summaryrefslogtreecommitdiffstats
path: root/fs/exec.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:49:45 +0000
commit2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch)
tree848558de17fb3008cdf4d861b01ac7781903ce39 /fs/exec.c
parentInitial commit. (diff)
downloadlinux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz
linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'fs/exec.c')
-rw-r--r--fs/exec.c2167
1 files changed, 2167 insertions, 0 deletions
diff --git a/fs/exec.c b/fs/exec.c
new file mode 100644
index 000000000..39f7751c9
--- /dev/null
+++ b/fs/exec.c
@@ -0,0 +1,2167 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * linux/fs/exec.c
+ *
+ * Copyright (C) 1991, 1992 Linus Torvalds
+ */
+
+/*
+ * #!-checking implemented by tytso.
+ */
+/*
+ * Demand-loading implemented 01.12.91 - no need to read anything but
+ * the header into memory. The inode of the executable is put into
+ * "current->executable", and page faults do the actual loading. Clean.
+ *
+ * Once more I can proudly say that linux stood up to being changed: it
+ * was less than 2 hours work to get demand-loading completely implemented.
+ *
+ * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
+ * current->executable is only used by the procfs. This allows a dispatch
+ * table to check for several different types of binary formats. We keep
+ * trying until we recognize the file or we run out of supported binary
+ * formats.
+ */
+
+#include <linux/kernel_read_file.h>
+#include <linux/slab.h>
+#include <linux/file.h>
+#include <linux/fdtable.h>
+#include <linux/mm.h>
+#include <linux/stat.h>
+#include <linux/fcntl.h>
+#include <linux/swap.h>
+#include <linux/string.h>
+#include <linux/init.h>
+#include <linux/sched/mm.h>
+#include <linux/sched/coredump.h>
+#include <linux/sched/signal.h>
+#include <linux/sched/numa_balancing.h>
+#include <linux/sched/task.h>
+#include <linux/pagemap.h>
+#include <linux/perf_event.h>
+#include <linux/highmem.h>
+#include <linux/spinlock.h>
+#include <linux/key.h>
+#include <linux/personality.h>
+#include <linux/binfmts.h>
+#include <linux/utsname.h>
+#include <linux/pid_namespace.h>
+#include <linux/module.h>
+#include <linux/namei.h>
+#include <linux/mount.h>
+#include <linux/security.h>
+#include <linux/syscalls.h>
+#include <linux/tsacct_kern.h>
+#include <linux/cn_proc.h>
+#include <linux/audit.h>
+#include <linux/kmod.h>
+#include <linux/fsnotify.h>
+#include <linux/fs_struct.h>
+#include <linux/oom.h>
+#include <linux/compat.h>
+#include <linux/vmalloc.h>
+#include <linux/io_uring.h>
+#include <linux/syscall_user_dispatch.h>
+#include <linux/coredump.h>
+
+#include <linux/uaccess.h>
+#include <asm/mmu_context.h>
+#include <asm/tlb.h>
+
+#include <trace/events/task.h>
+#include "internal.h"
+
+#include <trace/events/sched.h>
+
+static int bprm_creds_from_file(struct linux_binprm *bprm);
+
+int suid_dumpable = 0;
+
+static LIST_HEAD(formats);
+static DEFINE_RWLOCK(binfmt_lock);
+
+void __register_binfmt(struct linux_binfmt * fmt, int insert)
+{
+ write_lock(&binfmt_lock);
+ insert ? list_add(&fmt->lh, &formats) :
+ list_add_tail(&fmt->lh, &formats);
+ write_unlock(&binfmt_lock);
+}
+
+EXPORT_SYMBOL(__register_binfmt);
+
+void unregister_binfmt(struct linux_binfmt * fmt)
+{
+ write_lock(&binfmt_lock);
+ list_del(&fmt->lh);
+ write_unlock(&binfmt_lock);
+}
+
+EXPORT_SYMBOL(unregister_binfmt);
+
+static inline void put_binfmt(struct linux_binfmt * fmt)
+{
+ module_put(fmt->module);
+}
+
+bool path_noexec(const struct path *path)
+{
+ return (path->mnt->mnt_flags & MNT_NOEXEC) ||
+ (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
+}
+
+#ifdef CONFIG_USELIB
+/*
+ * Note that a shared library must be both readable and executable due to
+ * security reasons.
+ *
+ * Also note that we take the address to load from the file itself.
+ */
+SYSCALL_DEFINE1(uselib, const char __user *, library)
+{
+ struct linux_binfmt *fmt;
+ struct file *file;
+ struct filename *tmp = getname(library);
+ int error = PTR_ERR(tmp);
+ static const struct open_flags uselib_flags = {
+ .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
+ .acc_mode = MAY_READ | MAY_EXEC,
+ .intent = LOOKUP_OPEN,
+ .lookup_flags = LOOKUP_FOLLOW,
+ };
+
+ if (IS_ERR(tmp))
+ goto out;
+
+ file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
+ putname(tmp);
+ error = PTR_ERR(file);
+ if (IS_ERR(file))
+ goto out;
+
+ /*
+ * may_open() has already checked for this, so it should be
+ * impossible to trip now. But we need to be extra cautious
+ * and check again at the very end too.
+ */
+ error = -EACCES;
+ if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
+ path_noexec(&file->f_path)))
+ goto exit;
+
+ fsnotify_open(file);
+
+ error = -ENOEXEC;
+
+ read_lock(&binfmt_lock);
+ list_for_each_entry(fmt, &formats, lh) {
+ if (!fmt->load_shlib)
+ continue;
+ if (!try_module_get(fmt->module))
+ continue;
+ read_unlock(&binfmt_lock);
+ error = fmt->load_shlib(file);
+ read_lock(&binfmt_lock);
+ put_binfmt(fmt);
+ if (error != -ENOEXEC)
+ break;
+ }
+ read_unlock(&binfmt_lock);
+exit:
+ fput(file);
+out:
+ return error;
+}
+#endif /* #ifdef CONFIG_USELIB */
+
+#ifdef CONFIG_MMU
+/*
+ * The nascent bprm->mm is not visible until exec_mmap() but it can
+ * use a lot of memory, account these pages in current->mm temporary
+ * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
+ * change the counter back via acct_arg_size(0).
+ */
+static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
+{
+ struct mm_struct *mm = current->mm;
+ long diff = (long)(pages - bprm->vma_pages);
+
+ if (!mm || !diff)
+ return;
+
+ bprm->vma_pages = pages;
+ add_mm_counter(mm, MM_ANONPAGES, diff);
+}
+
+static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
+ int write)
+{
+ struct page *page;
+ struct vm_area_struct *vma = bprm->vma;
+ struct mm_struct *mm = bprm->mm;
+ int ret;
+
+ /*
+ * Avoid relying on expanding the stack down in GUP (which
+ * does not work for STACK_GROWSUP anyway), and just do it
+ * by hand ahead of time.
+ */
+ if (write && pos < vma->vm_start) {
+ mmap_write_lock(mm);
+ ret = expand_downwards(vma, pos);
+ if (unlikely(ret < 0)) {
+ mmap_write_unlock(mm);
+ return NULL;
+ }
+ mmap_write_downgrade(mm);
+ } else
+ mmap_read_lock(mm);
+
+ /*
+ * We are doing an exec(). 'current' is the process
+ * doing the exec and 'mm' is the new process's mm.
