diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:49:45 +0000 |
commit | 2c3c1048746a4622d8c89a29670120dc8fab93c4 (patch) | |
tree | 848558de17fb3008cdf4d861b01ac7781903ce39 /tools/testing/selftests/kvm/aarch64 | |
parent | Initial commit. (diff) | |
download | linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.tar.xz linux-2c3c1048746a4622d8c89a29670120dc8fab93c4.zip |
Adding upstream version 6.1.76.upstream/6.1.76
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'tools/testing/selftests/kvm/aarch64')
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/aarch32_id_regs.c | 169 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/arch_timer.c | 479 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/debug-exceptions.c | 439 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/get-reg-list.c | 1135 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/hypercalls.c | 313 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/psci_test.c | 201 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/vcpu_width_config.c | 121 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/vgic_init.c | 718 | ||||
-rw-r--r-- | tools/testing/selftests/kvm/aarch64/vgic_irq.c | 860 |
9 files changed, 4435 insertions, 0 deletions
diff --git a/tools/testing/selftests/kvm/aarch64/aarch32_id_regs.c b/tools/testing/selftests/kvm/aarch64/aarch32_id_regs.c new file mode 100644 index 000000000..6f9c1f19c --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/aarch32_id_regs.c @@ -0,0 +1,169 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * aarch32_id_regs - Test for ID register behavior on AArch64-only systems + * + * Copyright (c) 2022 Google LLC. + * + * Test that KVM handles the AArch64 views of the AArch32 ID registers as RAZ + * and WI from userspace. + */ + +#include <stdint.h> + +#include "kvm_util.h" +#include "processor.h" +#include "test_util.h" + +#define BAD_ID_REG_VAL 0x1badc0deul + +#define GUEST_ASSERT_REG_RAZ(reg) GUEST_ASSERT_EQ(read_sysreg_s(reg), 0) + +static void guest_main(void) +{ + GUEST_ASSERT_REG_RAZ(SYS_ID_PFR0_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_PFR1_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_DFR0_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_AFR0_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_MMFR0_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_MMFR1_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_MMFR2_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_MMFR3_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR0_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR1_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR2_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR3_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR4_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR5_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_MMFR4_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_ISAR6_EL1); + GUEST_ASSERT_REG_RAZ(SYS_MVFR0_EL1); + GUEST_ASSERT_REG_RAZ(SYS_MVFR1_EL1); + GUEST_ASSERT_REG_RAZ(SYS_MVFR2_EL1); + GUEST_ASSERT_REG_RAZ(sys_reg(3, 0, 0, 3, 3)); + GUEST_ASSERT_REG_RAZ(SYS_ID_PFR2_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_DFR1_EL1); + GUEST_ASSERT_REG_RAZ(SYS_ID_MMFR5_EL1); + GUEST_ASSERT_REG_RAZ(sys_reg(3, 0, 0, 3, 7)); + + GUEST_DONE(); +} + +static void test_guest_raz(struct kvm_vcpu *vcpu) +{ + struct ucall uc; + + vcpu_run(vcpu); + + switch (get_ucall(vcpu, &uc)) { + case UCALL_ABORT: + REPORT_GUEST_ASSERT(uc); + break; + case UCALL_DONE: + break; + default: + TEST_FAIL("Unexpected ucall: %lu", uc.cmd); + } +} + +static uint64_t raz_wi_reg_ids[] = { + KVM_ARM64_SYS_REG(SYS_ID_PFR0_EL1), + KVM_ARM64_SYS_REG(SYS_ID_PFR1_EL1), + KVM_ARM64_SYS_REG(SYS_ID_DFR0_EL1), + KVM_ARM64_SYS_REG(SYS_ID_MMFR0_EL1), + KVM_ARM64_SYS_REG(SYS_ID_MMFR1_EL1), + KVM_ARM64_SYS_REG(SYS_ID_MMFR2_EL1), + KVM_ARM64_SYS_REG(SYS_ID_MMFR3_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR0_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR1_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR2_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR3_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR4_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR5_EL1), + KVM_ARM64_SYS_REG(SYS_ID_MMFR4_EL1), + KVM_ARM64_SYS_REG(SYS_ID_ISAR6_EL1), + KVM_ARM64_SYS_REG(SYS_MVFR0_EL1), + KVM_ARM64_SYS_REG(SYS_MVFR1_EL1), + KVM_ARM64_SYS_REG(SYS_MVFR2_EL1), + KVM_ARM64_SYS_REG(SYS_ID_PFR2_EL1), + KVM_ARM64_SYS_REG(SYS_ID_MMFR5_EL1), +}; + +static void test_user_raz_wi(struct kvm_vcpu *vcpu) +{ + int i; + + for (i = 0; i < ARRAY_SIZE(raz_wi_reg_ids); i++) { + uint64_t reg_id = raz_wi_reg_ids[i]; + uint64_t val; + + vcpu_get_reg(vcpu, reg_id, &val); + ASSERT_EQ(val, 0); + + /* + * Expect the ioctl to succeed with no effect on the register + * value. + */ + vcpu_set_reg(vcpu, reg_id, BAD_ID_REG_VAL); + + vcpu_get_reg(vcpu, reg_id, &val); + ASSERT_EQ(val, 0); + } +} + +static uint64_t raz_invariant_reg_ids[] = { + KVM_ARM64_SYS_REG(SYS_ID_AFR0_EL1), + KVM_ARM64_SYS_REG(sys_reg(3, 0, 0, 3, 3)), + KVM_ARM64_SYS_REG(SYS_ID_DFR1_EL1), + KVM_ARM64_SYS_REG(sys_reg(3, 0, 0, 3, 7)), +}; + +static void test_user_raz_invariant(struct kvm_vcpu *vcpu) +{ + int i, r; + + for (i = 0; i < ARRAY_SIZE(raz_invariant_reg_ids); i++) { + uint64_t reg_id = raz_invariant_reg_ids[i]; + uint64_t val; + + vcpu_get_reg(vcpu, reg_id, &val); + ASSERT_EQ(val, 0); + + r = __vcpu_set_reg(vcpu, reg_id, BAD_ID_REG_VAL); + TEST_ASSERT(r < 0 && errno == EINVAL, + "unexpected KVM_SET_ONE_REG error: r=%d, errno=%d", r, errno); + + vcpu_get_reg(vcpu, reg_id, &val); + ASSERT_EQ(val, 0); + } +} + + + +static bool vcpu_aarch64_only(struct kvm_vcpu *vcpu) +{ + uint64_t val, el0; + + vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64PFR0_EL1), &val); + + el0 = (val & ARM64_FEATURE_MASK(ID_AA64PFR0_EL0)) >> ID_AA64PFR0_EL0_SHIFT; + return el0 == ID_AA64PFR0_ELx_64BIT_ONLY; +} + +int main(void) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + + vm = vm_create_with_one_vcpu(&vcpu, guest_main); + + TEST_REQUIRE(vcpu_aarch64_only(vcpu)); + + ucall_init(vm, NULL); + + test_user_raz_wi(vcpu); + test_user_raz_invariant(vcpu); + test_guest_raz(vcpu); + + ucall_uninit(vm); + kvm_vm_free(vm); +} diff --git a/tools/testing/selftests/kvm/aarch64/arch_timer.c b/tools/testing/selftests/kvm/aarch64/arch_timer.c new file mode 100644 index 000000000..574eb73f0 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/arch_timer.c @@ -0,0 +1,479 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * arch_timer.c - Tests the aarch64 timer IRQ functionality + * + * The test validates both the virtual and physical timer IRQs using + * CVAL and TVAL registers. This consitutes the four stages in the test. + * The guest's main thread configures the timer interrupt for a stage + * and waits for it to fire, with a timeout equal to the timer period. + * It asserts that the timeout doesn't exceed the timer period. + * + * On the other hand, upon receipt of an interrupt, the guest's interrupt + * handler validates the interrupt by checking if the architectural state + * is in compliance with the specifications. + * + * The test provides command-line options to configure the timer's + * period (-p), number of vCPUs (-n), and iterations per stage (-i). + * To stress-test the timer stack even more, an option to migrate the + * vCPUs across pCPUs (-m), at a particular rate, is also provided. + * + * Copyright (c) 2021, Google LLC. + */ + +#define _GNU_SOURCE + +#include <stdlib.h> +#include <pthread.h> +#include <linux/kvm.h> +#include <linux/sizes.h> +#include <linux/bitmap.h> +#include <sys/sysinfo.h> + +#include "kvm_util.h" +#include "processor.h" +#include "delay.h" +#include "arch_timer.h" +#include "gic.h" +#include "vgic.h" + +#define NR_VCPUS_DEF 4 +#define NR_TEST_ITERS_DEF 5 +#define TIMER_TEST_PERIOD_MS_DEF 10 +#define TIMER_TEST_ERR_MARGIN_US 100 +#define TIMER_TEST_MIGRATION_FREQ_MS 2 + +struct test_args { + int nr_vcpus; + int nr_iter; + int timer_period_ms; + int migration_freq_ms; +}; + +static struct test_args test_args = { + .nr_vcpus = NR_VCPUS_DEF, + .nr_iter = NR_TEST_ITERS_DEF, + .timer_period_ms = TIMER_TEST_PERIOD_MS_DEF, + .migration_freq_ms = TIMER_TEST_MIGRATION_FREQ_MS, +}; + +#define msecs_to_usecs(msec) ((msec) * 1000LL) + +#define GICD_BASE_GPA 0x8000000ULL +#define GICR_BASE_GPA 0x80A0000ULL + +enum guest_stage { + GUEST_STAGE_VTIMER_CVAL = 1, + GUEST_STAGE_VTIMER_TVAL, + GUEST_STAGE_PTIMER_CVAL, + GUEST_STAGE_PTIMER_TVAL, + GUEST_STAGE_MAX, +}; + +/* Shared variables between host and guest */ +struct test_vcpu_shared_data { + int nr_iter; + enum guest_stage guest_stage; + uint64_t xcnt; +}; + +static struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; +static pthread_t pt_vcpu_run[KVM_MAX_VCPUS]; +static struct test_vcpu_shared_data vcpu_shared_data[KVM_MAX_VCPUS]; + +static int vtimer_irq, ptimer_irq; + +static unsigned long *vcpu_done_map; +static pthread_mutex_t vcpu_done_map_lock; + +static void +guest_configure_timer_action(struct test_vcpu_shared_data *shared_data) +{ + switch (shared_data->guest_stage) { + case GUEST_STAGE_VTIMER_CVAL: + timer_set_next_cval_ms(VIRTUAL, test_args.timer_period_ms); + shared_data->xcnt = timer_get_cntct(VIRTUAL); + timer_set_ctl(VIRTUAL, CTL_ENABLE); + break; + case GUEST_STAGE_VTIMER_TVAL: + timer_set_next_tval_ms(VIRTUAL, test_args.timer_period_ms); + shared_data->xcnt = timer_get_cntct(VIRTUAL); + timer_set_ctl(VIRTUAL, CTL_ENABLE); + break; + case GUEST_STAGE_PTIMER_CVAL: + timer_set_next_cval_ms(PHYSICAL, test_args.timer_period_ms); + shared_data->xcnt = timer_get_cntct(PHYSICAL); + timer_set_ctl(PHYSICAL, CTL_ENABLE); + break; + case GUEST_STAGE_PTIMER_TVAL: + timer_set_next_tval_ms(PHYSICAL, test_args.timer_period_ms); + shared_data->xcnt = timer_get_cntct(PHYSICAL); + timer_set_ctl(PHYSICAL, CTL_ENABLE); + break; + default: + GUEST_ASSERT(0); + } +} + +static void guest_validate_irq(unsigned int intid, + struct test_vcpu_shared_data *shared_data) +{ + enum guest_stage stage = shared_data->guest_stage; + uint64_t xcnt = 0, xcnt_diff_us, cval = 0; + unsigned long xctl = 0; + unsigned int timer_irq = 0; + + if (stage == GUEST_STAGE_VTIMER_CVAL || + stage == GUEST_STAGE_VTIMER_TVAL) { + xctl = timer_get_ctl(VIRTUAL); + timer_set_ctl(VIRTUAL, CTL_IMASK); + xcnt = timer_get_cntct(VIRTUAL); + cval = timer_get_cval(VIRTUAL); + timer_irq = vtimer_irq; + } else if (stage == GUEST_STAGE_PTIMER_CVAL || + stage == GUEST_STAGE_PTIMER_TVAL) { + xctl = timer_get_ctl(PHYSICAL); + timer_set_ctl(PHYSICAL, CTL_IMASK); + xcnt = timer_get_cntct(PHYSICAL); + cval = timer_get_cval(PHYSICAL); + timer_irq = ptimer_irq; + } else { + GUEST_ASSERT(0); + } + + xcnt_diff_us = cycles_to_usec(xcnt - shared_data->xcnt); + + /* Make sure we are dealing with the correct timer IRQ */ + GUEST_ASSERT_2(intid == timer_irq, intid, timer_irq); + + /* Basic 'timer condition met' check */ + GUEST_ASSERT_3(xcnt >= cval, xcnt, cval, xcnt_diff_us); + GUEST_ASSERT_1(xctl & CTL_ISTATUS, xctl); +} + +static void guest_irq_handler(struct ex_regs *regs) +{ + unsigned int intid = gic_get_and_ack_irq(); + uint32_t cpu = guest_get_vcpuid(); + struct test_vcpu_shared_data *shared_data = &vcpu_shared_data[cpu]; + + guest_validate_irq(intid, shared_data); + + WRITE_ONCE(shared_data->nr_iter, shared_data->nr_iter + 1); + + gic_set_eoi(intid); +} + +static void guest_run_stage(struct test_vcpu_shared_data *shared_data, + enum guest_stage stage) +{ + uint32_t irq_iter, config_iter; + + shared_data->guest_stage = stage; + shared_data->nr_iter = 0; + + for (config_iter = 0; config_iter < test_args.nr_iter; config_iter++) { + /* Setup the next interrupt */ + guest_configure_timer_action(shared_data); + + /* Setup a timeout for the interrupt to arrive */ + udelay(msecs_to_usecs(test_args.timer_period_ms) + + TIMER_TEST_ERR_MARGIN_US); + + irq_iter = READ_ONCE(shared_data->nr_iter); + GUEST_ASSERT_2(config_iter + 1 == irq_iter, + config_iter + 1, irq_iter); + } +} + +static void guest_code(void) +{ + uint32_t cpu = guest_get_vcpuid(); + struct test_vcpu_shared_data *shared_data = &vcpu_shared_data[cpu]; + + local_irq_disable(); + + gic_init(GIC_V3, test_args.nr_vcpus, + (void *)GICD_BASE_GPA, (void *)GICR_BASE_GPA); + + timer_set_ctl(VIRTUAL, CTL_IMASK); + timer_set_ctl(PHYSICAL, CTL_IMASK); + + gic_irq_enable(vtimer_irq); + gic_irq_enable(ptimer_irq); + local_irq_enable(); + + guest_run_stage(shared_data, GUEST_STAGE_VTIMER_CVAL); + guest_run_stage(shared_data, GUEST_STAGE_VTIMER_TVAL); + guest_run_stage(shared_data, GUEST_STAGE_PTIMER_CVAL); + guest_run_stage(shared_data, GUEST_STAGE_PTIMER_TVAL); + + GUEST_DONE(); +} + +static void *test_vcpu_run(void *arg) +{ + unsigned int vcpu_idx = (unsigned long)arg; + struct ucall uc; + struct kvm_vcpu *vcpu = vcpus[vcpu_idx]; + struct kvm_vm *vm = vcpu->vm; + struct test_vcpu_shared_data *shared_data = &vcpu_shared_data[vcpu_idx]; + + vcpu_run(vcpu); + + /* Currently, any exit from guest is an indication of completion */ + pthread_mutex_lock(&vcpu_done_map_lock); + set_bit(vcpu_idx, vcpu_done_map); + pthread_mutex_unlock(&vcpu_done_map_lock); + + switch (get_ucall(vcpu, &uc)) { + case UCALL_SYNC: + case UCALL_DONE: + break; + case UCALL_ABORT: + sync_global_from_guest(vm, *shared_data); + REPORT_GUEST_ASSERT_N(uc, "values: %lu, %lu; %lu, vcpu %u; stage; %u; iter: %u", + GUEST_ASSERT_ARG(uc, 0), + GUEST_ASSERT_ARG(uc, 1), + GUEST_ASSERT_ARG(uc, 2), + vcpu_idx, + shared_data->guest_stage, + shared_data->nr_iter); + break; + default: + TEST_FAIL("Unexpected guest exit\n"); + } + + return NULL; +} + +static uint32_t test_get_pcpu(void) +{ + uint32_t pcpu; + unsigned int nproc_conf; + cpu_set_t online_cpuset; + + nproc_conf = get_nprocs_conf(); + sched_getaffinity(0, sizeof(cpu_set_t), &online_cpuset); + + /* Randomly find an available pCPU to place a vCPU on */ + do { + pcpu = rand() % nproc_conf; + } while (!CPU_ISSET(pcpu, &online_cpuset)); + + return pcpu; +} + +static int test_migrate_vcpu(unsigned int vcpu_idx) +{ + int ret; + cpu_set_t cpuset; + uint32_t new_pcpu = test_get_pcpu(); + + CPU_ZERO(&cpuset); + CPU_SET(new_pcpu, &cpuset); + + pr_debug("Migrating vCPU: %u to pCPU: %u\n", vcpu_idx, new_pcpu); + + ret = pthread_setaffinity_np(pt_vcpu_run[vcpu_idx], + sizeof(cpuset), &cpuset); + + /* Allow the error where the vCPU thread is already finished */ + TEST_ASSERT(ret == 0 || ret == ESRCH, + "Failed to migrate the vCPU:%u to pCPU: %u; ret: %d\n", + vcpu_idx, new_pcpu, ret); + + return ret; +} + +static void *test_vcpu_migration(void *arg) +{ + unsigned int i, n_done; + bool vcpu_done; + + do { + usleep(msecs_to_usecs(test_args.migration_freq_ms)); + + for (n_done = 0, i = 0; i < test_args.nr_vcpus; i++) { + pthread_mutex_lock(&vcpu_done_map_lock); + vcpu_done = test_bit(i, vcpu_done_map); + pthread_mutex_unlock(&vcpu_done_map_lock); + + if (vcpu_done) { + n_done++; + continue; + } + + test_migrate_vcpu(i); + } + } while (test_args.nr_vcpus != n_done); + + return NULL; +} + +static void test_run(struct kvm_vm *vm) +{ + pthread_t pt_vcpu_migration; + unsigned int i; + int ret; + + pthread_mutex_init(&vcpu_done_map_lock, NULL); + vcpu_done_map = bitmap_zalloc(test_args.nr_vcpus); + TEST_ASSERT(vcpu_done_map, "Failed to allocate vcpu done bitmap\n"); + + for (i = 0; i < (unsigned long)test_args.nr_vcpus; i++) { + ret = pthread_create(&pt_vcpu_run[i], NULL, test_vcpu_run, + (void *)(unsigned long)i); + TEST_ASSERT(!ret, "Failed to create vCPU-%d pthread\n", i); + } + + /* Spawn a thread to control the vCPU migrations */ + if (test_args.migration_freq_ms) { + srand(time(NULL)); + + ret = pthread_create(&pt_vcpu_migration, NULL, + test_vcpu_migration, NULL); + TEST_ASSERT(!ret, "Failed to create the migration pthread\n"); + } + + + for (i = 0; i < test_args.nr_vcpus; i++) + pthread_join(pt_vcpu_run[i], NULL); + + if (test_args.migration_freq_ms) + pthread_join(pt_vcpu_migration, NULL); + + bitmap_free(vcpu_done_map); +} + +static void test_init_timer_irq(struct kvm_vm *vm) +{ + /* Timer initid should be same for all the vCPUs, so query only vCPU-0 */ + vcpu_device_attr_get(vcpus[0], KVM_ARM_VCPU_TIMER_CTRL, + KVM_ARM_VCPU_TIMER_IRQ_PTIMER, &ptimer_irq); + vcpu_device_attr_get(vcpus[0], KVM_ARM_VCPU_TIMER_CTRL, + KVM_ARM_VCPU_TIMER_IRQ_VTIMER, &vtimer_irq); + + sync_global_to_guest(vm, ptimer_irq); + sync_global_to_guest(vm, vtimer_irq); + + pr_debug("ptimer_irq: %d; vtimer_irq: %d\n", ptimer_irq, vtimer_irq); +} + +static int gic_fd; + +static struct kvm_vm *test_vm_create(void) +{ + struct kvm_vm *vm; + unsigned int i; + int nr_vcpus = test_args.nr_vcpus; + + vm = vm_create_with_vcpus(nr_vcpus, guest_code, vcpus); + + vm_init_descriptor_tables(vm); + vm_install_exception_handler(vm, VECTOR_IRQ_CURRENT, guest_irq_handler); + + for (i = 0; i < nr_vcpus; i++) + vcpu_init_descriptor_tables(vcpus[i]); + + ucall_init(vm, NULL); + test_init_timer_irq(vm); + gic_fd = vgic_v3_setup(vm, nr_vcpus, 64, GICD_BASE_GPA, GICR_BASE_GPA); + __TEST_REQUIRE(gic_fd >= 0, "Failed to create vgic-v3"); + + /* Make all the test's cmdline args visible to the guest */ + sync_global_to_guest(vm, test_args); + + return vm; +} + +static void test_vm_cleanup(struct kvm_vm *vm) +{ + close(gic_fd); + kvm_vm_free(vm); +} + +static void test_print_help(char *name) +{ + pr_info("Usage: %s [-h] [-n nr_vcpus] [-i iterations] [-p timer_period_ms]\n", + name); + pr_info("\t-n: Number of vCPUs to configure (default: %u; max: %u)\n", + NR_VCPUS_DEF, KVM_MAX_VCPUS); + pr_info("\t-i: Number of iterations per stage (default: %u)\n", + NR_TEST_ITERS_DEF); + pr_info("\t-p: Periodicity (in ms) of the guest timer (default: %u)\n", + TIMER_TEST_PERIOD_MS_DEF); + pr_info("\t-m: Frequency (in ms) of vCPUs to migrate to different pCPU. 0 to turn off (default: %u)\n", + TIMER_TEST_MIGRATION_FREQ_MS); + pr_info("\t-h: print this help screen\n"); +} + +static bool parse_args(int argc, char *argv[]) +{ + int opt; + + while ((opt = getopt(argc, argv, "hn:i:p:m:")) != -1) { + switch (opt) { + case 'n': + test_args.nr_vcpus = atoi(optarg); + if (test_args.nr_vcpus <= 0) { + pr_info("Positive value needed for -n\n"); + goto err; + } else if (test_args.nr_vcpus > KVM_MAX_VCPUS) { + pr_info("Max allowed vCPUs: %u\n", + KVM_MAX_VCPUS); + goto err; + } + break; + case 'i': + test_args.nr_iter = atoi(optarg); + if (test_args.nr_iter <= 0) { + pr_info("Positive value needed for -i\n"); + goto err; + } + break; + case 'p': + test_args.timer_period_ms = atoi(optarg); + if (test_args.timer_period_ms <= 0) { + pr_info("Positive value needed for -p\n"); + goto err; + } + break; + case 'm': + test_args.migration_freq_ms = atoi(optarg); + if (test_args.migration_freq_ms < 0) { + pr_info("0 or positive value needed for -m\n"); + goto err; + } + break; + case 'h': + default: + goto err; + } + } + + return true; + +err: + test_print_help(argv[0]); + return false; +} + +int main(int argc, char *argv[]) +{ + struct kvm_vm *vm; + + /* Tell stdout not to buffer its content */ + setbuf(stdout, NULL); + + if (!parse_args(argc, argv)) + exit(KSFT_SKIP); + + __TEST_REQUIRE(!test_args.migration_freq_ms || get_nprocs() >= 2, + "At least two physical CPUs needed for vCPU migration"); + + vm = test_vm_create(); + test_run(vm); + test_vm_cleanup(vm); + + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/debug-exceptions.c b/tools/testing/selftests/kvm/aarch64/debug-exceptions.c new file mode 100644 index 000000000..947bd2014 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/debug-exceptions.c @@ -0,0 +1,439 @@ +// SPDX-License-Identifier: GPL-2.0 +#include <test_util.h> +#include <kvm_util.h> +#include <processor.h> + +#define MDSCR_KDE (1 << 13) +#define MDSCR_MDE (1 << 15) +#define MDSCR_SS (1 << 0) + +#define DBGBCR_LEN8 (0xff << 5) +#define DBGBCR_EXEC (0x0 << 3) +#define DBGBCR_EL1 (0x1 << 1) +#define DBGBCR_E (0x1 << 0) + +#define DBGWCR_LEN8 (0xff << 5) +#define DBGWCR_RD (0x1 << 3) +#define DBGWCR_WR (0x2 << 3) +#define DBGWCR_EL1 (0x1 << 1) +#define DBGWCR_E (0x1 << 0) + +#define SPSR_D (1 << 9) +#define SPSR_SS (1 << 21) + +extern unsigned char sw_bp, sw_bp2, hw_bp, hw_bp2, bp_svc, bp_brk, hw_wp, ss_start; +extern unsigned char iter_ss_begin, iter_ss_end; +static volatile uint64_t sw_bp_addr, hw_bp_addr; +static volatile uint64_t wp_addr, wp_data_addr; +static volatile uint64_t svc_addr; +static volatile uint64_t ss_addr[4], ss_idx; +#define PC(v) ((uint64_t)&(v)) + +static void reset_debug_state(void) +{ + asm volatile("msr daifset, #8"); + + write_sysreg(0, osdlr_el1); + write_sysreg(0, oslar_el1); + isb(); + + write_sysreg(0, mdscr_el1); + /* This test only uses the first bp and wp slot. */ + write_sysreg(0, dbgbvr0_el1); + write_sysreg(0, dbgbcr0_el1); + write_sysreg(0, dbgwcr0_el1); + write_sysreg(0, dbgwvr0_el1); + isb(); +} + +static void enable_os_lock(void) +{ + write_sysreg(1, oslar_el1); + isb(); + + GUEST_ASSERT(read_sysreg(oslsr_el1) & 2); +} + +static void install_wp(uint64_t addr) +{ + uint32_t wcr; + uint32_t mdscr; + + wcr = DBGWCR_LEN8 | DBGWCR_RD | DBGWCR_WR | DBGWCR_EL1 | DBGWCR_E; + write_sysreg(wcr, dbgwcr0_el1); + write_sysreg(addr, dbgwvr0_el1); + isb(); + + asm volatile("msr daifclr, #8"); + + mdscr = read_sysreg(mdscr_el1) | MDSCR_KDE | MDSCR_MDE; + write_sysreg(mdscr, mdscr_el1); + isb(); +} + +static void install_hw_bp(uint64_t addr) +{ + uint32_t bcr; + uint32_t mdscr; + + bcr = DBGBCR_LEN8 | DBGBCR_EXEC | DBGBCR_EL1 | DBGBCR_E; + write_sysreg(bcr, dbgbcr0_el1); + write_sysreg(addr, dbgbvr0_el1); + isb(); + + asm volatile("msr daifclr, #8"); + + mdscr = read_sysreg(mdscr_el1) | MDSCR_KDE | MDSCR_MDE; + write_sysreg(mdscr, mdscr_el1); + isb(); +} + +static void install_ss(void) +{ + uint32_t mdscr; + + asm volatile("msr daifclr, #8"); + + mdscr = read_sysreg(mdscr_el1) | MDSCR_KDE | MDSCR_SS; + write_sysreg(mdscr, mdscr_el1); + isb(); +} + +static volatile char write_data; + +static void guest_code(void) +{ + GUEST_SYNC(0); + + /* Software-breakpoint */ + reset_debug_state(); + asm volatile("sw_bp: brk #0"); + GUEST_ASSERT_EQ(sw_bp_addr, PC(sw_bp)); + + GUEST_SYNC(1); + + /* Hardware-breakpoint */ + reset_debug_state(); + install_hw_bp(PC(hw_bp)); + asm volatile("hw_bp: nop"); + GUEST_ASSERT_EQ(hw_bp_addr, PC(hw_bp)); + + GUEST_SYNC(2); + + /* Hardware-breakpoint + svc */ + reset_debug_state(); + install_hw_bp(PC(bp_svc)); + asm volatile("bp_svc: svc #0"); + GUEST_ASSERT_EQ(hw_bp_addr, PC(bp_svc)); + GUEST_ASSERT_EQ(svc_addr, PC(bp_svc) + 4); + + GUEST_SYNC(3); + + /* Hardware-breakpoint + software-breakpoint */ + reset_debug_state(); + install_hw_bp(PC(bp_brk)); + asm volatile("bp_brk: brk #0"); + GUEST_ASSERT_EQ(sw_bp_addr, PC(bp_brk)); + GUEST_ASSERT_EQ(hw_bp_addr, PC(bp_brk)); + + GUEST_SYNC(4); + + /* Watchpoint */ + reset_debug_state(); + install_wp(PC(write_data)); + write_data = 'x'; + GUEST_ASSERT_EQ(write_data, 'x'); + GUEST_ASSERT_EQ(wp_data_addr, PC(write_data)); + + GUEST_SYNC(5); + + /* Single-step */ + reset_debug_state(); + install_ss(); + ss_idx = 0; + asm volatile("ss_start:\n" + "mrs x0, esr_el1\n" + "add x0, x0, #1\n" + "msr daifset, #8\n" + : : : "x0"); + GUEST_ASSERT_EQ(ss_addr[0], PC(ss_start)); + GUEST_ASSERT_EQ(ss_addr[1], PC(ss_start) + 4); + GUEST_ASSERT_EQ(ss_addr[2], PC(ss_start) + 8); + + GUEST_SYNC(6); + + /* OS Lock does not block software-breakpoint */ + reset_debug_state(); + enable_os_lock(); + sw_bp_addr = 0; + asm volatile("sw_bp2: brk #0"); + GUEST_ASSERT_EQ(sw_bp_addr, PC(sw_bp2)); + + GUEST_SYNC(7); + + /* OS Lock blocking hardware-breakpoint */ + reset_debug_state(); + enable_os_lock(); + install_hw_bp(PC(hw_bp2)); + hw_bp_addr = 0; + asm volatile("hw_bp2: nop"); + GUEST_ASSERT_EQ(hw_bp_addr, 0); + + GUEST_SYNC(8); + + /* OS Lock blocking watchpoint */ + reset_debug_state(); + enable_os_lock(); + write_data = '\0'; + wp_data_addr = 0; + install_wp(PC(write_data)); + write_data = 'x'; + GUEST_ASSERT_EQ(write_data, 'x'); + GUEST_ASSERT_EQ(wp_data_addr, 0); + + GUEST_SYNC(9); + + /* OS Lock blocking single-step */ + reset_debug_state(); + enable_os_lock(); + ss_addr[0] = 0; + install_ss(); + ss_idx = 0; + asm volatile("mrs x0, esr_el1\n\t" + "add x0, x0, #1\n\t" + "msr daifset, #8\n\t" + : : : "x0"); + GUEST_ASSERT_EQ(ss_addr[0], 0); + + GUEST_DONE(); +} + +static void guest_sw_bp_handler(struct ex_regs *regs) +{ + sw_bp_addr = regs->pc; + regs->pc += 4; +} + +static void guest_hw_bp_handler(struct ex_regs *regs) +{ + hw_bp_addr = regs->pc; + regs->pstate |= SPSR_D; +} + +static void guest_wp_handler(struct ex_regs *regs) +{ + wp_data_addr = read_sysreg(far_el1); + wp_addr = regs->pc; + regs->pstate |= SPSR_D; +} + +static void guest_ss_handler(struct ex_regs *regs) +{ + GUEST_ASSERT_1(ss_idx < 4, ss_idx); + ss_addr[ss_idx++] = regs->pc; + regs->pstate |= SPSR_SS; +} + +static void guest_svc_handler(struct ex_regs *regs) +{ + svc_addr = regs->pc; +} + +enum single_step_op { + SINGLE_STEP_ENABLE = 0, + SINGLE_STEP_DISABLE = 1, +}; + +static void guest_code_ss(int test_cnt) +{ + uint64_t i; + uint64_t bvr, wvr, w_bvr, w_wvr; + + for (i = 0; i < test_cnt; i++) { + /* Bits [1:0] of dbg{b,w}vr are RES0 */ + w_bvr = i << 2; + w_wvr = i << 2; + + /* Enable Single Step execution */ + GUEST_SYNC(SINGLE_STEP_ENABLE); + + /* + * The userspace will veriry that the pc is as expected during + * single step execution between iter_ss_begin and iter_ss_end. + */ + asm volatile("iter_ss_begin:nop\n"); + + write_sysreg(w_bvr, dbgbvr0_el1); + write_sysreg(w_wvr, dbgwvr0_el1); + bvr = read_sysreg(dbgbvr0_el1); + wvr = read_sysreg(dbgwvr0_el1); + + asm volatile("iter_ss_end:\n"); + + /* Disable Single Step execution */ + GUEST_SYNC(SINGLE_STEP_DISABLE); + + GUEST_ASSERT(bvr == w_bvr); + GUEST_ASSERT(wvr == w_wvr); + } + GUEST_DONE(); +} + +static int debug_version(struct kvm_vcpu *vcpu) +{ + uint64_t id_aa64dfr0; + + vcpu_get_reg(vcpu, KVM_ARM64_SYS_REG(SYS_ID_AA64DFR0_EL1), &id_aa64dfr0); + return id_aa64dfr0 & 0xf; +} + +static void test_guest_debug_exceptions(void) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + struct ucall uc; + int stage; + + vm = vm_create_with_one_vcpu(&vcpu, guest_code); + ucall_init(vm, NULL); + + vm_init_descriptor_tables(vm); + vcpu_init_descriptor_tables(vcpu); + + vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, + ESR_EC_BRK_INS, guest_sw_bp_handler); + vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, + ESR_EC_HW_BP_CURRENT, guest_hw_bp_handler); + vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, + ESR_EC_WP_CURRENT, guest_wp_handler); + vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, + ESR_EC_SSTEP_CURRENT, guest_ss_handler); + vm_install_sync_handler(vm, VECTOR_SYNC_CURRENT, + ESR_EC_SVC64, guest_svc_handler); + + for (stage = 0; stage < 11; stage++) { + vcpu_run(vcpu); + + switch (get_ucall(vcpu, &uc)) { + case UCALL_SYNC: + TEST_ASSERT(uc.args[1] == stage, + "Stage %d: Unexpected sync ucall, got %lx", + stage, (ulong)uc.args[1]); + break; + case UCALL_ABORT: + REPORT_GUEST_ASSERT_2(uc, "values: %#lx, %#lx"); + break; + case UCALL_DONE: + goto done; + default: + TEST_FAIL("Unknown ucall %lu", uc.cmd); + } + } + +done: + kvm_vm_free(vm); +} + +void test_single_step_from_userspace(int test_cnt) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + struct ucall uc; + struct kvm_run *run; + uint64_t pc, cmd; + uint64_t test_pc = 0; + bool ss_enable = false; + struct kvm_guest_debug debug = {}; + + vm = vm_create_with_one_vcpu(&vcpu, guest_code_ss); + ucall_init(vm, NULL); + run = vcpu->run; + vcpu_args_set(vcpu, 1, test_cnt); + + while (1) { + vcpu_run(vcpu); + if (run->exit_reason != KVM_EXIT_DEBUG) { + cmd = get_ucall(vcpu, &uc); + if (cmd == UCALL_ABORT) { + REPORT_GUEST_ASSERT(uc); + /* NOT REACHED */ + } else if (cmd == UCALL_DONE) { + break; + } + + TEST_ASSERT(cmd == UCALL_SYNC, + "Unexpected ucall cmd 0x%lx", cmd); + + if (uc.args[1] == SINGLE_STEP_ENABLE) { + debug.control = KVM_GUESTDBG_ENABLE | + KVM_GUESTDBG_SINGLESTEP; + ss_enable = true; + } else { + debug.control = SINGLE_STEP_DISABLE; + ss_enable = false; + } + + vcpu_guest_debug_set(vcpu, &debug); + continue; + } + + TEST_ASSERT(ss_enable, "Unexpected KVM_EXIT_DEBUG"); + + /* Check if the current pc is expected. */ + vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &pc); + TEST_ASSERT(!test_pc || pc == test_pc, + "Unexpected pc 0x%lx (expected 0x%lx)", + pc, test_pc); + + /* + * If the current pc is between iter_ss_bgin and + * iter_ss_end, the pc for the next KVM_EXIT_DEBUG should + * be the current pc + 4. + */ + if ((pc >= (uint64_t)&iter_ss_begin) && + (pc < (uint64_t)&iter_ss_end)) + test_pc = pc + 4; + else + test_pc = 0; + } + + kvm_vm_free(vm); +} + +static void help(char *name) +{ + puts(""); + printf("Usage: %s [-h] [-i iterations of the single step test]\n", name); + puts(""); + exit(0); +} + +int main(int argc, char *argv[]) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + int opt; + int ss_iteration = 10000; + + vm = vm_create_with_one_vcpu(&vcpu, guest_code); + __TEST_REQUIRE(debug_version(vcpu) >= 6, + "Armv8 debug architecture not supported."); + kvm_vm_free(vm); + + while ((opt = getopt(argc, argv, "i:")) != -1) { + switch (opt) { + case 'i': + ss_iteration = atoi(optarg); + break; + case 'h': + default: + help(argv[0]); + break; + } + } + + test_guest_debug_exceptions(); + test_single_step_from_userspace(ss_iteration); + + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/get-reg-list.c b/tools/testing/selftests/kvm/aarch64/get-reg-list.c new file mode 100644 index 000000000..d287dd2ca --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/get-reg-list.c @@ -0,0 +1,1135 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Check for KVM_GET_REG_LIST regressions. + * + * Copyright (C) 2020, Red Hat, Inc. + * + * When attempting to migrate from a host with an older kernel to a host + * with a newer kernel we allow the newer kernel on the destination to + * list new registers with get-reg-list. We assume they'll be unused, at + * least until the guest reboots, and so they're relatively harmless. + * However, if the destination host with the newer kernel is missing + * registers which the source host with the older kernel has, then that's + * a regression in get-reg-list. This test checks for that regression by + * checking the current list against a blessed list. We should never have + * missing registers, but if new ones appear then they can probably be + * added to the blessed list. A completely new blessed list can be created + * by running the test with the --list command line argument. + * + * Note, the blessed list should be created from the oldest possible + * kernel. We can't go older than v4.15, though, because that's the first + * release to expose the ID system registers in KVM_GET_REG_LIST, see + * commit 93390c0a1b20 ("arm64: KVM: Hide unsupported AArch64 CPU features + * from guests"). Also, one must use the --core-reg-fixup command line + * option when running on an older kernel that doesn't include df205b5c6328 + * ("KVM: arm64: Filter out invalid core register IDs in KVM_GET_REG_LIST") + */ +#include <stdio.h> +#include <stdlib.h> +#include <string.h> +#include <unistd.h> +#include <sys/types.h> +#include <sys/wait.h> +#include "kvm_util.h" +#include "test_util.h" +#include "processor.h" + +static struct kvm_reg_list *reg_list; +static __u64 *blessed_reg, blessed_n; + +struct reg_sublist { + const char *name; + long capability; + int feature; + bool finalize; + __u64 *regs; + __u64 regs_n; + __u64 *rejects_set; + __u64 rejects_set_n; +}; + +struct vcpu_config { + char *name; + struct reg_sublist sublists[]; +}; + +static struct vcpu_config *vcpu_configs[]; +static int vcpu_configs_n; + +#define for_each_sublist(c, s) \ + for ((s) = &(c)->sublists[0]; (s)->regs; ++(s)) + +#define for_each_reg(i) \ + for ((i) = 0; (i) < reg_list->n; ++(i)) + +#define for_each_reg_filtered(i) \ + for_each_reg(i) \ + if (!filter_reg(reg_list->reg[i])) + +#define for_each_missing_reg(i) \ + for ((i) = 0; (i) < blessed_n; ++(i)) \ + if (!find_reg(reg_list->reg, reg_list->n, blessed_reg[i])) + +#define for_each_new_reg(i) \ + for_each_reg_filtered(i) \ + if (!find_reg(blessed_reg, blessed_n, reg_list->reg[i])) + +static const char *config_name(struct vcpu_config *c) +{ + struct reg_sublist *s; + int len = 0; + + if (c->name) + return c->name; + + for_each_sublist(c, s) + len += strlen(s->name) + 1; + + c->name = malloc(len); + + len = 0; + for_each_sublist(c, s) { + if (!strcmp(s->name, "base")) + continue; + strcat(c->name + len, s->name); + len += strlen(s->name) + 1; + c->name[len - 1] = '+'; + } + c->name[len - 1] = '\0'; + + return c->name; +} + +static bool has_cap(struct vcpu_config *c, long capability) +{ + struct reg_sublist *s; + + for_each_sublist(c, s) + if (s->capability == capability) + return true; + return false; +} + +static bool filter_reg(__u64 reg) +{ + /* + * DEMUX register presence depends on the host's CLIDR_EL1. + * This means there's no set of them that we can bless. + */ + if ((reg & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX) + return true; + + return false; +} + +static bool find_reg(__u64 regs[], __u64 nr_regs, __u64 reg) +{ + int i; + + for (i = 0; i < nr_regs; ++i) + if (reg == regs[i]) + return true; + return false; +} + +static const char *str_with_index(const char *template, __u64 index) +{ + char *str, *p; + int n; + + str = strdup(template); + p = strstr(str, "##"); + n = sprintf(p, "%lld", index); + strcat(p + n, strstr(template, "##") + 2); + + return (const char *)str; +} + +#define REG_MASK (KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_COPROC_MASK) + +#define CORE_REGS_XX_NR_WORDS 2 +#define CORE_SPSR_XX_NR_WORDS 2 +#define CORE_FPREGS_XX_NR_WORDS 4 + +static const char *core_id_to_str(struct vcpu_config *c, __u64 id) +{ + __u64 core_off = id & ~REG_MASK, idx; + + /* + * core_off is the offset into struct kvm_regs + */ + switch (core_off) { + case KVM_REG_ARM_CORE_REG(regs.regs[0]) ... + KVM_REG_ARM_CORE_REG(regs.regs[30]): + idx = (core_off - KVM_REG_ARM_CORE_REG(regs.regs[0])) / CORE_REGS_XX_NR_WORDS; + TEST_ASSERT(idx < 31, "%s: Unexpected regs.regs index: %lld", config_name(c), idx); + return str_with_index("KVM_REG_ARM_CORE_REG(regs.regs[##])", idx); + case KVM_REG_ARM_CORE_REG(regs.sp): + return "KVM_REG_ARM_CORE_REG(regs.sp)"; + case KVM_REG_ARM_CORE_REG(regs.pc): + return "KVM_REG_ARM_CORE_REG(regs.pc)"; + case KVM_REG_ARM_CORE_REG(regs.pstate): + return "KVM_REG_ARM_CORE_REG(regs.pstate)"; + case KVM_REG_ARM_CORE_REG(sp_el1): + return "KVM_REG_ARM_CORE_REG(sp_el1)"; + case KVM_REG_ARM_CORE_REG(elr_el1): + return "KVM_REG_ARM_CORE_REG(elr_el1)"; + case KVM_REG_ARM_CORE_REG(spsr[0]) ... + KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]): + idx = (core_off - KVM_REG_ARM_CORE_REG(spsr[0])) / CORE_SPSR_XX_NR_WORDS; + TEST_ASSERT(idx < KVM_NR_SPSR, "%s: Unexpected spsr index: %lld", config_name(c), idx); + return str_with_index("KVM_REG_ARM_CORE_REG(spsr[##])", idx); + case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... + KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): + idx = (core_off - KVM_REG_ARM_CORE_REG(fp_regs.vregs[0])) / CORE_FPREGS_XX_NR_WORDS; + TEST_ASSERT(idx < 32, "%s: Unexpected fp_regs.vregs index: %lld", config_name(c), idx); + return str_with_index("KVM_REG_ARM_CORE_REG(fp_regs.vregs[##])", idx); + case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): + return "KVM_REG_ARM_CORE_REG(fp_regs.fpsr)"; + case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): + return "KVM_REG_ARM_CORE_REG(fp_regs.fpcr)"; + } + + TEST_FAIL("%s: Unknown core reg id: 0x%llx", config_name(c), id); + return NULL; +} + +static const char *sve_id_to_str(struct vcpu_config *c, __u64 id) +{ + __u64 sve_off, n, i; + + if (id == KVM_REG_ARM64_SVE_VLS) + return "KVM_REG_ARM64_SVE_VLS"; + + sve_off = id & ~(REG_MASK | ((1ULL << 5) - 1)); + i = id & (KVM_ARM64_SVE_MAX_SLICES - 1); + + TEST_ASSERT(i == 0, "%s: Currently we don't expect slice > 0, reg id 0x%llx", config_name(c), id); + + switch (sve_off) { + case KVM_REG_ARM64_SVE_ZREG_BASE ... + KVM_REG_ARM64_SVE_ZREG_BASE + (1ULL << 5) * KVM_ARM64_SVE_NUM_ZREGS - 1: + n = (id >> 5) & (KVM_ARM64_SVE_NUM_ZREGS - 1); + TEST_ASSERT(id == KVM_REG_ARM64_SVE_ZREG(n, 0), + "%s: Unexpected bits set in SVE ZREG id: 0x%llx", config_name(c), id); + return str_with_index("KVM_REG_ARM64_SVE_ZREG(##, 0)", n); + case KVM_REG_ARM64_SVE_PREG_BASE ... + KVM_REG_ARM64_SVE_PREG_BASE + (1ULL << 5) * KVM_ARM64_SVE_NUM_PREGS - 1: + n = (id >> 5) & (KVM_ARM64_SVE_NUM_PREGS - 1); + TEST_ASSERT(id == KVM_REG_ARM64_SVE_PREG(n, 0), + "%s: Unexpected bits set in SVE PREG id: 0x%llx", config_name(c), id); + return str_with_index("KVM_REG_ARM64_SVE_PREG(##, 0)", n); + case KVM_REG_ARM64_SVE_FFR_BASE: + TEST_ASSERT(id == KVM_REG_ARM64_SVE_FFR(0), + "%s: Unexpected bits set in SVE FFR id: 0x%llx", config_name(c), id); + return "KVM_REG_ARM64_SVE_FFR(0)"; + } + + return NULL; +} + +static void print_reg(struct vcpu_config *c, __u64 id) +{ + unsigned op0, op1, crn, crm, op2; + const char *reg_size = NULL; + + TEST_ASSERT((id & KVM_REG_ARCH_MASK) == KVM_REG_ARM64, + "%s: KVM_REG_ARM64 missing in reg id: 0x%llx", config_name(c), id); + + switch (id & KVM_REG_SIZE_MASK) { + case KVM_REG_SIZE_U8: + reg_size = "KVM_REG_SIZE_U8"; + break; + case KVM_REG_SIZE_U16: + reg_size = "KVM_REG_SIZE_U16"; + break; + case KVM_REG_SIZE_U32: + reg_size = "KVM_REG_SIZE_U32"; + break; + case KVM_REG_SIZE_U64: + reg_size = "KVM_REG_SIZE_U64"; + break; + case KVM_REG_SIZE_U128: + reg_size = "KVM_REG_SIZE_U128"; + break; + case KVM_REG_SIZE_U256: + reg_size = "KVM_REG_SIZE_U256"; + break; + case KVM_REG_SIZE_U512: + reg_size = "KVM_REG_SIZE_U512"; + break; + case KVM_REG_SIZE_U1024: + reg_size = "KVM_REG_SIZE_U1024"; + break; + case KVM_REG_SIZE_U2048: + reg_size = "KVM_REG_SIZE_U2048"; + break; + default: + TEST_FAIL("%s: Unexpected reg size: 0x%llx in reg id: 0x%llx", + config_name(c), (id & KVM_REG_SIZE_MASK) >> KVM_REG_SIZE_SHIFT, id); + } + + switch (id & KVM_REG_ARM_COPROC_MASK) { + case KVM_REG_ARM_CORE: + printf("\tKVM_REG_ARM64 | %s | KVM_REG_ARM_CORE | %s,\n", reg_size, core_id_to_str(c, id)); + break; + case KVM_REG_ARM_DEMUX: + TEST_ASSERT(!(id & ~(REG_MASK | KVM_REG_ARM_DEMUX_ID_MASK | KVM_REG_ARM_DEMUX_VAL_MASK)), + "%s: Unexpected bits set in DEMUX reg id: 0x%llx", config_name(c), id); + printf("\tKVM_REG_ARM64 | %s | KVM_REG_ARM_DEMUX | KVM_REG_ARM_DEMUX_ID_CCSIDR | %lld,\n", + reg_size, id & KVM_REG_ARM_DEMUX_VAL_MASK); + break; + case KVM_REG_ARM64_SYSREG: + op0 = (id & KVM_REG_ARM64_SYSREG_OP0_MASK) >> KVM_REG_ARM64_SYSREG_OP0_SHIFT; + op1 = (id & KVM_REG_ARM64_SYSREG_OP1_MASK) >> KVM_REG_ARM64_SYSREG_OP1_SHIFT; + crn = (id & KVM_REG_ARM64_SYSREG_CRN_MASK) >> KVM_REG_ARM64_SYSREG_CRN_SHIFT; + crm = (id & KVM_REG_ARM64_SYSREG_CRM_MASK) >> KVM_REG_ARM64_SYSREG_CRM_SHIFT; + op2 = (id & KVM_REG_ARM64_SYSREG_OP2_MASK) >> KVM_REG_ARM64_SYSREG_OP2_SHIFT; + TEST_ASSERT(id == ARM64_SYS_REG(op0, op1, crn, crm, op2), + "%s: Unexpected bits set in SYSREG reg id: 0x%llx", config_name(c), id); + printf("\tARM64_SYS_REG(%d, %d, %d, %d, %d),\n", op0, op1, crn, crm, op2); + break; + case KVM_REG_ARM_FW: + TEST_ASSERT(id == KVM_REG_ARM_FW_REG(id & 0xffff), + "%s: Unexpected bits set in FW reg id: 0x%llx", config_name(c), id); + printf("\tKVM_REG_ARM_FW_REG(%lld),\n", id & 0xffff); + break; + case KVM_REG_ARM_FW_FEAT_BMAP: + TEST_ASSERT(id == KVM_REG_ARM_FW_FEAT_BMAP_REG(id & 0xffff), + "%s: Unexpected bits set in the bitmap feature FW reg id: 0x%llx", config_name(c), id); + printf("\tKVM_REG_ARM_FW_FEAT_BMAP_REG(%lld),\n", id & 0xffff); + break; + case KVM_REG_ARM64_SVE: + if (has_cap(c, KVM_CAP_ARM_SVE)) + printf("\t%s,\n", sve_id_to_str(c, id)); + else + TEST_FAIL("%s: KVM_REG_ARM64_SVE is an unexpected coproc type in reg id: 0x%llx", config_name(c), id); + break; + default: + TEST_FAIL("%s: Unexpected coproc type: 0x%llx in reg id: 0x%llx", + config_name(c), (id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT, id); + } +} + +/* + * Older kernels listed each 32-bit word of CORE registers separately. + * For 64 and 128-bit registers we need to ignore the extra words. We + * also need to fixup the sizes, because the older kernels stated all + * registers were 64-bit, even when they weren't. + */ +static void core_reg_fixup(void) +{ + struct kvm_reg_list *tmp; + __u64 id, core_off; + int i; + + tmp = calloc(1, sizeof(*tmp) + reg_list->n * sizeof(__u64)); + + for (i = 0; i < reg_list->n; ++i) { + id = reg_list->reg[i]; + + if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM_CORE) { + tmp->reg[tmp->n++] = id; + continue; + } + + core_off = id & ~REG_MASK; + + switch (core_off) { + case 0x52: case 0xd2: case 0xd6: + /* + * These offsets are pointing at padding. + * We need to ignore them too. + */ + continue; + case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ... + KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]): + if (core_off & 3) + continue; + id &= ~KVM_REG_SIZE_MASK; + id |= KVM_REG_SIZE_U128; + tmp->reg[tmp->n++] = id; + continue; + case KVM_REG_ARM_CORE_REG(fp_regs.fpsr): + case KVM_REG_ARM_CORE_REG(fp_regs.fpcr): + id &= ~KVM_REG_SIZE_MASK; + id |= KVM_REG_SIZE_U32; + tmp->reg[tmp->n++] = id; + continue; + default: + if (core_off & 1) + continue; + tmp->reg[tmp->n++] = id; + break; + } + } + + free(reg_list); + reg_list = tmp; +} + +static void prepare_vcpu_init(struct vcpu_config *c, struct kvm_vcpu_init *init) +{ + struct reg_sublist *s; + + for_each_sublist(c, s) + if (s->capability) + init->features[s->feature / 32] |= 1 << (s->feature % 32); +} + +static void finalize_vcpu(struct kvm_vcpu *vcpu, struct vcpu_config *c) +{ + struct reg_sublist *s; + int feature; + + for_each_sublist(c, s) { + if (s->finalize) { + feature = s->feature; + vcpu_ioctl(vcpu, KVM_ARM_VCPU_FINALIZE, &feature); + } + } +} + +static void check_supported(struct vcpu_config *c) +{ + struct reg_sublist *s; + + for_each_sublist(c, s) { + if (!s->capability) + continue; + + __TEST_REQUIRE(kvm_has_cap(s->capability), + "%s: %s not available, skipping tests\n", + config_name(c), s->name); + } +} + +static bool print_list; +static bool