ratio in "parts per million" by which + * the compensation value should be corrected. + * To calculate new compenstation value we use 64bit fixed point + * arithmetic on following formula + * comp = tbase + tbase * scaled_ppm / (1M * 2^16) + * where tbase is the basic compensation value calculated + * initialy in the probe function. + */ + /* convert scaled_ppm to ppb */ + ppb = 1 + scaled_ppm; + ppb *= 125; + ppb >>= 13; + + if (cn10k_ptp_errata(ptp)) { + /* calculate the new frequency based on ppb */ + freq_adj = (ptp->clock_rate * ppb) / 1000000000ULL; + freq = neg_adj ? ptp->clock_rate + freq_adj : ptp->clock_rate - freq_adj; + comp = ptp_calc_adjusted_comp(freq); + } else { + comp = ((u64)1000000000ull << 32) / ptp->clock_rate; + adj = comp * ppb; + adj = div_u64(adj, 1000000000ull); + comp = neg_adj ? comp - adj : comp + adj; + } + writeq(comp, ptp->reg_base + PTP_CLOCK_COMP); + + return 0; +} + +static int ptp_get_clock(struct ptp *ptp, u64 *clk) +{ + /* Return the current PTP clock */ + *clk = ptp->read_ptp_tstmp(ptp); + + return 0; +} + +void ptp_start(struct ptp *ptp, u64 sclk, u32 ext_clk_freq, u32 extts) +{ + struct pci_dev *pdev; + u64 clock_comp; + u64 clock_cfg; + + if (!ptp) + return; + + pdev = ptp->pdev; + + if (!sclk) { + dev_err(&pdev->dev, "PTP input clock cannot be zero\n"); + return; + } + + /* sclk is in MHz */ + ptp->clock_rate = sclk * 1000000; + + /* Program the seconds rollover value to 1 second */ + if (is_ptp_dev_cnf10kb(ptp)) + writeq(0x3b9aca00, ptp->reg_base + PTP_SEC_ROLLOVER); + + /* Enable PTP clock */ + clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); + + if (ext_clk_freq) { + ptp->clock_rate = ext_clk_freq; + /* Set GPIO as PTP clock source */ + clock_cfg &= ~PTP_CLOCK_CFG_EXT_CLK_IN_MASK; + clock_cfg |= PTP_CLOCK_CFG_EXT_CLK_EN; + } + + if (extts) { + clock_cfg |= PTP_CLOCK_CFG_TSTMP_EDGE; + /* Set GPIO as timestamping source */ + clock_cfg &= ~PTP_CLOCK_CFG_TSTMP_IN_MASK; + clock_cfg |= PTP_CLOCK_CFG_TSTMP_EN; + } + + clock_cfg |= PTP_CLOCK_CFG_PTP_EN; + clock_cfg |= PTP_CLOCK_CFG_PPS_EN | PTP_CLOCK_CFG_PPS_INV; + writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); + + /* Set 50% duty cycle for 1Hz output */ + writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_HI_INCR); + writeq(0x1dcd650000000000, ptp->reg_base + PTP_PPS_LO_INCR); + if (cn10k_ptp_errata(ptp)) { + /* The ptp_clock_hi rollsover to zero once clock cycle before it + * reaches one second boundary. so, program the pps_lo_incr in + * such a way that the pps threshold value comparison at one + * second boundary will succeed and pps edge changes. After each + * one second boundary, the hrtimer handler will be invoked and + * reprograms the pps threshold value. + */ + ptp->clock_period = NSEC_PER_SEC / ptp->clock_rate; + writeq((0x1dcd6500ULL - ptp->clock_period) << 32, + ptp->reg_base + PTP_PPS_LO_INCR); + } + + if (cn10k_ptp_errata(ptp)) + clock_comp = ptp_calc_adjusted_comp(ptp->clock_rate); + else + clock_comp = ((u64)1000000000ull << 32) / ptp->clock_rate; + + /* Initial compensation value to start the nanosecs counter */ + writeq(clock_comp, ptp->reg_base + PTP_CLOCK_COMP); +} + +static int ptp_get_tstmp(struct ptp *ptp, u64 *clk) +{ + u64 timestamp; + + if (is_ptp_dev_cn10k(ptp)) { + timestamp = readq(ptp->reg_base + PTP_TIMESTAMP); + *clk = (timestamp >> 32) * NSEC_PER_SEC + (timestamp & 0xFFFFFFFF); + } else { + *clk = readq(ptp->reg_base + PTP_TIMESTAMP); + } + + return 0; +} + +static int ptp_set_thresh(struct ptp *ptp, u64 thresh) +{ + if (!cn10k_ptp_errata(ptp)) + writeq(thresh, ptp->reg_base + PTP_PPS_THRESH_HI); + + return 0; +} + +static int ptp_extts_on(struct ptp *ptp, int on) +{ + u64 ptp_clock_hi; + + if (cn10k_ptp_errata(ptp)) { + if (on) { + ptp_clock_hi = readq(ptp->reg_base + PTP_CLOCK_HI); + ptp_hrtimer_start(ptp, (ktime_t)ptp_clock_hi); + } else { + if (hrtimer_active(&ptp->hrtimer)) + hrtimer_cancel(&ptp->hrtimer); + } + } + + return 0; +} + +static int ptp_probe(struct pci_dev *pdev, + const struct pci_device_id *ent) +{ + struct ptp *ptp; + int err; + + ptp = kzalloc(sizeof(*ptp), GFP_KERNEL); + if (!ptp) { + err = -ENOMEM; + goto error; + } + + ptp->pdev = pdev; + + err = pcim_enable_device(pdev); + if (err) + goto error_free; + + err = pcim_iomap_regions(pdev, 1 << PCI_PTP_BAR_NO, pci_name(pdev)); + if (err) + goto error_free; + + ptp->reg_base = pcim_iomap_table(pdev)[PCI_PTP_BAR_NO]; + + pci_set_drvdata(pdev, ptp); + if (!first_ptp_block) + first_ptp_block = ptp; + + spin_lock_init(&ptp->ptp_lock); + if (is_ptp_tsfmt_sec_nsec(ptp)) + ptp->read_ptp_tstmp = &read_ptp_tstmp_sec_nsec; + else + ptp->read_ptp_tstmp = &read_ptp_tstmp_nsec; + + if (cn10k_ptp_errata(ptp)) { + hrtimer_init(&ptp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); + ptp->hrtimer.function = ptp_reset_thresh; + } + + return 0; + +error_free: + kfree(ptp); + +error: + /* For `ptp_get()` we need to differentiate between the case + * when the core has not tried to probe this device and the case when + * the probe failed. In the later case we keep the error in + * `dev->driver_data`. + */ + pci_set_drvdata(pdev, ERR_PTR(err)); + if (!first_ptp_block) + first_ptp_block = ERR_PTR(err); + + return err; +} + +static void ptp_remove(struct pci_dev *pdev) +{ + struct ptp *ptp = pci_get_drvdata(pdev); + u64 clock_cfg; + + if (IS_ERR_OR_NULL(ptp)) + return; + + if (cn10k_ptp_errata(ptp) && hrtimer_active(&ptp->hrtimer)) + hrtimer_cancel(&ptp->hrtimer); + + /* Disable PTP clock */ + clock_cfg = readq(ptp->reg_base + PTP_CLOCK_CFG); + clock_cfg &= ~PTP_CLOCK_CFG_PTP_EN; + writeq(clock_cfg, ptp->reg_base + PTP_CLOCK_CFG); + kfree(ptp); +} + +static const struct pci_device_id ptp_id_table[] = { + { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, + PCI_VENDOR_ID_CAVIUM, + PCI_SUBSYS_DEVID_OCTX2_98xx_PTP) }, + { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, + PCI_VENDOR_ID_CAVIUM, + PCI_SUBSYS_DEVID_OCTX2_96XX_PTP) }, + { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, + PCI_VENDOR_ID_CAVIUM, + PCI_SUBSYS_DEVID_OCTX2_95XX_PTP) }, + { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, + PCI_VENDOR_ID_CAVIUM, + PCI_SUBSYS_DEVID_OCTX2_95XXN_PTP) }, + { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, + PCI_VENDOR_ID_CAVIUM, + PCI_SUBSYS_DEVID_OCTX2_95MM_PTP) }, + { PCI_DEVICE_SUB(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_OCTEONTX2_PTP, + PCI_VENDOR_ID_CAVIUM, + PCI_SUBSYS_DEVID_OCTX2_95XXO_PTP) }, + { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVID_CN10K_PTP) }, + { 0, } +}; + +struct pci_driver ptp_driver = { + .name = DRV_NAME, + .id_table = ptp_id_table, + .probe = ptp_probe, + .remove = ptp_remove, +}; + +int rvu_mbox_handler_ptp_op(struct rvu *rvu, struct ptp_req *req, + struct ptp_rsp *rsp) +{ + int err = 0; + + /* This function is the PTP mailbox handler invoked when + * called by AF consumers/netdev drivers via mailbox mechanism. + * It is used by netdev driver to get the PTP clock and to set + * frequency adjustments. Since mailbox can be called without + * notion of whether the driver is bound to ptp device below + * validation is needed as first step. + */ + if (!rvu->ptp) + return -ENODEV; + + switch (req->op) { + case PTP_OP_ADJFINE: + err = ptp_adjfine(rvu->ptp, req->scaled_ppm); + break; + case PTP_OP_GET_CLOCK: + err = ptp_get_clock(rvu->ptp, &rsp->clk); + break; + case PTP_OP_GET_TSTMP: + err = ptp_get_tstmp(rvu->ptp, &rsp->clk); + break; + case PTP_OP_SET_THRESH: + err = ptp_set_thresh(rvu->ptp, req->thresh); + break; + case PTP_OP_EXTTS_ON: + err = ptp_extts_on(rvu->ptp, req->extts_on); + break; + default: + err = -EINVAL; + break; + } + + return err; +} |