+ */
+ ret = get_user_pages_remote(mm, pos, 1,
+ write ? FOLL_WRITE : 0,
+ &page, NULL, NULL);
+ mmap_read_unlock(mm);
+ if (ret <= 0)
+ return NULL;
+
+ if (write)
+ acct_arg_size(bprm, vma_pages(vma));
+
+ return page;
+}
+
+static void put_arg_page(struct page *page)
+{
+ put_page(page);
+}
+
+static void free_arg_pages(struct linux_binprm *bprm)
+{
+}
+
+static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
+ struct page *page)
+{
+ flush_cache_page(bprm->vma, pos, page_to_pfn(page));
+}
+
+static int __bprm_mm_init(struct linux_binprm *bprm)
+{
+ int err;
+ struct vm_area_struct *vma = NULL;
+ struct mm_struct *mm = bprm->mm;
+
+ bprm->vma = vma = vm_area_alloc(mm);
+ if (!vma)
+ return -ENOMEM;
+ vma_set_anonymous(vma);
+
+ if (mmap_write_lock_killable(mm)) {
+ err = -EINTR;
+ goto err_free;
+ }
+
+ /*
+ * Place the stack at the largest stack address the architecture
+ * supports. Later, we'll move this to an appropriate place. We don't
+ * use STACK_TOP because that can depend on attributes which aren't
+ * configured yet.
+ */
+ BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
+ vma->vm_end = STACK_TOP_MAX;
+ vma->vm_start = vma->vm_end - PAGE_SIZE;
+ vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
+ vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
+
+ err = insert_vm_struct(mm, vma);
+ if (err)
+ goto err;
+
+ mm->stack_vm = mm->total_vm = 1;
+ mmap_write_unlock(mm);
+ bprm->p = vma->vm_end - sizeof(void *);
+ return 0;
+err:
+ mmap_write_unlock(mm);
+err_free:
+ bprm->vma = NULL;
+ vm_area_free(vma);
+ return err;
+}
+
+static bool valid_arg_len(struct linux_binprm *bprm, long len)
+{
+ return len <= MAX_ARG_STRLEN;
+}
+
+#else
+
+static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
+{
+}
+
+static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
+ int write)
+{
+ struct page *page;
+
+ page = bprm->page[pos / PAGE_SIZE];
+ if (!page && write) {
+ page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
+ if (!page)
+ return NULL;
+ bprm->page[pos / PAGE_SIZE] = page;
+ }
+
+ return page;
+}
+
+static void put_arg_page(struct page *page)
+{
+}
+
+static void free_arg_page(struct linux_binprm *bprm, int i)
+{
+ if (bprm->page[i]) {
+ __free_page(bprm->page[i]);
+ bprm->page[i] = NULL;
+ }
+}
+
+static void free_arg_pages(struct linux_binprm *bprm)
+{
+ int i;
+
+ for (i = 0; i < MAX_ARG_PAGES; i++)
+ free_arg_page(bprm, i);
+}
+
+static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
+ struct page *page)
+{
+}
+
+static int __bprm_mm_init(struct linux_binprm *bprm)
+{
+ bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
+ return 0;
+}
+
+static bool valid_arg_len(struct linux_binprm *bprm, long len)
+{
+ return len <= bprm->p;
+}
+
+#endif /* CONFIG_MMU */
+
+/*
+ * Create a new mm_struct and populate it with a temporary stack
+ * vm_area_struct. We don't have enough context at this point to set the stack
+ * flags, permissions, and offset, so we use temporary values. We'll update
+ * them later in setup_arg_pages().
+ */
+static int bprm_mm_init(struct linux_binprm *bprm)
+{
+ int err;
+ struct mm_struct *mm = NULL;
+
+ bprm->mm = mm = mm_alloc();
+ err = -ENOMEM;
+ if (!mm)
+ goto err;
+
+ /* Save current stack limit for all calculations made during exec. */
+ task_lock(current->group_leader);
+ bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
+ task_unlock(current->group_leader);
+
+ err = __bprm_mm_init(bprm);
+ if (err)
+ goto err;
+
+ return 0;
+
+err:
+ if (mm) {
+ bprm->mm = NULL;
+ mmdrop(mm);
+ }
+
+ return err;
+}
+
+struct user_arg_ptr {
+#ifdef CONFIG_COMPAT
+ bool is_compat;
+#endif
+ union {
+ const char __user *const __user *native;
+#ifdef CONFIG_COMPAT
+ const compat_uptr_t __user *compat;
+#endif
+ } ptr;
+};
+
+static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
+{
+ const char __user *native;
+
+#ifdef CONFIG_COMPAT
+ if (unlikely(argv.is_compat)) {
+ compat_uptr_t compat;
+
+ if (get_user(compat, argv.ptr.compat + nr))
+ return ERR_PTR(-EFAULT);
+
+ return compat_ptr(compat);
+ }
+#endif
+
+ if (get_user(native, argv.ptr.native + nr))
+ return ERR_PTR(-EFAULT);
+
+ return native;
+}
+
+/*
+ * count() counts the number of strings in array ARGV.
+ */
+static int count(struct user_arg_ptr argv, int max)
+{
+ int i = 0;
+
+ if (argv.ptr.native != NULL) {
+ for (;;) {
+ const char __user *p = get_user_arg_ptr(argv, i);
+
+ if (!p)
+ break;
+
+ if (IS_ERR(p))
+ return -EFAULT;
+
+ if (i >= max)
+ return -E2BIG;
+ ++i;
+
+ if (fatal_signal_pending(current))
+ return -ERESTARTNOHAND;
+ cond_resched();
+ }
+ }
+ return i;
+}
+
+static int count_strings_kernel(const char *const *argv)
+{
+ int i;
+
+ if (!argv)
+ return 0;
+
+ for (i = 0; argv[i]; ++i) {
+ if (i >= MAX_ARG_STRINGS)
+ return -E2BIG;
+ if (fatal_signal_pending(current))
+ return -ERESTARTNOHAND;
+ cond_resched();
+ }
+ return i;
+}
+
+static int bprm_stack_limits(struct linux_binprm *bprm)
+{
+ unsigned long limit, ptr_size;
+
+ /*
+ * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
+ * (whichever is smaller) for the argv+env strings.
+ * This ensures that:
+ * - the remaining binfmt code will not run out of stack space,
+ * - the program will have a reasonable amount of stack left
+ * to work from.
+ */
+ limit = _STK_LIM / 4 * 3;
+ limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
+ /*
+ * We've historically supported up to 32 pages (ARG_MAX)
+ * of argument strings even with small stacks
+ */
+ limit = max_t(unsigned long, limit, ARG_MAX);
+ /*
+ * We must account for the size of all the argv and envp pointers to
+ * the argv and envp strings, since they will also take up space in
+ * the stack. They aren't stored until much later when we can't
+ * signal to the parent that the child has run out of stack space.
+ * Instead, calculate it here so it's possible to fail gracefully.
+ *
+ * In the case of argc = 0, make sure there is space for adding a
+ * empty string (which will bump argc to 1), to ensure confused
+ * userspace programs don't start processing from argv[1], thinking
+ * argc can never be 0, to keep them from walking envp by accident.
+ * See do_execveat_common().
+ */
+ ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
+ if (limit <= ptr_size)
+ return -E2BIG;
+ limit -= ptr_size;
+
+ bprm->argmin = bprm->p - limit;
+ return 0;
+}
+
+/*
+ * 'copy_strings()' copies argument/environment strings from the old
+ * processes's memory to the new process's stack. The call to get_user_pages()
+ * ensures the destination page is created and not swapped out.