print_filtered; +static bool fixup_core_regs; + +static void run_test(struct vcpu_config *c) +{ + struct kvm_vcpu_init init = { .target = -1, }; + int new_regs = 0, missing_regs = 0, i, n; + int failed_get = 0, failed_set = 0, failed_reject = 0; + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + struct reg_sublist *s; + + check_supported(c); + + vm = vm_create_barebones(); + prepare_vcpu_init(c, &init); + vcpu = __vm_vcpu_add(vm, 0); + aarch64_vcpu_setup(vcpu, &init); + finalize_vcpu(vcpu, c); + + reg_list = vcpu_get_reg_list(vcpu); + + if (fixup_core_regs) + core_reg_fixup(); + + if (print_list || print_filtered) { + putchar('\n'); + for_each_reg(i) { + __u64 id = reg_list->reg[i]; + if ((print_list && !filter_reg(id)) || + (print_filtered && filter_reg(id))) + print_reg(c, id); + } + putchar('\n'); + return; + } + + /* + * We only test that we can get the register and then write back the + * same value. Some registers may allow other values to be written + * back, but others only allow some bits to be changed, and at least + * for ID registers set will fail if the value does not exactly match + * what was returned by get. If registers that allow other values to + * be written need to have the other values tested, then we should + * create a new set of tests for those in a new independent test + * executable. + */ + for_each_reg(i) { + uint8_t addr[2048 / 8]; + struct kvm_one_reg reg = { + .id = reg_list->reg[i], + .addr = (__u64)&addr, + }; + bool reject_reg = false; + int ret; + + ret = __vcpu_get_reg(vcpu, reg_list->reg[i], &addr); + if (ret) { + printf("%s: Failed to get ", config_name(c)); + print_reg(c, reg.id); + putchar('\n'); + ++failed_get; + } + + /* rejects_set registers are rejected after KVM_ARM_VCPU_FINALIZE */ + for_each_sublist(c, s) { + if (s->rejects_set && find_reg(s->rejects_set, s->rejects_set_n, reg.id)) { + reject_reg = true; + ret = __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®); + if (ret != -1 || errno != EPERM) { + printf("%s: Failed to reject (ret=%d, errno=%d) ", config_name(c), ret, errno); + print_reg(c, reg.id); + putchar('\n'); + ++failed_reject; + } + break; + } + } + + if (!reject_reg) { + ret = __vcpu_ioctl(vcpu, KVM_SET_ONE_REG, ®); + if (ret) { + printf("%s: Failed to set ", config_name(c)); + print_reg(c, reg.id); + putchar('\n'); + ++failed_set; + } + } + } + + for_each_sublist(c, s) + blessed_n += s->regs_n; + blessed_reg = calloc(blessed_n, sizeof(__u64)); + + n = 0; + for_each_sublist(c, s) { + for (i = 0; i < s->regs_n; ++i) + blessed_reg[n++] = s->regs[i]; + } + + for_each_new_reg(i) + ++new_regs; + + for_each_missing_reg(i) + ++missing_regs; + + if (new_regs || missing_regs) { + n = 0; + for_each_reg_filtered(i) + ++n; + + printf("%s: Number blessed registers: %5lld\n", config_name(c), blessed_n); + printf("%s: Number registers: %5lld (includes %lld filtered registers)\n", + config_name(c), reg_list->n, reg_list->n - n); + } + + if (new_regs) { + printf("\n%s: There are %d new registers.\n" + "Consider adding them to the blessed reg " + "list with the following lines:\n\n", config_name(c), new_regs); + for_each_new_reg(i) + print_reg(c, reg_list->reg[i]); + putchar('\n'); + } + + if (missing_regs) { + printf("\n%s: There are %d missing registers.\n" + "The following lines are missing registers:\n\n", config_name(c), missing_regs); + for_each_missing_reg(i) + print_reg(c, blessed_reg[i]); + putchar('\n'); + } + + TEST_ASSERT(!missing_regs && !failed_get && !failed_set && !failed_reject, + "%s: There are %d missing registers; " + "%d registers failed get; %d registers failed set; %d registers failed reject", + config_name(c), missing_regs, failed_get, failed_set, failed_reject); + + pr_info("%s: PASS\n", config_name(c)); + blessed_n = 0; + free(blessed_reg); + free(reg_list); + kvm_vm_free(vm); +} + +static void help(void) +{ + struct vcpu_config *c; + int i; + + printf( + "\n" + "usage: get-reg-list [--config=<selection>] [--list] [--list-filtered] [--core-reg-fixup]\n\n" + " --config=<selection> Used to select a specific vcpu configuration for the test/listing\n" + " '<selection>' may be\n"); + + for (i = 0; i < vcpu_configs_n; ++i) { + c = vcpu_configs[i]; + printf( + " '%s'\n", config_name(c)); + } + + printf( + "\n" + " --list Print the register list rather than test it (requires --config)\n" + " --list-filtered Print registers that would normally be filtered out (requires --config)\n" + " --core-reg-fixup Needed when running on old kernels with broken core reg listings\n" + "\n" + ); +} + +static struct vcpu_config *parse_config(const char *config) +{ + struct vcpu_config *c; + int i; + + if (config[8] != '=') + help(), exit(1); + + for (i = 0; i < vcpu_configs_n; ++i) { + c = vcpu_configs[i]; + if (strcmp(config_name(c), &config[9]) == 0) + break; + } + + if (i == vcpu_configs_n) + help(), exit(1); + + return c; +} + +int main(int ac, char **av) +{ + struct vcpu_config *c, *sel = NULL; + int i, ret = 0; + pid_t pid; + + for (i = 1; i < ac; ++i) { + if (strcmp(av[i], "--core-reg-fixup") == 0) + fixup_core_regs = true; + else if (strncmp(av[i], "--config", 8) == 0) + sel = parse_config(av[i]); + else if (strcmp(av[i], "--list") == 0) + print_list = true; + else if (strcmp(av[i], "--list-filtered") == 0) + print_filtered = true; + else if (strcmp(av[i], "--help") == 0 || strcmp(av[1], "-h") == 0) + help(), exit(0); + else + help(), exit(1); + } + + if (print_list || print_filtered) { + /* + * We only want to print the register list of a single config. + */ + if (!sel) + help(), exit(1); + } + + for (i = 0; i < vcpu_configs_n; ++i) { + c = vcpu_configs[i]; + if (sel && c != sel) + continue; + + pid = fork(); + + if (!pid) { + run_test(c); + exit(0); + } else { + int wstatus; + pid_t wpid = wait(&wstatus); + TEST_ASSERT(wpid == pid && WIFEXITED(wstatus), "wait: Unexpected return"); + if (WEXITSTATUS(wstatus) && WEXITSTATUS(wstatus) != KSFT_SKIP) + ret = KSFT_FAIL; + } + } + + return ret; +} + +/* + * The current blessed list was primed with the output of kernel version + * v4.15 with --core-reg-fixup and then later updated with new registers. + * + * The blessed list is up to date with kernel version v5.13-rc3 + */ +static __u64 base_regs[] = { + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[0]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[1]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[2]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[3]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[4]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[5]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[6]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[7]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[8]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[9]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[10]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[11]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[12]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[13]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[14]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[15]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[16]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[17]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[18]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[19]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[20]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[21]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[22]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[23]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[24]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[25]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[26]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[27]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[28]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[29]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.regs[30]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.sp), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.pc), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(regs.pstate), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(sp_el1), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(elr_el1), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[0]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[1]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[2]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[3]), + KVM_REG_ARM64 | KVM_REG_SIZE_U64 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(spsr[4]), + KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.fpsr), + KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.fpcr), + KVM_REG_ARM_FW_REG(0), /* KVM_REG_ARM_PSCI_VERSION */ + KVM_REG_ARM_FW_REG(1), /* KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_1 */ + KVM_REG_ARM_FW_REG(2), /* KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_2 */ + KVM_REG_ARM_FW_REG(3), /* KVM_REG_ARM_SMCCC_ARCH_WORKAROUND_3 */ + KVM_REG_ARM_FW_FEAT_BMAP_REG(0), /* KVM_REG_ARM_STD_BMAP */ + KVM_REG_ARM_FW_FEAT_BMAP_REG(1), /* KVM_REG_ARM_STD_HYP_BMAP */ + KVM_REG_ARM_FW_FEAT_BMAP_REG(2), /* KVM_REG_ARM_VENDOR_HYP_BMAP */ + ARM64_SYS_REG(3, 3, 14, 3, 1), /* CNTV_CTL_EL0 */ + ARM64_SYS_REG(3, 3, 14, 3, 2), /* CNTV_CVAL_EL0 */ + ARM64_SYS_REG(3, 3, 14, 0, 2), + ARM64_SYS_REG(3, 0, 0, 0, 0), /* MIDR_EL1 */ + ARM64_SYS_REG(3, 0, 0, 0, 6), /* REVIDR_EL1 */ + ARM64_SYS_REG(3, 1, 0, 0, 1), /* CLIDR_EL1 */ + ARM64_SYS_REG(3, 1, 0, 0, 7), /* AIDR_EL1 */ + ARM64_SYS_REG(3, 3, 0, 0, 1), /* CTR_EL0 */ + ARM64_SYS_REG(2, 0, 0, 0, 4), + ARM64_SYS_REG(2, 0, 0, 0, 5), + ARM64_SYS_REG(2, 0, 0, 0, 6), + ARM64_SYS_REG(2, 0, 0, 0, 7), + ARM64_SYS_REG(2, 0, 0, 1, 4), + ARM64_SYS_REG(2, 0, 0, 1, 5), + ARM64_SYS_REG(2, 0, 0, 1, 6), + ARM64_SYS_REG(2, 0, 0, 1, 7), + ARM64_SYS_REG(2, 0, 0, 2, 0), /* MDCCINT_EL1 */ + ARM64_SYS_REG(2, 0, 0, 2, 2), /* MDSCR_EL1 */ + ARM64_SYS_REG(2, 0, 0, 2, 4), + ARM64_SYS_REG(2, 0, 0, 2, 5), + ARM64_SYS_REG(2, 0, 0, 2, 6), + ARM64_SYS_REG(2, 0, 0, 2, 7), + ARM64_SYS_REG(2, 0, 0, 3, 4), + ARM64_SYS_REG(2, 0, 0, 3, 5), + ARM64_SYS_REG(2, 0, 0, 3, 6), + ARM64_SYS_REG(2, 0, 0, 3, 7), + ARM64_SYS_REG(2, 0, 0, 4, 4), + ARM64_SYS_REG(2, 0, 0, 4, 5), + ARM64_SYS_REG(2, 0, 0, 4, 6), + ARM64_SYS_REG(2, 0, 0, 4, 7), + ARM64_SYS_REG(2, 0, 0, 5, 4), + ARM64_SYS_REG(2, 0, 0, 5, 5), + ARM64_SYS_REG(2, 0, 0, 5, 6), + ARM64_SYS_REG(2, 0, 0, 5, 7), + ARM64_SYS_REG(2, 0, 0, 6, 4), + ARM64_SYS_REG(2, 0, 0, 6, 5), + ARM64_SYS_REG(2, 