+ */
+static int copy_strings(int argc, struct user_arg_ptr argv,
+ struct linux_binprm *bprm)
+{
+ struct page *kmapped_page = NULL;
+ char *kaddr = NULL;
+ unsigned long kpos = 0;
+ int ret;
+
+ while (argc-- > 0) {
+ const char __user *str;
+ int len;
+ unsigned long pos;
+
+ ret = -EFAULT;
+ str = get_user_arg_ptr(argv, argc);
+ if (IS_ERR(str))
+ goto out;
+
+ len = strnlen_user(str, MAX_ARG_STRLEN);
+ if (!len)
+ goto out;
+
+ ret = -E2BIG;
+ if (!valid_arg_len(bprm, len))
+ goto out;
+
+ /* We're going to work our way backwards. */
+ pos = bprm->p;
+ str += len;
+ bprm->p -= len;
+#ifdef CONFIG_MMU
+ if (bprm->p < bprm->argmin)
+ goto out;
+#endif
+
+ while (len > 0) {
+ int offset, bytes_to_copy;
+
+ if (fatal_signal_pending(current)) {
+ ret = -ERESTARTNOHAND;
+ goto out;
+ }
+ cond_resched();
+
+ offset = pos % PAGE_SIZE;
+ if (offset == 0)
+ offset = PAGE_SIZE;
+
+ bytes_to_copy = offset;
+ if (bytes_to_copy > len)
+ bytes_to_copy = len;
+
+ offset -= bytes_to_copy;
+ pos -= bytes_to_copy;
+ str -= bytes_to_copy;
+ len -= bytes_to_copy;
+
+ if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
+ struct page *page;
+
+ page = get_arg_page(bprm, pos, 1);
+ if (!page) {
+ ret = -E2BIG;
+ goto out;
+ }
+
+ if (kmapped_page) {
+ flush_dcache_page(kmapped_page);
+ kunmap_local(kaddr);
+ put_arg_page(kmapped_page);
+ }
+ kmapped_page = page;
+ kaddr = kmap_local_page(kmapped_page);
+ kpos = pos & PAGE_MASK;
+ flush_arg_page(bprm, kpos, kmapped_page);
+ }
+ if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
+ ret = -EFAULT;
+ goto out;
+ }
+ }
+ }
+ ret = 0;
+out:
+ if (kmapped_page) {
+ flush_dcache_page(kmapped_page);
+ kunmap_local(kaddr);
+ put_arg_page(kmapped_page);
+ }
+ return ret;
+}
+
+/*
+ * Copy and argument/environment string from the kernel to the processes stack.
+ */
+int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
+{
+ int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
+ unsigned long pos = bprm->p;
+
+ if (len == 0)
+ return -EFAULT;
+ if (!valid_arg_len(bprm, len))
+ return -E2BIG;
+
+ /* We're going to work our way backwards. */
+ arg += len;
+ bprm->p -= len;
+ if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
+ return -E2BIG;
+
+ while (len > 0) {
+ unsigned int bytes_to_copy = min_t(unsigned int, len,
+ min_not_zero(offset_in_page(pos), PAGE_SIZE));
+ struct page *page;
+
+ pos -= bytes_to_copy;
+ arg -= bytes_to_copy;
+ len -= bytes_to_copy;
+
+ page = get_arg_page(bprm, pos, 1);
+ if (!page)
+ return -E2BIG;
+ flush_arg_page(bprm, pos & PAGE_MASK, page);
+ memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
+ put_arg_page(page);
+ }
+
+ return 0;
+}
+EXPORT_SYMBOL(copy_string_kernel);
+
+static int copy_strings_kernel(int argc, const char *const *argv,
+ struct linux_binprm *bprm)
+{
+ while (argc-- > 0) {
+ int ret = copy_string_kernel(argv[argc], bprm);
+ if (ret < 0)
+ return ret;
+ if (fatal_signal_pending(current))
+ return -ERESTARTNOHAND;
+ cond_resched();
+ }
+ return 0;
+}
+
+#ifdef CONFIG_MMU
+
+/*
+ * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
+ * the binfmt code determines where the new stack should reside, we shift it to
+ * its final location. The process proceeds as follows:
+ *
+ * 1) Use shift to calculate the new vma endpoints.
+ * 2) Extend vma to cover both the old and new ranges. This ensures the
+ * arguments passed to subsequent functions are consistent.
+ * 3) Move vma's page tables to the new range.
+ * 4) Free up any cleared pgd range.
+ * 5) Shrink the vma to cover only the new range.
+ */
+static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
+{
+ struct mm_struct *mm = vma->vm_mm;
+ unsigned long old_start = vma->vm_start;
+ unsigned long old_end = vma->vm_end;
+ unsigned long length = old_end - old_start;
+ unsigned long new_start = old_start - shift;
+ unsigned long new_end = old_end - shift;
+ VMA_ITERATOR(vmi, mm, new_start);
+ struct vm_area_struct *next;
+ struct mmu_gather tlb;
+
+ BUG_ON(new_start > new_end);
+
+ /*
+ * ensure there are no vmas between where we want to go
+ * and where we are
+ */
+ if (vma != vma_next(&vmi))
+ return -EFAULT;
+
+ /*
+ * cover the whole range: [new_start, old_end)
+ */
+ if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
+ return -ENOMEM;
+
+ /*
+ * move the page tables downwards, on failure we rely on
+ * process cleanup to remove whatever mess we made.
+ */
+ if (length != move_page_tables(vma, old_start,
+ vma, new_start, length, false))
+ return -ENOMEM;
+
+ lru_add_drain();
+ tlb_gather_mmu(&tlb, mm);
+ next = vma_next(&vmi);
+ if (new_end > old_start) {
+ /*
+ * when the old and new regions overlap clear from new_end.
+ */
+ free_pgd_range(&tlb, new_end, old_end, new_end,
+ next ? next->vm_start : USER_PGTABLES_CEILING);
+ } else {
+ /*
+ * otherwise, clean from old_start; this is done to not touch
+ * the address space in [new_end, old_start) some architectures
+ * have constraints on va-space that make this illegal (IA64) -
+ * for the others its just a little faster.
+ */
+ free_pgd_range(&tlb, old_start, old_end, new_end,
+ next ? next->vm_start : USER_PGTABLES_CEILING);
+ }
+ tlb_finish_mmu(&tlb);
+
+ /*
+ * Shrink the vma to just the new range. Always succeeds.
+ */
+ vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
+
+ return 0;
+}
+
+/*
+ * Finalizes the stack vm_area_struct. The flags and permissions are updated,
+ * the stack is optionally relocated, and some extra space is added.
+ */
+int setup_arg_pages(struct linux_binprm *bprm,
+ unsigned long stack_top,
+ int executable_stack)
+{
+ unsigned long ret;
+ unsigned long stack_shift;
+ struct mm_struct *mm = current->mm;
+ struct vm_area_struct *vma = bprm->vma;
+ struct vm_area_struct *prev = NULL;
+ unsigned long vm_flags;
+ unsigned long stack_base;
+ unsigned long stack_size;
+ unsigned long stack_expand;
+ unsigned long rlim_stack;
+ struct mmu_gather tlb;
+
+#ifdef CONFIG_STACK_GROWSUP
+ /* Limit stack size */
+ stack_base = bprm->rlim_stack.rlim_max;
+
+ stack_base = calc_max_stack_size(stack_base);
+
+ /* Add space for stack randomization. */
+ stack_base += (STACK_RND_MASK << PAGE_SHIFT);
+
+ /* Make sure we didn't let the argument array grow too large. */
+ if (vma->vm_end - vma->vm_start > stack_base)
+ return -ENOMEM;
+
+ stack_base = PAGE_ALIGN(stack_top - stack_base);
+
+ stack_shift = vma->vm_start - stack_base;
+ mm->arg_start = bprm->p - stack_shift;
+ bprm->p = vma->vm_end - stack_shift;
+#else
+ stack_top = arch_align_stack(stack_top);
+ stack_top = PAGE_ALIGN(stack_top);
+
+ if (unlikely(stack_top < mmap_min_addr) ||
+ unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
+ return -ENOMEM;
+
+ stack_shift = vma->vm_end - stack_top;
+
+ bprm->p -= stack_shift;
+ mm->arg_start = bprm->p;
+#endif
+
+ if (bprm->loader)
+ bprm->loader -= stack_shift;
+ bprm->exec -= stack_shift;
+
+ if (mmap_write_lock_killable(mm))
+ return -EINTR;
+
+ vm_flags = VM_STACK_FLAGS;
+
+ /*
+ * Adjust stack execute permissions; explicitly enable for
+ * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
+ * (arch default) otherwise.
+ */
+ if (unlikely(executable_stack == EXSTACK_ENABLE_X))
+ vm_flags |= VM_EXEC;
+ else if (executable_stack == EXSTACK_DISABLE_X)
+ vm_flags &= ~VM_EXEC;
+ vm_flags |= mm->def_flags;
+ vm_flags |= VM_STACK_INCOMPLETE_SETUP;
+
+ tlb_gather_mmu(&tlb, mm);
+ ret = mprotect_fixup(&tlb, vma, &prev, vma->vm_start, vma->vm_end,
+ vm_flags);
+ tlb_finish_mmu(&tlb);
+
+ if (ret)
+ goto out_unlock;
+ BUG_ON(prev != vma);
+
+ if (unlikely(vm_flags & VM_EXEC)) {
+ pr_warn_once("process '%pD4' started with executable stack\n",
+ bprm->file);
+ }
+
+ /* Move stack pages down in memory. */
+ if (stack_shift) {
+ ret = shift_arg_pages(vma, stack_shift);
+ if (ret)
+ goto out_unlock;
+ }
+
+ /* mprotect_fixup is overkill to remove the temporary stack flags */
+ vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
+
+ stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
+ stack_size = vma->vm_end - vma->vm_start;
+ /*
+ * Align this down to a page boundary as expand_stack
+ * will align it up.
+ */
+ rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
+#ifdef CONFIG_STACK_GROWSUP
+ if (stack_size + stack_expand > rlim_stack)
+ stack_base = vma->vm_start + rlim_stack;
+ else
+ stack_base = vma->vm_end + stack_expand;
+#else
+ if (stack_size + stack_expand > rlim_stack)
+ stack_base = vma->vm_end - rlim_stack;
+ else
+ stack_base = vma->vm_start - stack_expand;
+#endif
+ current->mm->start_stack = bprm->p;
+ ret = expand_stack_locked(vma, stack_base);
+ if (ret)
+ ret = -EFAULT;
+
+out_unlock:
+ mmap_write_unlock(mm);
+ return ret;
+}
+EXPORT_SYMBOL(setup_arg_pages);
+
+#else
+
+/*
+ * Transfer the program arguments and environment from the holding pages
+ * onto the stack. The provided stack pointer is adjusted accordingly.
+ */
+int transfer_args_to_stack(struct linux_binprm *bprm,
+ unsigned long *sp_location)
+{
+ unsigned long index, stop, sp;
+ int ret = 0;
+
+ stop = bprm->p >> PAGE_SHIFT;
+ sp = *sp_location;
+
+ for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
+ unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
+ char *src = kmap_local_page(bprm->page[index]) + offset;
+ sp -= PAGE_SIZE - offset;
+ if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
+ ret = -EFAULT;
+ kunmap_local(src);
+ if (ret)
+ goto out;
+ }
+
+ *sp_location = sp;
+
+out:
+ return ret;
+}
+EXPORT_SYMBOL(transfer_args_to_stack);
+
+#endif /* CONFIG_MMU */
+
+static struct file *do_open_execat(int fd, struct filename *name, int flags)
+{
+ struct file *file;
+ int err;
+ struct open_flags open_exec_flags = {
+ .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
+ .acc_mode = MAY_EXEC,
+ .intent = LOOKUP_OPEN,
+ .lookup_flags = LOOKUP_FOLLOW,
+ };
+
+ if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
+ return ERR_PTR(-EINVAL);
+ if (flags & AT_SYMLINK_NOFOLLOW)
+ open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
+ if (flags & AT_EMPTY_PATH)
+ open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
+
+ file = do_filp_open(fd, name, &open_exec_flags);
+ if (IS_ERR(file))
+ goto out;
+
+ /*
+ * may_open() has already checked for this, so it should be
+ * impossible to trip now. But we need to be extra cautious
+ * and check again at the very end too.
+ */
+ err = -EACCES;
+ if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
+ path_noexec(&file->f_path)))
+ goto exit;
+
+ err = deny_write_access(file);
+ if (err)
+ goto exit;
+
+ if (name->name[0] != '\0')
+ fsnotify_open(file);
+
+out:
+ return file;
+
+exit:
+ fput(file);
+ return ERR_PTR(err);
+}
+
+struct file *open_exec(const char *name)
+{
+ struct filename *filename = getname_kernel(name);
+ struct file *f = ERR_CAST(filename);
+
+ if (!IS_ERR(filename)) {
+ f = do_open_execat(AT_FDCWD, filename, 0);
+ putname(filename);
+ }
+ return f;
+}
+EXPORT_SYMBOL(open_exec);
+
+#if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
+ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
+{
+ ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
+ if (res > 0)
+ flush_icache_user_range(addr, addr + len);
+ return res;
+}
+EXPORT_SYMBOL(read_code);
+#endif
+
+/*
+ * Maps the mm_struct mm into the current task struct.
+ * On success, this function returns with exec_update_lock
+ * held for writing.
+ */
+static int exec_mmap(struct mm_struct *mm)
+{
+ struct task_struct *tsk;
+ struct mm_struct *old_mm, *active_mm;
+ int ret;
+
+ /* Notify parent that we're no longer interested in the old VM */
+ tsk = current;
+ old_mm = current->mm;
+ exec_mm_release(tsk, old_mm);
+ if (old_mm)
+ sync_mm_rss(old_mm);
+
+ ret = down_write_killable(&tsk->signal->exec_update_lock);
+ if (ret)
+ return ret;
+
+ if (old_mm) {
+ /*
+ * If there is a pending fatal signal perhaps a signal
+ * whose default action is to create a coredump get
+ * out and die instead of going through with the exec.
+ */
+ ret = mmap_read_lock_killable(old_mm);
+ if (ret) {
+ up_write(&tsk->signal->exec_update_lock);
+ return ret;
+ }
+ }
+
+ task_lock(tsk);
+ membarrier_exec_mmap(mm);
+
+ local_irq_disable();
+ active_mm = tsk->active_mm;
+ tsk->active_mm = mm;
+ tsk->mm = mm;
+ /*
+ * This prevents preemption while active_mm is being loaded and
+ * it and mm are being updated, which could cause problems for
+ * lazy tlb mm refcounting when these are updated by context
+ * switches. Not all architectures can handle irqs off over
+ * activate_mm yet.
+ */
+ if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
+ local_irq_enable();
+ activate_mm(active_mm, mm);
+ if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
+ local_irq_enable();
+ lru_gen_add_mm(mm);
+ task_unlock(tsk);
+ lru_gen_use_mm(mm);
+ if (old_mm) {
+ mmap_read_unlock(old_mm);
+ BUG_ON(active_mm != old_mm);
+ setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
+ mm_update_next_owner(old_mm);
+ mmput(old_mm);
+ return 0;
+ }
+ mmdrop(active_mm);
+ return 0;
+}
+
+static int de_thread(struct task_struct *tsk)
+{
+ struct signal_struct *sig = tsk->signal;
+ struct sighand_struct *oldsighand = tsk->sighand;
+ spinlock_t *lock = &oldsighand->siglock;
+
+ if (thread_group_empty(tsk))
+ goto no_thread_group;
+
+ /*
+ * Kill all other threads in the thread group.
+ */
+ spin_lock_irq(lock);
+ if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
+ /*
+ * Another group action in progress, just
+ * return so that the signal is processed.
+ */
+ spin_unlock_irq(lock);
+ return -EAGAIN;
+ }
+
+ sig->group_exec_task = tsk;
+ sig->notify_count = zap_other_threads(tsk);
+ if (!thread_group_leader(tsk))
+ sig->notify_count--;
+
+ while (sig->notify_count) {
+ __set_current_state(TASK_KILLABLE);
+ spin_unlock_irq(lock);
+ schedule();
+ if (__fatal_signal_pending(tsk))
+ goto killed;
+ spin_lock_irq(lock);
+ }
+ spin_unlock_irq(lock);
+
+ /*
+ * At this point all other threads have exited, all we have to
+ * do is to wait for the thread group leader to become inactive,
+ * and to assume its PID:
+ */
+ if (!thread_group_leader(tsk)) {
+ struct task_struct *leader = tsk->group_leader;
+
+ for (;;) {
+ cgroup_threadgroup_change_begin(tsk);
+ write_lock_irq(&tasklist_lock);
+ /*
+ * Do this under tasklist_lock to ensure that
+ * exit_notify() can't miss ->group_exec_task
+ */
+ sig->notify_count = -1;
+ if (likely(leader->exit_state))
+ break;
+ __set_current_state(TASK_KILLABLE);
+ write_unlock_irq(&tasklist_lock);
+ cgroup_threadgroup_change_end(tsk);
+ schedule();
+ if (__fatal_signal_pending(tsk))
+ goto killed;
+ }
+
+ /*
+ * The only record we have of the real-time age of a
+ * process, regardless of execs it's done, is start_time.