0, 0, 6, 6), + ARM64_SYS_REG(2, 0, 0, 6, 7), + ARM64_SYS_REG(2, 0, 0, 7, 4), + ARM64_SYS_REG(2, 0, 0, 7, 5), + ARM64_SYS_REG(2, 0, 0, 7, 6), + ARM64_SYS_REG(2, 0, 0, 7, 7), + ARM64_SYS_REG(2, 0, 0, 8, 4), + ARM64_SYS_REG(2, 0, 0, 8, 5), + ARM64_SYS_REG(2, 0, 0, 8, 6), + ARM64_SYS_REG(2, 0, 0, 8, 7), + ARM64_SYS_REG(2, 0, 0, 9, 4), + ARM64_SYS_REG(2, 0, 0, 9, 5), + ARM64_SYS_REG(2, 0, 0, 9, 6), + ARM64_SYS_REG(2, 0, 0, 9, 7), + ARM64_SYS_REG(2, 0, 0, 10, 4), + ARM64_SYS_REG(2, 0, 0, 10, 5), + ARM64_SYS_REG(2, 0, 0, 10, 6), + ARM64_SYS_REG(2, 0, 0, 10, 7), + ARM64_SYS_REG(2, 0, 0, 11, 4), + ARM64_SYS_REG(2, 0, 0, 11, 5), + ARM64_SYS_REG(2, 0, 0, 11, 6), + ARM64_SYS_REG(2, 0, 0, 11, 7), + ARM64_SYS_REG(2, 0, 0, 12, 4), + ARM64_SYS_REG(2, 0, 0, 12, 5), + ARM64_SYS_REG(2, 0, 0, 12, 6), + ARM64_SYS_REG(2, 0, 0, 12, 7), + ARM64_SYS_REG(2, 0, 0, 13, 4), + ARM64_SYS_REG(2, 0, 0, 13, 5), + ARM64_SYS_REG(2, 0, 0, 13, 6), + ARM64_SYS_REG(2, 0, 0, 13, 7), + ARM64_SYS_REG(2, 0, 0, 14, 4), + ARM64_SYS_REG(2, 0, 0, 14, 5), + ARM64_SYS_REG(2, 0, 0, 14, 6), + ARM64_SYS_REG(2, 0, 0, 14, 7), + ARM64_SYS_REG(2, 0, 0, 15, 4), + ARM64_SYS_REG(2, 0, 0, 15, 5), + ARM64_SYS_REG(2, 0, 0, 15, 6), + ARM64_SYS_REG(2, 0, 0, 15, 7), + ARM64_SYS_REG(2, 0, 1, 1, 4), /* OSLSR_EL1 */ + ARM64_SYS_REG(2, 4, 0, 7, 0), /* DBGVCR32_EL2 */ + ARM64_SYS_REG(3, 0, 0, 0, 5), /* MPIDR_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 0), /* ID_PFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 1), /* ID_PFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 2), /* ID_DFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 3), /* ID_AFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 4), /* ID_MMFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 5), /* ID_MMFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 6), /* ID_MMFR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 1, 7), /* ID_MMFR3_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 0), /* ID_ISAR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 1), /* ID_ISAR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 2), /* ID_ISAR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 3), /* ID_ISAR3_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 4), /* ID_ISAR4_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 5), /* ID_ISAR5_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 6), /* ID_MMFR4_EL1 */ + ARM64_SYS_REG(3, 0, 0, 2, 7), /* ID_ISAR6_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 0), /* MVFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 1), /* MVFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 2), /* MVFR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 3), + ARM64_SYS_REG(3, 0, 0, 3, 4), /* ID_PFR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 5), /* ID_DFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 6), /* ID_MMFR5_EL1 */ + ARM64_SYS_REG(3, 0, 0, 3, 7), + ARM64_SYS_REG(3, 0, 0, 4, 0), /* ID_AA64PFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 4, 1), /* ID_AA64PFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 4, 2), + ARM64_SYS_REG(3, 0, 0, 4, 3), + ARM64_SYS_REG(3, 0, 0, 4, 4), /* ID_AA64ZFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 4, 5), + ARM64_SYS_REG(3, 0, 0, 4, 6), + ARM64_SYS_REG(3, 0, 0, 4, 7), + ARM64_SYS_REG(3, 0, 0, 5, 0), /* ID_AA64DFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 5, 1), /* ID_AA64DFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 5, 2), + ARM64_SYS_REG(3, 0, 0, 5, 3), + ARM64_SYS_REG(3, 0, 0, 5, 4), /* ID_AA64AFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 5, 5), /* ID_AA64AFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 5, 6), + ARM64_SYS_REG(3, 0, 0, 5, 7), + ARM64_SYS_REG(3, 0, 0, 6, 0), /* ID_AA64ISAR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 6, 1), /* ID_AA64ISAR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 6, 2), + ARM64_SYS_REG(3, 0, 0, 6, 3), + ARM64_SYS_REG(3, 0, 0, 6, 4), + ARM64_SYS_REG(3, 0, 0, 6, 5), + ARM64_SYS_REG(3, 0, 0, 6, 6), + ARM64_SYS_REG(3, 0, 0, 6, 7), + ARM64_SYS_REG(3, 0, 0, 7, 0), /* ID_AA64MMFR0_EL1 */ + ARM64_SYS_REG(3, 0, 0, 7, 1), /* ID_AA64MMFR1_EL1 */ + ARM64_SYS_REG(3, 0, 0, 7, 2), /* ID_AA64MMFR2_EL1 */ + ARM64_SYS_REG(3, 0, 0, 7, 3), + ARM64_SYS_REG(3, 0, 0, 7, 4), + ARM64_SYS_REG(3, 0, 0, 7, 5), + ARM64_SYS_REG(3, 0, 0, 7, 6), + ARM64_SYS_REG(3, 0, 0, 7, 7), + ARM64_SYS_REG(3, 0, 1, 0, 0), /* SCTLR_EL1 */ + ARM64_SYS_REG(3, 0, 1, 0, 1), /* ACTLR_EL1 */ + ARM64_SYS_REG(3, 0, 1, 0, 2), /* CPACR_EL1 */ + ARM64_SYS_REG(3, 0, 2, 0, 0), /* TTBR0_EL1 */ + ARM64_SYS_REG(3, 0, 2, 0, 1), /* TTBR1_EL1 */ + ARM64_SYS_REG(3, 0, 2, 0, 2), /* TCR_EL1 */ + ARM64_SYS_REG(3, 0, 5, 1, 0), /* AFSR0_EL1 */ + ARM64_SYS_REG(3, 0, 5, 1, 1), /* AFSR1_EL1 */ + ARM64_SYS_REG(3, 0, 5, 2, 0), /* ESR_EL1 */ + ARM64_SYS_REG(3, 0, 6, 0, 0), /* FAR_EL1 */ + ARM64_SYS_REG(3, 0, 7, 4, 0), /* PAR_EL1 */ + ARM64_SYS_REG(3, 0, 10, 2, 0), /* MAIR_EL1 */ + ARM64_SYS_REG(3, 0, 10, 3, 0), /* AMAIR_EL1 */ + ARM64_SYS_REG(3, 0, 12, 0, 0), /* VBAR_EL1 */ + ARM64_SYS_REG(3, 0, 12, 1, 1), /* DISR_EL1 */ + ARM64_SYS_REG(3, 0, 13, 0, 1), /* CONTEXTIDR_EL1 */ + ARM64_SYS_REG(3, 0, 13, 0, 4), /* TPIDR_EL1 */ + ARM64_SYS_REG(3, 0, 14, 1, 0), /* CNTKCTL_EL1 */ + ARM64_SYS_REG(3, 2, 0, 0, 0), /* CSSELR_EL1 */ + ARM64_SYS_REG(3, 3, 13, 0, 2), /* TPIDR_EL0 */ + ARM64_SYS_REG(3, 3, 13, 0, 3), /* TPIDRRO_EL0 */ + ARM64_SYS_REG(3, 4, 3, 0, 0), /* DACR32_EL2 */ + ARM64_SYS_REG(3, 4, 5, 0, 1), /* IFSR32_EL2 */ + ARM64_SYS_REG(3, 4, 5, 3, 0), /* FPEXC32_EL2 */ +}; + +static __u64 pmu_regs[] = { + ARM64_SYS_REG(3, 0, 9, 14, 1), /* PMINTENSET_EL1 */ + ARM64_SYS_REG(3, 0, 9, 14, 2), /* PMINTENCLR_EL1 */ + ARM64_SYS_REG(3, 3, 9, 12, 0), /* PMCR_EL0 */ + ARM64_SYS_REG(3, 3, 9, 12, 1), /* PMCNTENSET_EL0 */ + ARM64_SYS_REG(3, 3, 9, 12, 2), /* PMCNTENCLR_EL0 */ + ARM64_SYS_REG(3, 3, 9, 12, 3), /* PMOVSCLR_EL0 */ + ARM64_SYS_REG(3, 3, 9, 12, 4), /* PMSWINC_EL0 */ + ARM64_SYS_REG(3, 3, 9, 12, 5), /* PMSELR_EL0 */ + ARM64_SYS_REG(3, 3, 9, 13, 0), /* PMCCNTR_EL0 */ + ARM64_SYS_REG(3, 3, 9, 14, 0), /* PMUSERENR_EL0 */ + ARM64_SYS_REG(3, 3, 9, 14, 3), /* PMOVSSET_EL0 */ + ARM64_SYS_REG(3, 3, 14, 8, 0), + ARM64_SYS_REG(3, 3, 14, 8, 1), + ARM64_SYS_REG(3, 3, 14, 8, 2), + ARM64_SYS_REG(3, 3, 14, 8, 3), + ARM64_SYS_REG(3, 3, 14, 8, 4), + ARM64_SYS_REG(3, 3, 14, 8, 5), + ARM64_SYS_REG(3, 3, 14, 8, 6), + ARM64_SYS_REG(3, 3, 14, 8, 7), + ARM64_SYS_REG(3, 3, 14, 9, 0), + ARM64_SYS_REG(3, 3, 14, 9, 1), + ARM64_SYS_REG(3, 3, 14, 9, 2), + ARM64_SYS_REG(3, 3, 14, 9, 3), + ARM64_SYS_REG(3, 3, 14, 9, 4), + ARM64_SYS_REG(3, 3, 14, 9, 5), + ARM64_SYS_REG(3, 3, 14, 9, 6), + ARM64_SYS_REG(3, 3, 14, 9, 7), + ARM64_SYS_REG(3, 3, 14, 10, 0), + ARM64_SYS_REG(3, 3, 14, 10, 1), + ARM64_SYS_REG(3, 3, 14, 10, 2), + ARM64_SYS_REG(3, 3, 14, 10, 3), + ARM64_SYS_REG(3, 3, 14, 10, 4), + ARM64_SYS_REG(3, 3, 14, 10, 5), + ARM64_SYS_REG(3, 3, 14, 10, 6), + ARM64_SYS_REG(3, 3, 14, 10, 7), + ARM64_SYS_REG(3, 3, 14, 11, 0), + ARM64_SYS_REG(3, 3, 14, 11, 1), + ARM64_SYS_REG(3, 3, 14, 11, 2), + ARM64_SYS_REG(3, 3, 14, 11, 3), + ARM64_SYS_REG(3, 3, 14, 11, 4), + ARM64_SYS_REG(3, 3, 14, 11, 5), + ARM64_SYS_REG(3, 3, 14, 11, 6), + ARM64_SYS_REG(3, 3, 14, 12, 0), + ARM64_SYS_REG(3, 3, 14, 12, 1), + ARM64_SYS_REG(3, 3, 14, 12, 2), + ARM64_SYS_REG(3, 3, 14, 12, 3), + ARM64_SYS_REG(3, 3, 14, 12, 4), + ARM64_SYS_REG(3, 3, 14, 12, 5), + ARM64_SYS_REG(3, 3, 14, 12, 6), + ARM64_SYS_REG(3, 3, 14, 12, 7), + ARM64_SYS_REG(3, 3, 14, 13, 0), + ARM64_SYS_REG(3, 3, 14, 13, 1), + ARM64_SYS_REG(3, 3, 14, 13, 2), + ARM64_SYS_REG(3, 3, 14, 13, 3), + ARM64_SYS_REG(3, 3, 14, 13, 4), + ARM64_SYS_REG(3, 3, 14, 13, 5), + ARM64_SYS_REG(3, 3, 14, 13, 6), + ARM64_SYS_REG(3, 3, 14, 13, 7), + ARM64_SYS_REG(3, 3, 14, 14, 0), + ARM64_SYS_REG(3, 3, 14, 14, 1), + ARM64_SYS_REG(3, 3, 14, 14, 2), + ARM64_SYS_REG(3, 3, 14, 14, 3), + ARM64_SYS_REG(3, 3, 14, 14, 4), + ARM64_SYS_REG(3, 3, 14, 14, 5), + ARM64_SYS_REG(3, 3, 14, 14, 6), + ARM64_SYS_REG(3, 3, 14, 14, 7), + ARM64_SYS_REG(3, 3, 14, 15, 0), + ARM64_SYS_REG(3, 3, 14, 15, 1), + ARM64_SYS_REG(3, 3, 14, 15, 2), + ARM64_SYS_REG(3, 3, 14, 15, 3), + ARM64_SYS_REG(3, 3, 14, 15, 4), + ARM64_SYS_REG(3, 3, 14, 15, 5), + ARM64_SYS_REG(3, 3, 14, 15, 6), + ARM64_SYS_REG(3, 3, 14, 15, 7), /* PMCCFILTR_EL0 */ +}; + +static __u64 vregs[] = { + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[1]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[2]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[3]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[4]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[5]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[6]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[7]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[8]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[9]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[10]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[11]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[12]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[13]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[14]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[15]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[16]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[17]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[18]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[19]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[20]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[21]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[22]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[23]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[24]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[25]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[26]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[27]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[28]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[29]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[30]), + KVM_REG_ARM64 | KVM_REG_SIZE_U128 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]), +}; + +static __u64 sve_regs[] = { + KVM_REG_ARM64_SVE_VLS, + KVM_REG_ARM64_SVE_ZREG(0, 0), + KVM_REG_ARM64_SVE_ZREG(1, 0), + KVM_REG_ARM64_SVE_ZREG(2, 0), + KVM_REG_ARM64_SVE_ZREG(3, 0), + KVM_REG_ARM64_SVE_ZREG(4, 0), + KVM_REG_ARM64_SVE_ZREG(5, 0), + KVM_REG_ARM64_SVE_ZREG(6, 0), + KVM_REG_ARM64_SVE_ZREG(7, 0), + KVM_REG_ARM64_SVE_ZREG(8, 0), + KVM_REG_ARM64_SVE_ZREG(9, 0), + KVM_REG_ARM64_SVE_ZREG(10, 0), + KVM_REG_ARM64_SVE_ZREG(11, 