+ * All the past CPU time is accumulated in signal_struct
+ * from sister threads now dead. But in this non-leader
+ * exec, nothing survives from the original leader thread,
+ * whose birth marks the true age of this process now.
+ * When we take on its identity by switching to its PID, we
+ * also take its birthdate (always earlier than our own).
+ */
+ tsk->start_time = leader->start_time;
+ tsk->start_boottime = leader->start_boottime;
+
+ BUG_ON(!same_thread_group(leader, tsk));
+ /*
+ * An exec() starts a new thread group with the
+ * TGID of the previous thread group. Rehash the
+ * two threads with a switched PID, and release
+ * the former thread group leader:
+ */
+
+ /* Become a process group leader with the old leader's pid.
+ * The old leader becomes a thread of the this thread group.
+ */
+ exchange_tids(tsk, leader);
+ transfer_pid(leader, tsk, PIDTYPE_TGID);
+ transfer_pid(leader, tsk, PIDTYPE_PGID);
+ transfer_pid(leader, tsk, PIDTYPE_SID);
+
+ list_replace_rcu(&leader->tasks, &tsk->tasks);
+ list_replace_init(&leader->sibling, &tsk->sibling);
+
+ tsk->group_leader = tsk;
+ leader->group_leader = tsk;
+
+ tsk->exit_signal = SIGCHLD;
+ leader->exit_signal = -1;
+
+ BUG_ON(leader->exit_state != EXIT_ZOMBIE);
+ leader->exit_state = EXIT_DEAD;
+
+ /*
+ * We are going to release_task()->ptrace_unlink() silently,
+ * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
+ * the tracer won't block again waiting for this thread.
+ */
+ if (unlikely(leader->ptrace))
+ __wake_up_parent(leader, leader->parent);
+ write_unlock_irq(&tasklist_lock);
+ cgroup_threadgroup_change_end(tsk);
+
+ release_task(leader);
+ }
+
+ sig->group_exec_task = NULL;
+ sig->notify_count = 0;
+
+no_thread_group:
+ /* we have changed execution domain */
+ tsk->exit_signal = SIGCHLD;
+
+ BUG_ON(!thread_group_leader(tsk));
+ return 0;
+
+killed:
+ /* protects against exit_notify() and __exit_signal() */
+ read_lock(&tasklist_lock);
+ sig->group_exec_task = NULL;
+ sig->notify_count = 0;
+ read_unlock(&tasklist_lock);
+ return -EAGAIN;
+}
+
+
+/*
+ * This function makes sure the current process has its own signal table,
+ * so that flush_signal_handlers can later reset the handlers without
+ * disturbing other processes. (Other processes might share the signal
+ * table via the CLONE_SIGHAND option to clone().)
+ */
+static int unshare_sighand(struct task_struct *me)
+{
+ struct sighand_struct *oldsighand = me->sighand;
+
+ if (refcount_read(&oldsighand->count) != 1) {
+ struct sighand_struct *newsighand;
+ /*
+ * This ->sighand is shared with the CLONE_SIGHAND
+ * but not CLONE_THREAD task, switch to the new one.
+ */
+ newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
+ if (!newsighand)
+ return -ENOMEM;
+
+ refcount_set(&newsighand->count, 1);
+
+ write_lock_irq(&tasklist_lock);
+ spin_lock(&oldsighand->siglock);
+ memcpy(newsighand->action, oldsighand->action,
+ sizeof(newsighand->action));
+ rcu_assign_pointer(me->sighand, newsighand);
+ spin_unlock(&oldsighand->siglock);
+ write_unlock_irq(&tasklist_lock);
+
+ __cleanup_sighand(oldsighand);
+ }
+ return 0;
+}
+
+char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
+{
+ task_lock(tsk);
+ /* Always NUL terminated and zero-padded */
+ strscpy_pad(buf, tsk->comm, buf_size);
+ task_unlock(tsk);
+ return buf;
+}
+EXPORT_SYMBOL_GPL(__get_task_comm);
+
+/*
+ * These functions flushes out all traces of the currently running executable
+ * so that a new one can be started
+ */
+
+void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
+{
+ task_lock(tsk);
+ trace_task_rename(tsk, buf);
+ strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
+ task_unlock(tsk);
+ perf_event_comm(tsk, exec);
+}
+
+/*
+ * Calling this is the point of no return. None of the failures will be
+ * seen by userspace since either the process is already taking a fatal
+ * signal (via de_thread() or coredump), or will have SEGV raised
+ * (after exec_mmap()) by search_binary_handler (see below).
+ */
+int begin_new_exec(struct linux_binprm * bprm)
+{
+ struct task_struct *me = current;
+ int retval;
+
+ /* Once we are committed compute the creds */
+ retval = bprm_creds_from_file(bprm);
+ if (retval)
+ return retval;
+
+ /*
+ * Ensure all future errors are fatal.
+ */
+ bprm->point_of_no_return = true;
+
+ /*
+ * Make this the only thread in the thread group.
+ */
+ retval = de_thread(me);
+ if (retval)
+ goto out;
+
+ /*
+ * Cancel any io_uring activity across execve
+ */
+ io_uring_task_cancel();
+
+ /* Ensure the files table is not shared. */
+ retval = unshare_files();
+ if (retval)
+ goto out;
+
+ /*
+ * Must be called _before_ exec_mmap() as bprm->mm is
+ * not visible until then. This also enables the update
+ * to be lockless.
+ */
+ retval = set_mm_exe_file(bprm->mm, bprm->file);
+ if (retval)
+ goto out;
+
+ /* If the binary is not readable then enforce mm->dumpable=0 */
+ would_dump(bprm, bprm->file);
+ if (bprm->have_execfd)
+ would_dump(bprm, bprm->executable);
+
+ /*
+ * Release all of the old mmap stuff
+ */
+ acct_arg_size(bprm, 0);
+ retval = exec_mmap(bprm->mm);
+ if (retval)
+ goto out;
+
+ bprm->mm = NULL;
+
+#ifdef CONFIG_POSIX_TIMERS
+ spin_lock_irq(&me->sighand->siglock);
+ posix_cpu_timers_exit(me);
+ spin_unlock_irq(&me->sighand->siglock);
+ exit_itimers(me);
+ flush_itimer_signals();
+#endif
+
+ /*
+ * Make the signal table private.
+ */
+ retval = unshare_sighand(me);
+ if (retval)
+ goto out_unlock;
+
+ me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
+ PF_NOFREEZE | PF_NO_SETAFFINITY);
+ flush_thread();
+ me->personality &= ~bprm->per_clear;
+
+ clear_syscall_work_syscall_user_dispatch(me);
+
+ /*
+ * We have to apply CLOEXEC before we change whether the process is
+ * dumpable (in setup_new_exec) to avoid a race with a process in userspace
+ * trying to access the should-be-closed file descriptors of a process
+ * undergoing exec(2).
+ */
+ do_close_on_exec(me->files);
+
+ if (bprm->secureexec) {
+ /* Make sure parent cannot signal privileged process. */
+ me->pdeath_signal = 0;
+
+ /*
+ * For secureexec, reset the stack limit to sane default to
+ * avoid bad behavior from the prior rlimits. This has to
+ * happen before arch_pick_mmap_layout(), which examines
+ * RLIMIT_STACK, but after the point of no return to avoid
+ * needing to clean up the change on failure.
+ */
+ if (bprm->rlim_stack.rlim_cur > _STK_LIM)
+ bprm->rlim_stack.rlim_cur = _STK_LIM;
+ }
+
+ me->sas_ss_sp = me->sas_ss_size = 0;
+
+ /*
+ * Figure out dumpability. Note that this checking only of current
+ * is wrong, but userspace depends on it. This should be testing
+ * bprm->secureexec instead.
+ */
+ if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
+ !(uid_eq(current_euid(), current_uid()) &&
+ gid_eq(current_egid(), current_gid())))
+ set_dumpable(current->mm, suid_dumpable);
+ else
+ set_dumpable(current->mm, SUID_DUMP_USER);
+
+ perf_event_exec();
+ __set_task_comm(me, kbasename(bprm->filename), true);
+
+ /* An exec changes our domain. We are no longer part of the thread
+ group */
+ WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
+ flush_signal_handlers(me, 0);
+
+ retval = set_cred_ucounts(bprm->cred);
+ if (retval < 0)
+ goto out_unlock;
+
+ /*
+ * install the new credentials for this executable
+ */
+ security_bprm_committing_creds(bprm);
+
+ commit_creds(bprm->cred);
+ bprm->cred = NULL;
+
+ /*
+ * Disable monitoring for regular users
+ * when executing setuid binaries. Must
+ * wait until new credentials are committed
+ * by commit_creds() above
+ */
+ if (get_dumpable(me->mm) != SUID_DUMP_USER)
+ perf_event_exit_task(me);
+ /*
+ * cred_guard_mutex must be held at least to this point to prevent
+ * ptrace_attach() from altering our determination of the task's
+ * credentials; any time after this it may be unlocked.
+ */
+ security_bprm_committed_creds(bprm);
+
+ /* Pass the opened binary to the interpreter. */
+ if (bprm->have_execfd) {
+ retval = get_unused_fd_flags(0);
+ if (retval < 0)
+ goto out_unlock;
+ fd_install(retval, bprm->executable);
+ bprm->executable = NULL;
+ bprm->execfd = retval;
+ }
+ return 0;
+
+out_unlock:
+ up_write(&me->signal->exec_update_lock);
+ if (!bprm->cred)
+ mutex_unlock(&me->signal->cred_guard_mutex);
+
+out:
+ return retval;
+}
+EXPORT_SYMBOL(begin_new_exec);
+
+void would_dump(struct linux_binprm *bprm, struct file *file)
+{
+ struct inode *inode = file_inode(file);
+ struct user_namespace *mnt_userns = file_mnt_user_ns(file);
+ if (inode_permission(mnt_userns, inode, MAY_READ) < 0) {
+ struct user_namespace *old, *user_ns;
+ bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
+
+ /* Ensure mm->user_ns contains the executable */
+ user_ns = old = bprm->mm->user_ns;
+ while ((user_ns != &init_user_ns) &&
+ !privileged_wrt_inode_uidgid(user_ns, mnt_userns, inode))
+ user_ns = user_ns->parent;
+
+ if (old != user_ns) {
+ bprm->mm->user_ns = get_user_ns(user_ns);
+ put_user_ns(old);
+ }
+ }
+}
+EXPORT_SYMBOL(would_dump);
+
+void setup_new_exec(struct linux_binprm * bprm)
+{
+ /* Setup things that can depend upon the personality */
+ struct task_struct *me = current;
+
+ arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
+
+ arch_setup_new_exec();
+
+ /* Set the new mm task size. We have to do that late because it may
+ * depend on TIF_32BIT which is only updated in flush_thread() on
+ * some architectures like powerpc
+ */
+ me->mm->task_size = TASK_SIZE;
+ up_write(&me->signal->exec_update_lock);
+ mutex_unlock(&me->signal->cred_guard_mutex);
+}
+EXPORT_SYMBOL(setup_new_exec);
+
+/* Runs immediately before start_thread() takes over. */
+void finalize_exec(struct linux_binprm *bprm)
+{
+ /* Store any stack rlimit changes before starting thread. */
+ task_lock(current->group_leader);
+ current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
+ task_unlock(current->group_leader);
+}
+EXPORT_SYMBOL(finalize_exec);
+
+/*
+ * Prepare credentials and lock ->cred_guard_mutex.
+ * setup_new_exec() commits the new creds and drops the lock.
+ * Or, if exec fails before, free_bprm() should release ->cred
+ * and unlock.
+ */
+static int prepare_bprm_creds(struct linux_binprm *bprm)
+{
+ if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
+ return -ERESTARTNOINTR;
+
+ bprm->cred = prepare_exec_creds();
+ if (likely(bprm->cred))
+ return 0;
+
+ mutex_unlock(&current->signal->cred_guard_mutex);
+ return -ENOMEM;
+}
+
+static void free_bprm(struct linux_binprm *bprm)
+{
+ if (bprm->mm) {
+ acct_arg_size(bprm, 0);
+ mmput(bprm->mm);
+ }
+ free_arg_pages(bprm);
+ if (bprm->cred) {
+ mutex_unlock(&current->signal->cred_guard_mutex);
+ abort_creds(bprm->cred);
+ }
+ if (bprm->file) {
+ allow_write_access(bprm->file);
+ fput(bprm->file);
+ }
+ if (bprm->executable)
+ fput(bprm->executable);
+ /* If a binfmt changed the interp, free it. */
+ if (bprm->interp != bprm->filename)
+ kfree(bprm->interp);
+ kfree(bprm->fdpath);
+ kfree(bprm);
+}
+
+static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
+{
+ struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
+ int retval = -ENOMEM;
+ if (!bprm)
+ goto out;
+
+ if (fd == AT_FDCWD || filename->name[0] == '/') {
+ bprm->filename = filename->name;
+ } else {
+ if (filename->name[0] == '\0')
+ bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
+ else
+ bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
+ fd, filename->name);
+ if (!bprm->fdpath)
+ goto out_free;
+
+ bprm->filename = bprm->fdpath;
+ }
+ bprm->interp = bprm->filename;
+
+ retval = bprm_mm_init(bprm);
+ if (retval)
+ goto out_free;
+ return bprm;
+
+out_free:
+ free_bprm(bprm);
+out:
+ return ERR_PTR(retval);
+}
+
+int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
+{
+ /* If a binfmt changed the interp, free it first. */
+ if (bprm->interp != bprm->filename)
+ kfree(bprm->interp);
+ bprm->interp = kstrdup(interp, GFP_KERNEL);
+ if (!bprm->interp)
+ return -ENOMEM;
+ return 0;
+}
+EXPORT_SYMBOL(bprm_change_interp);
+
+/*
+ * determine how safe it is to execute the proposed program
+ * - the caller must hold ->cred_guard_mutex to protect against
+ * PTRACE_ATTACH or seccomp thread-sync
+ */
+static void check_unsafe_exec(struct linux_binprm *bprm)
+{
+ struct task_struct *p = current, *t;
+ unsigned n_fs;
+
+ if (p->ptrace)
+ bprm->unsafe |= LSM_UNSAFE_PTRACE;
+
+ /*
+ * This isn't strictly necessary, but it makes it harder for LSMs to
+ * mess up.