0), + KVM_REG_ARM64_SVE_ZREG(12, 0), + KVM_REG_ARM64_SVE_ZREG(13, 0), + KVM_REG_ARM64_SVE_ZREG(14, 0), + KVM_REG_ARM64_SVE_ZREG(15, 0), + KVM_REG_ARM64_SVE_ZREG(16, 0), + KVM_REG_ARM64_SVE_ZREG(17, 0), + KVM_REG_ARM64_SVE_ZREG(18, 0), + KVM_REG_ARM64_SVE_ZREG(19, 0), + KVM_REG_ARM64_SVE_ZREG(20, 0), + KVM_REG_ARM64_SVE_ZREG(21, 0), + KVM_REG_ARM64_SVE_ZREG(22, 0), + KVM_REG_ARM64_SVE_ZREG(23, 0), + KVM_REG_ARM64_SVE_ZREG(24, 0), + KVM_REG_ARM64_SVE_ZREG(25, 0), + KVM_REG_ARM64_SVE_ZREG(26, 0), + KVM_REG_ARM64_SVE_ZREG(27, 0), + KVM_REG_ARM64_SVE_ZREG(28, 0), + KVM_REG_ARM64_SVE_ZREG(29, 0), + KVM_REG_ARM64_SVE_ZREG(30, 0), + KVM_REG_ARM64_SVE_ZREG(31, 0), + KVM_REG_ARM64_SVE_PREG(0, 0), + KVM_REG_ARM64_SVE_PREG(1, 0), + KVM_REG_ARM64_SVE_PREG(2, 0), + KVM_REG_ARM64_SVE_PREG(3, 0), + KVM_REG_ARM64_SVE_PREG(4, 0), + KVM_REG_ARM64_SVE_PREG(5, 0), + KVM_REG_ARM64_SVE_PREG(6, 0), + KVM_REG_ARM64_SVE_PREG(7, 0), + KVM_REG_ARM64_SVE_PREG(8, 0), + KVM_REG_ARM64_SVE_PREG(9, 0), + KVM_REG_ARM64_SVE_PREG(10, 0), + KVM_REG_ARM64_SVE_PREG(11, 0), + KVM_REG_ARM64_SVE_PREG(12, 0), + KVM_REG_ARM64_SVE_PREG(13, 0), + KVM_REG_ARM64_SVE_PREG(14, 0), + KVM_REG_ARM64_SVE_PREG(15, 0), + KVM_REG_ARM64_SVE_FFR(0), + ARM64_SYS_REG(3, 0, 1, 2, 0), /* ZCR_EL1 */ +}; + +static __u64 sve_rejects_set[] = { + KVM_REG_ARM64_SVE_VLS, +}; + +static __u64 pauth_addr_regs[] = { + ARM64_SYS_REG(3, 0, 2, 1, 0), /* APIAKEYLO_EL1 */ + ARM64_SYS_REG(3, 0, 2, 1, 1), /* APIAKEYHI_EL1 */ + ARM64_SYS_REG(3, 0, 2, 1, 2), /* APIBKEYLO_EL1 */ + ARM64_SYS_REG(3, 0, 2, 1, 3), /* APIBKEYHI_EL1 */ + ARM64_SYS_REG(3, 0, 2, 2, 0), /* APDAKEYLO_EL1 */ + ARM64_SYS_REG(3, 0, 2, 2, 1), /* APDAKEYHI_EL1 */ + ARM64_SYS_REG(3, 0, 2, 2, 2), /* APDBKEYLO_EL1 */ + ARM64_SYS_REG(3, 0, 2, 2, 3) /* APDBKEYHI_EL1 */ +}; + +static __u64 pauth_generic_regs[] = { + ARM64_SYS_REG(3, 0, 2, 3, 0), /* APGAKEYLO_EL1 */ + ARM64_SYS_REG(3, 0, 2, 3, 1), /* APGAKEYHI_EL1 */ +}; + +#define BASE_SUBLIST \ + { "base", .regs = base_regs, .regs_n = ARRAY_SIZE(base_regs), } +#define VREGS_SUBLIST \ + { "vregs", .regs = vregs, .regs_n = ARRAY_SIZE(vregs), } +#define PMU_SUBLIST \ + { "pmu", .capability = KVM_CAP_ARM_PMU_V3, .feature = KVM_ARM_VCPU_PMU_V3, \ + .regs = pmu_regs, .regs_n = ARRAY_SIZE(pmu_regs), } +#define SVE_SUBLIST \ + { "sve", .capability = KVM_CAP_ARM_SVE, .feature = KVM_ARM_VCPU_SVE, .finalize = true, \ + .regs = sve_regs, .regs_n = ARRAY_SIZE(sve_regs), \ + .rejects_set = sve_rejects_set, .rejects_set_n = ARRAY_SIZE(sve_rejects_set), } +#define PAUTH_SUBLIST \ + { \ + .name = "pauth_address", \ + .capability = KVM_CAP_ARM_PTRAUTH_ADDRESS, \ + .feature = KVM_ARM_VCPU_PTRAUTH_ADDRESS, \ + .regs = pauth_addr_regs, \ + .regs_n = ARRAY_SIZE(pauth_addr_regs), \ + }, \ + { \ + .name = "pauth_generic", \ + .capability = KVM_CAP_ARM_PTRAUTH_GENERIC, \ + .feature = KVM_ARM_VCPU_PTRAUTH_GENERIC, \ + .regs = pauth_generic_regs, \ + .regs_n = ARRAY_SIZE(pauth_generic_regs), \ + } + +static struct vcpu_config vregs_config = { + .sublists = { + BASE_SUBLIST, + VREGS_SUBLIST, + {0}, + }, +}; +static struct vcpu_config vregs_pmu_config = { + .sublists = { + BASE_SUBLIST, + VREGS_SUBLIST, + PMU_SUBLIST, + {0}, + }, +}; +static struct vcpu_config sve_config = { + .sublists = { + BASE_SUBLIST, + SVE_SUBLIST, + {0}, + }, +}; +static struct vcpu_config sve_pmu_config = { + .sublists = { + BASE_SUBLIST, + SVE_SUBLIST, + PMU_SUBLIST, + {0}, + }, +}; +static struct vcpu_config pauth_config = { + .sublists = { + BASE_SUBLIST, + VREGS_SUBLIST, + PAUTH_SUBLIST, + {0}, + }, +}; +static struct vcpu_config pauth_pmu_config = { + .sublists = { + BASE_SUBLIST, + VREGS_SUBLIST, + PAUTH_SUBLIST, + PMU_SUBLIST, + {0}, + }, +}; + +static struct vcpu_config *vcpu_configs[] = { + &vregs_config, + &vregs_pmu_config, + &sve_config, + &sve_pmu_config, + &pauth_config, + &pauth_pmu_config, +}; +static int vcpu_configs_n = ARRAY_SIZE(vcpu_configs); diff --git a/tools/testing/selftests/kvm/aarch64/hypercalls.c b/tools/testing/selftests/kvm/aarch64/hypercalls.c new file mode 100644 index 000000000..a39da3fe4 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/hypercalls.c @@ -0,0 +1,313 @@ +// SPDX-License-Identifier: GPL-2.0-only + +/* hypercalls: Check the ARM64's psuedo-firmware bitmap register interface. + * + * The test validates the basic hypercall functionalities that are exposed + * via the psuedo-firmware bitmap register. This includes the registers' + * read/write behavior before and after the VM has started, and if the + * hypercalls are properly masked or unmasked to the guest when disabled or + * enabled from the KVM userspace, respectively. + */ + +#include <errno.h> +#include <linux/arm-smccc.h> +#include <asm/kvm.h> +#include <kvm_util.h> + +#include "processor.h" + +#define FW_REG_ULIMIT_VAL(max_feat_bit) (GENMASK(max_feat_bit, 0)) + +/* Last valid bits of the bitmapped firmware registers */ +#define KVM_REG_ARM_STD_BMAP_BIT_MAX 0 +#define KVM_REG_ARM_STD_HYP_BMAP_BIT_MAX 0 +#define KVM_REG_ARM_VENDOR_HYP_BMAP_BIT_MAX 1 + +struct kvm_fw_reg_info { + uint64_t reg; /* Register definition */ + uint64_t max_feat_bit; /* Bit that represents the upper limit of the feature-map */ +}; + +#define FW_REG_INFO(r) \ + { \ + .reg = r, \ + .max_feat_bit = r##_BIT_MAX, \ + } + +static const struct kvm_fw_reg_info fw_reg_info[] = { + FW_REG_INFO(KVM_REG_ARM_STD_BMAP), + FW_REG_INFO(KVM_REG_ARM_STD_HYP_BMAP), + FW_REG_INFO(KVM_REG_ARM_VENDOR_HYP_BMAP), +}; + +enum test_stage { + TEST_STAGE_REG_IFACE, + TEST_STAGE_HVC_IFACE_FEAT_DISABLED, + TEST_STAGE_HVC_IFACE_FEAT_ENABLED, + TEST_STAGE_HVC_IFACE_FALSE_INFO, + TEST_STAGE_END, +}; + +static int stage = TEST_STAGE_REG_IFACE; + +struct test_hvc_info { + uint32_t func_id; + uint64_t arg1; +}; + +#define TEST_HVC_INFO(f, a1) \ + { \ + .func_id = f, \ + .arg1 = a1, \ + } + +static const struct test_hvc_info hvc_info[] = { + /* KVM_REG_ARM_STD_BMAP */ + TEST_HVC_INFO(ARM_SMCCC_TRNG_VERSION, 0), + TEST_HVC_INFO(ARM_SMCCC_TRNG_FEATURES, ARM_SMCCC_TRNG_RND64), + TEST_HVC_INFO(ARM_SMCCC_TRNG_GET_UUID, 0), + TEST_HVC_INFO(ARM_SMCCC_TRNG_RND32, 0), + TEST_HVC_INFO(ARM_SMCCC_TRNG_RND64, 0), + + /* KVM_REG_ARM_STD_HYP_BMAP */ + TEST_HVC_INFO(ARM_SMCCC_ARCH_FEATURES_FUNC_ID, ARM_SMCCC_HV_PV_TIME_FEATURES), + TEST_HVC_INFO(ARM_SMCCC_HV_PV_TIME_FEATURES, ARM_SMCCC_HV_PV_TIME_ST), + TEST_HVC_INFO(ARM_SMCCC_HV_PV_TIME_ST, 0), + + /* KVM_REG_ARM_VENDOR_HYP_BMAP */ + TEST_HVC_INFO(ARM_SMCCC_VENDOR_HYP_KVM_FEATURES_FUNC_ID, + ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID), + TEST_HVC_INFO(ARM_SMCCC_VENDOR_HYP_CALL_UID_FUNC_ID, 0), + TEST_HVC_INFO(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID, KVM_PTP_VIRT_COUNTER), +}; + +/* Feed false hypercall info to test the KVM behavior */ +static const struct test_hvc_info false_hvc_info[] = { + /* Feature support check against a different family of hypercalls */ + TEST_HVC_INFO(ARM_SMCCC_TRNG_FEATURES, ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID), + TEST_HVC_INFO(ARM_SMCCC_ARCH_FEATURES_FUNC_ID, ARM_SMCCC_TRNG_RND64), + TEST_HVC_INFO(ARM_SMCCC_HV_PV_TIME_FEATURES, ARM_SMCCC_TRNG_RND64), +}; + +static void guest_test_hvc(const struct test_hvc_info *hc_info) +{ + unsigned int i; + struct arm_smccc_res res; + unsigned int hvc_info_arr_sz; + + hvc_info_arr_sz = + hc_info == hvc_info ? ARRAY_SIZE(hvc_info) : ARRAY_SIZE(false_hvc_info); + + for (i = 0; i < hvc_info_arr_sz; i++, hc_info++) { + memset(&res, 0, sizeof(res)); + smccc_hvc(hc_info->func_id, hc_info->arg1, 0, 0, 0, 0, 0, 0, &res); + + switch (stage) { + case TEST_STAGE_HVC_IFACE_FEAT_DISABLED: + case TEST_STAGE_HVC_IFACE_FALSE_INFO: + GUEST_ASSERT_3(res.a0 == SMCCC_RET_NOT_SUPPORTED, + res.a0, hc_info->func_id, hc_info->arg1); + break; + case TEST_STAGE_HVC_IFACE_FEAT_ENABLED: + GUEST_ASSERT_3(res.a0 != SMCCC_RET_NOT_SUPPORTED, + res.a0, hc_info->func_id, hc_info->arg1); + break; + default: + GUEST_ASSERT_1(0, stage); + } + } +} + +static void guest_code(void) +{ + while (stage != TEST_STAGE_END) { + switch (stage) { + case TEST_STAGE_REG_IFACE: + break; + case TEST_STAGE_HVC_IFACE_FEAT_DISABLED: + case TEST_STAGE_HVC_IFACE_FEAT_ENABLED: + guest_test_hvc(hvc_info); + break; + case TEST_STAGE_HVC_IFACE_FALSE_INFO: + guest_test_hvc(false_hvc_info); + break; + default: + GUEST_ASSERT_1(0, stage); + } + + GUEST_SYNC(stage); + } + + GUEST_DONE(); +} + +struct st_time { + uint32_t rev; + uint32_t attr; + uint64_t st_time; +}; + +#define STEAL_TIME_SIZE ((sizeof(struct st_time) + 63) & ~63) +#define ST_GPA_BASE (1 << 30) + +static void steal_time_init(struct kvm_vcpu *vcpu) +{ + uint64_t st_ipa = (ulong)ST_GPA_BASE; + unsigned int gpages; + + gpages = vm_calc_num_guest_pages(VM_MODE_DEFAULT, STEAL_TIME_SIZE); + vm_userspace_mem_region_add(vcpu->vm, VM_MEM_SRC_ANONYMOUS, ST_GPA_BASE, 1, gpages, 0); + + vcpu_device_attr_set(vcpu, KVM_ARM_VCPU_PVTIME_CTRL, + KVM_ARM_VCPU_PVTIME_IPA, &st_ipa); +} + +static void test_fw_regs_before_vm_start(struct kvm_vcpu *vcpu) +{ + uint64_t val; + unsigned int i; + int ret; + + for (i = 0; i < ARRAY_SIZE(fw_reg_info); i++) { + const struct kvm_fw_reg_info *reg_info = &fw_reg_info[i]; + + /* First 'read' should be an upper limit of the features supported */ + vcpu_get_reg(vcpu, reg_info->reg, &val); + TEST_ASSERT(val == FW_REG_ULIMIT_VAL(reg_info->max_feat_bit), + "Expected all the features to be set for reg: 0x%lx; expected: 0x%lx; read: 0x%lx\n", + reg_info->reg, FW_REG_ULIMIT_VAL(reg_info->max_feat_bit), val); + + /* Test a 'write' by disabling all the features of the register map */ + ret = __vcpu_set_reg(vcpu, reg_info->reg, 0); + TEST_ASSERT(ret == 0, + "Failed to clear all the features of reg: 0x%lx; ret: %d\n", + reg_info->reg, errno); + + vcpu_get_reg(vcpu, reg_info->reg, &val); + TEST_ASSERT(val == 0, + "Expected all the features to be cleared for reg: 0x%lx\n", reg_info->reg); + + /* + * Test enabling a feature that's not supported. + * Avoid this check if all the bits are occupied. + */ + if (reg_info->max_feat_bit < 63) { + ret = __vcpu_set_reg(vcpu, reg_info->reg, BIT(reg_info->max_feat_bit + 1)); + TEST_ASSERT(ret != 0 && errno == EINVAL, + "Unexpected behavior or return value (%d) while setting an unsupported feature for reg: 0x%lx\n", + errno, reg_info->reg); + } + } +} + +static void test_fw_regs_after_vm_start(struct kvm_vcpu *vcpu) +{ + uint64_t val; + unsigned int i; + int ret; + + for (i = 0; i < ARRAY_SIZE(fw_reg_info); i++) { + const struct kvm_fw_reg_info *reg_info = &fw_reg_info[i]; + + /* + * Before starting the VM, the test clears all the bits. + * Check if that's