+ */
+ if (task_no_new_privs(current))
+ bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
+
+ t = p;
+ n_fs = 1;
+ spin_lock(&p->fs->lock);
+ rcu_read_lock();
+ while_each_thread(p, t) {
+ if (t->fs == p->fs)
+ n_fs++;
+ }
+ rcu_read_unlock();
+
+ if (p->fs->users > n_fs)
+ bprm->unsafe |= LSM_UNSAFE_SHARE;
+ else
+ p->fs->in_exec = 1;
+ spin_unlock(&p->fs->lock);
+}
+
+static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
+{
+ /* Handle suid and sgid on files */
+ struct user_namespace *mnt_userns;
+ struct inode *inode = file_inode(file);
+ unsigned int mode;
+ kuid_t uid;
+ kgid_t gid;
+
+ if (!mnt_may_suid(file->f_path.mnt))
+ return;
+
+ if (task_no_new_privs(current))
+ return;
+
+ mode = READ_ONCE(inode->i_mode);
+ if (!(mode & (S_ISUID|S_ISGID)))
+ return;
+
+ mnt_userns = file_mnt_user_ns(file);
+
+ /* Be careful if suid/sgid is set */
+ inode_lock(inode);
+
+ /* reload atomically mode/uid/gid now that lock held */
+ mode = inode->i_mode;
+ uid = i_uid_into_mnt(mnt_userns, inode);
+ gid = i_gid_into_mnt(mnt_userns, inode);
+ inode_unlock(inode);
+
+ /* We ignore suid/sgid if there are no mappings for them in the ns */
+ if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
+ !kgid_has_mapping(bprm->cred->user_ns, gid))
+ return;
+
+ if (mode & S_ISUID) {
+ bprm->per_clear |= PER_CLEAR_ON_SETID;
+ bprm->cred->euid = uid;
+ }
+
+ if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
+ bprm->per_clear |= PER_CLEAR_ON_SETID;
+ bprm->cred->egid = gid;
+ }
+}
+
+/*
+ * Compute brpm->cred based upon the final binary.
+ */
+static int bprm_creds_from_file(struct linux_binprm *bprm)
+{
+ /* Compute creds based on which file? */
+ struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
+
+ bprm_fill_uid(bprm, file);
+ return security_bprm_creds_from_file(bprm, file);
+}
+
+/*
+ * Fill the binprm structure from the inode.
+ * Read the first BINPRM_BUF_SIZE bytes
+ *
+ * This may be called multiple times for binary chains (scripts for example).
+ */
+static int prepare_binprm(struct linux_binprm *bprm)
+{
+ loff_t pos = 0;
+
+ memset(bprm->buf, 0, BINPRM_BUF_SIZE);
+ return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
+}
+
+/*
+ * Arguments are '\0' separated strings found at the location bprm->p
+ * points to; chop off the first by relocating brpm->p to right after
+ * the first '\0' encountered.
+ */
+int remove_arg_zero(struct linux_binprm *bprm)
+{
+ int ret = 0;
+ unsigned long offset;
+ char *kaddr;
+ struct page *page;
+
+ if (!bprm->argc)
+ return 0;
+
+ do {
+ offset = bprm->p & ~PAGE_MASK;
+ page = get_arg_page(bprm, bprm->p, 0);
+ if (!page) {
+ ret = -EFAULT;
+ goto out;
+ }
+ kaddr = kmap_local_page(page);
+
+ for (; offset < PAGE_SIZE && kaddr[offset];
+ offset++, bprm->p++)
+ ;
+
+ kunmap_local(kaddr);
+ put_arg_page(page);
+ } while (offset == PAGE_SIZE);
+
+ bprm->p++;
+ bprm->argc--;
+ ret = 0;
+
+out:
+ return ret;
+}
+EXPORT_SYMBOL(remove_arg_zero);
+
+#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
+/*
+ * cycle the list of binary formats handler, until one recognizes the image
+ */
+static int search_binary_handler(struct linux_binprm *bprm)
+{
+ bool need_retry = IS_ENABLED(CONFIG_MODULES);
+ struct linux_binfmt *fmt;
+ int retval;
+
+ retval = prepare_binprm(bprm);
+ if (retval < 0)
+ return retval;
+
+ retval = security_bprm_check(bprm);
+ if (retval)
+ return retval;
+
+ retval = -ENOENT;
+ retry:
+ read_lock(&binfmt_lock);
+ list_for_each_entry(fmt, &formats, lh) {
+ if (!try_module_get(fmt->module))
+ continue;
+ read_unlock(&binfmt_lock);
+
+ retval = fmt->load_binary(bprm);
+
+ read_lock(&binfmt_lock);
+ put_binfmt(fmt);
+ if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
+ read_unlock(&binfmt_lock);
+ return retval;
+ }
+ }
+ read_unlock(&binfmt_lock);
+
+ if (need_retry) {
+ if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
+ printable(bprm->buf[2]) && printable(bprm->buf[3]))
+ return retval;
+ if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
+ return retval;
+ need_retry = false;
+ goto retry;
+ }
+
+ return retval;
+}
+
+static int exec_binprm(struct linux_binprm *bprm)
+{
+ pid_t old_pid, old_vpid;
+ int ret, depth;
+
+ /* Need to fetch pid before load_binary changes it */
+ old_pid = current->pid;
+ rcu_read_lock();
+ old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
+ rcu_read_unlock();
+
+ /* This allows 4 levels of binfmt rewrites before failing hard. */
+ for (depth = 0;; depth++) {
+ struct file *exec;
+ if (depth > 5)
+ return -ELOOP;
+
+ ret = search_binary_handler(bprm);
+ if (ret < 0)
+ return ret;
+ if (!bprm->interpreter)
+ break;
+
+ exec = bprm->file;
+ bprm->file = bprm->interpreter;
+ bprm->interpreter = NULL;
+
+ allow_write_access(exec);
+ if (unlikely(bprm->have_execfd)) {
+ if (bprm->executable) {
+ fput(exec);
+ return -ENOEXEC;
+ }
+ bprm->executable = exec;
+ } else
+ fput(exec);
+ }
+
+ audit_bprm(bprm);
+ trace_sched_process_exec(current, old_pid, bprm);
+ ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
+ proc_exec_connector(current);
+ return 0;
+}
+
+/*
+ * sys_execve() executes a new program.
+ */
+static int bprm_execve(struct linux_binprm *bprm,
+ int fd, struct filename *filename, int flags)
+{
+ struct file *file;
+ int retval;
+
+ retval = prepare_bprm_creds(bprm);
+ if (retval)
+ return retval;
+
+ check_unsafe_exec(bprm);
+ current->in_execve = 1;
+
+ file = do_open_execat(fd, filename, flags);
+ retval = PTR_ERR(file);
+ if (IS_ERR(file))
+ goto out_unmark;
+
+ sched_exec();
+
+ bprm->file = file;
+ /*
+ * Record that a name derived from an O_CLOEXEC fd will be
+ * inaccessible after exec. This allows the code in exec to
+ * choose to fail when the executable is not mmaped into the
+ * interpreter and an open file descriptor is not passed to
+ * the interpreter. This makes for a better user experience
+ * than having the interpreter start and then immediately fail
+ * when it finds the executable is inaccessible.
+ */
+ if (bprm->fdpath && get_close_on_exec(fd))
+ bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
+
+ /* Set the unchanging part of bprm->cred */
+ retval = security_bprm_creds_for_exec(bprm);
+ if (retval)
+ goto out;
+
+ retval = exec_binprm(bprm);
+ if (retval < 0)
+ goto out;
+
+ /* execve succeeded */
+ current->fs->in_exec = 0;
+ current->in_execve = 0;
+ rseq_execve(current);
+ acct_update_integrals(current);
+ task_numa_free(current, false);
+ return retval;
+
+out:
+ /*
+ * If past the point of no return ensure the code never
+ * returns to the userspace process. Use an existing fatal
+ * signal if present otherwise terminate the process with
+ * SIGSEGV.
+ */
+ if (bprm->point_of_no_return && !fatal_signal_pending(current))
+ force_fatal_sig(SIGSEGV);
+
+out_unmark:
+ current->fs->in_exec = 0;
+ current->in_execve = 0;
+
+ return retval;
+}
+
+static int do_execveat_common(int fd, struct filename *filename,
+ struct user_arg_ptr argv,
+ struct user_arg_ptr envp,
+ int flags)
+{
+ struct linux_binprm *bprm;
+ int retval;
+
+ if (IS_ERR(filename))
+ return PTR_ERR(filename);
+
+ /*
+ * We move the actual failure in case of RLIMIT_NPROC excess from
+ * set*uid() to execve() because too many poorly written programs
+ * don't check setuid() return code. Here we additionally recheck
+ * whether NPROC limit is still exceeded.
+ */
+ if ((current->flags & PF_NPROC_EXCEEDED) &&
+ is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
+ retval = -EAGAIN;
+ goto out_ret;
+ }
+
+ /* We're below the limit (still or again), so we don't want to make
+ * further execve() calls fail. */
+ current->flags &= ~PF_NPROC_EXCEEDED;
+
+ bprm = alloc_bprm(fd, filename);
+ if (IS_ERR(bprm)) {
+ retval = PTR_ERR(bprm);
+ goto out_ret;
+ }
+
+ retval = count(argv, MAX_ARG_STRINGS);
+ if (retval == 0)
+ pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
+ current->comm, bprm->filename);
+ if (retval < 0)
+ goto out_free;
+ bprm->argc = retval;
+
+ retval = count(envp, MAX_ARG_STRINGS);
+ if (retval < 0)
+ goto out_free;
+ bprm->envc = retval;
+
+ retval = bprm_stack_limits(bprm);
+ if (retval < 0)
+ goto out_free;
+
+ retval = copy_string_kernel(bprm->filename, bprm);
+ if (retval < 0)
+ goto out_free;
+ bprm->exec = bprm->p;
+
+ retval = copy_strings(bprm->envc, envp, bprm);
+ if (retval < 0)
+ goto out_free;
+
+ retval = copy_strings(bprm->argc, argv, bprm);
+ if (retval < 0)
+ goto out_free;
+
+ /*
+ * When argv is empty, add an empty string ("") as argv[0] to
+ * ensure confused userspace programs that start processing
+ * from argv[1] won't end up walking envp. See also
+ * bprm_stack_limits().
+ */
+ if (bprm->argc == 0) {
+ retval = copy_string_kernel("", bprm);
+ if (retval < 0)
+ goto out_free;
+ bprm->argc = 1;
+ }
+
+ retval = bprm_execve(bprm, fd, filename, flags);
+out_free:
+ free_bprm(bprm);
+
+out_ret:
+ putname(filename);
+ return retval;
+}
+
+int kernel_execve(const char *kernel_filename,
+ const char *const *argv, const char *const *envp)
+{
+ struct filename *filename;
+ struct linux_binprm *bprm;
+ int fd = AT_FDCWD;
+ int retval;
+
+ /* It is non-sense for kernel threads to call execve */
+ if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
+ return -EINVAL;
+
+ filename = getname_kernel(kernel_filename);
+ if (IS_ERR(filename))
+ return PTR_ERR(filename);
+
+ bprm = alloc_bprm(fd, filename);
+ if (IS_ERR(bprm)) {
+ retval = PTR_ERR(bprm);
+ goto out_ret;
+ }
+
+ retval = count_strings_kernel(argv);
+ if (WARN_ON_ONCE(retval == 0))
+ retval = -EINVAL;
+ if (retval < 0)
+ goto out_free;
+ bprm->argc = retval;
+
+ retval = count_strings_kernel(envp);
+ if (retval < 0)
+ goto out_free;
+ bprm->envc = retval;
+
+ retval = bprm_stack_limits(bprm);
+ if (retval < 0)
+ goto out_free;
+
+ retval = copy_string_kernel(bprm->filename, bprm);
+ if (retval < 0)
+ goto out_free;
+ bprm->exec = bprm->p;
+
+ retval = copy_strings_kernel(bprm->envc, envp, bprm);
+ if (retval < 0)
+ goto out_free;
+
+ retval = copy_strings_kernel(bprm->argc, argv, bprm);
+ if (retval < 0)
+ goto out_free;
+
+ retval = bprm_execve(bprm, fd, filename, 0);
+out_free:
+ free_bprm(bprm);
+out_ret:
+ putname(filename);
+ return retval;
+}
+
+static int do_execve(struct filename *filename,
+ const char __user *const __user *__argv,
+ const char __user *const __user *__envp)
+{
+ struct user_arg_ptr argv = { .ptr.native = __argv };
+ struct user_arg_ptr envp = { .ptr.native = __envp };
+ return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
+}
+
+static int do_execveat(int fd, struct filename *filename,
+ const char __user *const __user *__argv,
+ const char __user *const __user *__envp,
+ int flags)
+{
+ struct user_arg_ptr argv = { .ptr.native = __argv };
+ struct user_arg_ptr envp = { .ptr.native = __envp };
+
+ return do_execveat_common(fd, filename, argv, envp, flags);
+}
+
+#ifdef CONFIG_COMPAT
+static int compat_do_execve(struct filename *filename,
+ const compat_uptr_t __user *__argv,
+ const compat_uptr_t __user *__envp)
+{
+ struct user_arg_ptr argv = {
+ .is_compat = true,
+ .ptr.compat = __argv,
+ };
+ struct user_arg_ptr envp = {
+ .is_compat = true,
+ .ptr.compat = __envp,
+ };
+ return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
+}
+
+static int compat_do_execveat(int fd, struct filename *filename,
+ const compat_uptr_t __user *__argv,
+ const compat_uptr_t __user *__envp,
+ int flags)
+{
+ struct user_arg_ptr argv = {
+ .is_compat = true,
+ .ptr.compat = __argv,
+ };
+ struct user_arg_ptr envp = {
+ .is_compat = true,
+ .ptr.compat = __envp,
+ };
+ return do_execveat_common(fd, filename, argv, envp, flags);
+}
+#endif
+
+void set_binfmt(struct linux_binfmt *new)
+{
+ struct mm_struct *mm = current->mm;
+
+ if (mm->binfmt)
+ module_put(mm->binfmt->module);
+
+ mm->binfmt = new;
+ if (new)
+ __module_get(new->module);
+}
+EXPORT_SYMBOL(set_binfmt);
+
+/*
+ * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
+ */
+void set_dumpable(struct mm_struct *mm, int value)
+{
+ if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
+ return;
+
+ set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
+}
+
+SYSCALL_DEFINE3(execve,
+ const char __user *, filename,
+ const char __user *const __user *, argv,
+ const char __user *const __user *, envp)
+{
+ return do_execve(getname(filename), argv, envp);
+}
+
+SYSCALL_DEFINE5(execveat,
+ int, fd, const char __user *, filename,
+ const char __user *const __user *, argv,
+ const char __user *const __user *, envp,
+ int, flags)
+{
+ return do_execveat(fd,
+ getname_uflags(filename, flags),
+ argv, envp, flags);
+}
+
+#ifdef CONFIG_COMPAT
+COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
+ const compat_uptr_t __user *, argv,
+ const compat_uptr_t __user *, envp)
+{
+ return compat_do_execve(getname(filename), argv, envp);
+}
+
+COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
+ const char __user *, filename,
+ const compat_uptr_t __user *, argv,
+ const compat_uptr_t __user *, envp,
+ int, flags)
+{
+ return compat_do_execveat(fd,
+ getname_uflags(filename, flags),
+ argv, envp, flags);
+}
+#endif
+
+#ifdef CONFIG_SYSCTL
+
+static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
+ void *buffer, size_t *lenp, loff_t *ppos)
+{
+ int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
+
+ if (!error)
+ validate_coredump_safety();
+ return error;
+}
+
+static struct ctl_table fs_exec_sysctls[] = {
+ {
+ .procname = "suid_dumpable",
+ .data = &suid_dumpable,
+ .maxlen = sizeof(int),
+ .mode = 0644,
+ .proc_handler = proc_dointvec_minmax_coredump,
+ .extra1 = SYSCTL_ZERO,
+ .extra2 = SYSCTL_TWO,
+ },
+ { }
+};
+
+static int __init init_fs_exec_sysctls(void)
+{
+ register_sysctl_init("fs", fs_exec_sysctls);
+ return 0;
+}
+
+fs_initcall(init_fs_exec_sysctls);
+#endif /* CONFIG_SYSCTL */