still the case. + */ + vcpu_get_reg(vcpu, reg_info->reg, &val); + TEST_ASSERT(val == 0, + "Expected all the features to be cleared for reg: 0x%lx\n", + reg_info->reg); + + /* + * Since the VM has run at least once, KVM shouldn't allow modification of + * the registers and should return EBUSY. Set the registers and check for + * the expected errno. + */ + ret = __vcpu_set_reg(vcpu, reg_info->reg, FW_REG_ULIMIT_VAL(reg_info->max_feat_bit)); + TEST_ASSERT(ret != 0 && errno == EBUSY, + "Unexpected behavior or return value (%d) while setting a feature while VM is running for reg: 0x%lx\n", + errno, reg_info->reg); + } +} + +static struct kvm_vm *test_vm_create(struct kvm_vcpu **vcpu) +{ + struct kvm_vm *vm; + + vm = vm_create_with_one_vcpu(vcpu, guest_code); + + ucall_init(vm, NULL); + steal_time_init(*vcpu); + + return vm; +} + +static void test_guest_stage(struct kvm_vm **vm, struct kvm_vcpu **vcpu) +{ + int prev_stage = stage; + + pr_debug("Stage: %d\n", prev_stage); + + /* Sync the stage early, the VM might be freed below. */ + stage++; + sync_global_to_guest(*vm, stage); + + switch (prev_stage) { + case TEST_STAGE_REG_IFACE: + test_fw_regs_after_vm_start(*vcpu); + break; + case TEST_STAGE_HVC_IFACE_FEAT_DISABLED: + /* Start a new VM so that all the features are now enabled by default */ + kvm_vm_free(*vm); + *vm = test_vm_create(vcpu); + break; + case TEST_STAGE_HVC_IFACE_FEAT_ENABLED: + case TEST_STAGE_HVC_IFACE_FALSE_INFO: + break; + default: + TEST_FAIL("Unknown test stage: %d\n", prev_stage); + } +} + +static void test_run(void) +{ + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + struct ucall uc; + bool guest_done = false; + + vm = test_vm_create(&vcpu); + + test_fw_regs_before_vm_start(vcpu); + + while (!guest_done) { + vcpu_run(vcpu); + + switch (get_ucall(vcpu, &uc)) { + case UCALL_SYNC: + test_guest_stage(&vm, &vcpu); + break; + case UCALL_DONE: + guest_done = true; + break; + case UCALL_ABORT: + REPORT_GUEST_ASSERT_N(uc, "values: 0x%lx, 0x%lx; 0x%lx, stage: %u", + GUEST_ASSERT_ARG(uc, 0), + GUEST_ASSERT_ARG(uc, 1), + GUEST_ASSERT_ARG(uc, 2), stage); + break; + default: + TEST_FAIL("Unexpected guest exit\n"); + } + } + + kvm_vm_free(vm); +} + +int main(void) +{ + setbuf(stdout, NULL); + + test_run(); + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/psci_test.c b/tools/testing/selftests/kvm/aarch64/psci_test.c new file mode 100644 index 000000000..e0b9e81a3 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/psci_test.c @@ -0,0 +1,201 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * psci_test - Tests relating to KVM's PSCI implementation. + * + * Copyright (c) 2021 Google LLC. + * + * This test includes: + * - A regression test for a race between KVM servicing the PSCI CPU_ON call + * and userspace reading the targeted vCPU's registers. + * - A test for KVM's handling of PSCI SYSTEM_SUSPEND and the associated + * KVM_SYSTEM_EVENT_SUSPEND UAPI. + */ + +#define _GNU_SOURCE + +#include <linux/psci.h> + +#include "kvm_util.h" +#include "processor.h" +#include "test_util.h" + +#define CPU_ON_ENTRY_ADDR 0xfeedf00dul +#define CPU_ON_CONTEXT_ID 0xdeadc0deul + +static uint64_t psci_cpu_on(uint64_t target_cpu, uint64_t entry_addr, + uint64_t context_id) +{ + struct arm_smccc_res res; + + smccc_hvc(PSCI_0_2_FN64_CPU_ON, target_cpu, entry_addr, context_id, + 0, 0, 0, 0, &res); + + return res.a0; +} + +static uint64_t psci_affinity_info(uint64_t target_affinity, + uint64_t lowest_affinity_level) +{ + struct arm_smccc_res res; + + smccc_hvc(PSCI_0_2_FN64_AFFINITY_INFO, target_affinity, lowest_affinity_level, + 0, 0, 0, 0, 0, &res); + + return res.a0; +} + +static uint64_t psci_system_suspend(uint64_t entry_addr, uint64_t context_id) +{ + struct arm_smccc_res res; + + smccc_hvc(PSCI_1_0_FN64_SYSTEM_SUSPEND, entry_addr, context_id, + 0, 0, 0, 0, 0, &res); + + return res.a0; +} + +static uint64_t psci_features(uint32_t func_id) +{ + struct arm_smccc_res res; + + smccc_hvc(PSCI_1_0_FN_PSCI_FEATURES, func_id, 0, 0, 0, 0, 0, 0, &res); + + return res.a0; +} + +static void vcpu_power_off(struct kvm_vcpu *vcpu) +{ + struct kvm_mp_state mp_state = { + .mp_state = KVM_MP_STATE_STOPPED, + }; + + vcpu_mp_state_set(vcpu, &mp_state); +} + +static struct kvm_vm *setup_vm(void *guest_code, struct kvm_vcpu **source, + struct kvm_vcpu **target) +{ + struct kvm_vcpu_init init; + struct kvm_vm *vm; + + vm = vm_create(2); + ucall_init(vm, NULL); + + vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &init); + init.features[0] |= (1 << KVM_ARM_VCPU_PSCI_0_2); + + *source = aarch64_vcpu_add(vm, 0, &init, guest_code); + *target = aarch64_vcpu_add(vm, 1, &init, guest_code); + + return vm; +} + +static void enter_guest(struct kvm_vcpu *vcpu) +{ + struct ucall uc; + + vcpu_run(vcpu); + if (get_ucall(vcpu, &uc) == UCALL_ABORT) + REPORT_GUEST_ASSERT(uc); +} + +static void assert_vcpu_reset(struct kvm_vcpu *vcpu) +{ + uint64_t obs_pc, obs_x0; + + vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.pc), &obs_pc); + vcpu_get_reg(vcpu, ARM64_CORE_REG(regs.regs[0]), &obs_x0); + + TEST_ASSERT(obs_pc == CPU_ON_ENTRY_ADDR, + "unexpected target cpu pc: %lx (expected: %lx)", + obs_pc, CPU_ON_ENTRY_ADDR); + TEST_ASSERT(obs_x0 == CPU_ON_CONTEXT_ID, + "unexpected target context id: %lx (expected: %lx)", + obs_x0, CPU_ON_CONTEXT_ID); +} + +static void guest_test_cpu_on(uint64_t target_cpu) +{ + uint64_t target_state; + + GUEST_ASSERT(!psci_cpu_on(target_cpu, CPU_ON_ENTRY_ADDR, CPU_ON_CONTEXT_ID)); + + do { + target_state = psci_affinity_info(target_cpu, 0); + + GUEST_ASSERT((target_state == PSCI_0_2_AFFINITY_LEVEL_ON) || + (target_state == PSCI_0_2_AFFINITY_LEVEL_OFF)); + } while (target_state != PSCI_0_2_AFFINITY_LEVEL_ON); + + GUEST_DONE(); +} + +static void host_test_cpu_on(void) +{ + struct kvm_vcpu *source, *target; + uint64_t target_mpidr; + struct kvm_vm *vm; + struct ucall uc; + + vm = setup_vm(guest_test_cpu_on, &source, &target); + + /* + * make sure the target is already off when executing the test. + */ + vcpu_power_off(target); + + vcpu_get_reg(target, KVM_ARM64_SYS_REG(SYS_MPIDR_EL1), &target_mpidr); + vcpu_args_set(source, 1, target_mpidr & MPIDR_HWID_BITMASK); + enter_guest(source); + + if (get_ucall(source, &uc) != UCALL_DONE) + TEST_FAIL("Unhandled ucall: %lu", uc.cmd); + + assert_vcpu_reset(target); + kvm_vm_free(vm); +} + +static void guest_test_system_suspend(void) +{ + uint64_t ret; + + /* assert that SYSTEM_SUSPEND is discoverable */ + GUEST_ASSERT(!psci_features(PSCI_1_0_FN_SYSTEM_SUSPEND)); + GUEST_ASSERT(!psci_features(PSCI_1_0_FN64_SYSTEM_SUSPEND)); + + ret = psci_system_suspend(CPU_ON_ENTRY_ADDR, CPU_ON_CONTEXT_ID); + GUEST_SYNC(ret); +} + +static void host_test_system_suspend(void) +{ + struct kvm_vcpu *source, *target; + struct kvm_run *run; + struct kvm_vm *vm; + + vm = setup_vm(guest_test_system_suspend, &source, &target); + vm_enable_cap(vm, KVM_CAP_ARM_SYSTEM_SUSPEND, 0); + + vcpu_power_off(target); + run = source->run; + + enter_guest(source); + + TEST_ASSERT(run->exit_reason == KVM_EXIT_SYSTEM_EVENT, + "Unhandled exit reason: %u (%s)", + run->exit_reason, exit_reason_str(run->exit_reason)); + TEST_ASSERT(run->system_event.type == KVM_SYSTEM_EVENT_SUSPEND, + "Unhandled system event: %u (expected: %u)", + run->system_event.type, KVM_SYSTEM_EVENT_SUSPEND); + + kvm_vm_free(vm); +} + +int main(void) +{ + TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_SYSTEM_SUSPEND)); + + host_test_cpu_on(); + host_test_system_suspend(); + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/vcpu_width_config.c b/tools/testing/selftests/kvm/aarch64/vcpu_width_config.c new file mode 100644 index 000000000..80b74c6f1 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/vcpu_width_config.c @@ -0,0 +1,121 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * vcpu_width_config - Test KVM_ARM_VCPU_INIT() with KVM_ARM_VCPU_EL1_32BIT. + * + * Copyright (c) 2022 Google LLC. + * + * This is a test that ensures that non-mixed-width vCPUs (all 64bit vCPUs + * or all 32bit vcPUs) can be configured and mixed-width vCPUs cannot be + * configured. + */ + +#include "kvm_util.h" +#include "processor.h" +#include "test_util.h" + + +/* + * Add a vCPU, run KVM_ARM_VCPU_INIT with @init0, and then + * add another vCPU, and run KVM_ARM_VCPU_INIT with @init1. + */ +static int add_init_2vcpus(struct kvm_vcpu_init *init0, + struct kvm_vcpu_init *init1) +{ + struct kvm_vcpu *vcpu0, *vcpu1; + struct kvm_vm *vm; + int ret; + + vm = vm_create_barebones(); + + vcpu0 = __vm_vcpu_add(vm, 0); + ret = __vcpu_ioctl(vcpu0, KVM_ARM_VCPU_INIT, init0); + if (ret) + goto free_exit; + + vcpu1 = __vm_vcpu_add(vm, 1); + ret = __vcpu_ioctl(vcpu1, KVM_ARM_VCPU_INIT, init1); + +free_exit: + kvm_vm_free(vm); + return ret; +} + +/* + * Add two vCPUs, then run KVM_ARM_VCPU_INIT for one vCPU with @init0, + * and run KVM_ARM_VCPU_INIT for another vCPU with @init1. + */ +static int add_2vcpus_init_2vcpus(struct kvm_vcpu_init *init0, + struct kvm_vcpu_init *init1) +{ + struct kvm_vcpu *vcpu0, *vcpu1; + struct kvm_vm *vm; + int ret; + + vm = vm_create_barebones(); + + vcpu0 = __vm_vcpu_add(vm, 0); + vcpu1 = __vm_vcpu_add(vm, 1); + + ret = __vcpu_ioctl(vcpu0, KVM_ARM_VCPU_INIT, init0); + if (ret) + goto free_exit; + + ret = __vcpu_ioctl(vcpu1, KVM_ARM_VCPU_INIT, init1); + +free_exit: + kvm_vm_free(vm); + return ret; +} + +/* + * Tests that two 64bit vCPUs can be configured, two 32bit vCPUs can be + * configured, and two mixed-width vCPUs cannot be configured. + * Each of those three cases, configure vCPUs in two different orders. + * The one is running KVM_CREATE_VCPU for 2 vCPUs, and then running + * KVM_ARM_VCPU_INIT for them. + * The other is running KVM_CREATE_VCPU and KVM_ARM_VCPU_INIT for a vCPU, + * and then run those commands for another vCPU. + */ +int main(void) +{ + struct kvm_vcpu_init init0, init1; + struct kvm_vm *vm; + int ret; + + TEST_REQUIRE(kvm_has_cap(KVM_CAP_ARM_EL1_32BIT)); + + /* Get the preferred target type and copy that to init1 for later use */ + vm = vm_create_barebones(); + vm_ioctl(vm, KVM_ARM_PREFERRED_TARGET, &init0); + kvm_vm_free(vm); + init1 = init0; + + /* Test with 64bit vCPUs */ + ret = add_init_2vcpus(&init0, &init0); + TEST_ASSERT(ret == 0, + "Configuring 64bit EL1 vCPUs failed unexpectedly"); + ret = add_2vcpus_init_2vcpus(&init0, &init0); + TEST_ASSERT(ret == 0, + "Configuring 64bit EL1 vCPUs failed unexpectedly"); + + /* Test with 32bit vCPUs */ + init0.features[0] = (1 << KVM_ARM_VCPU_EL1_32BIT); + ret = add_init_2vcpus(&init0, &init0); + TEST_ASSERT(ret == 0, + "Configuring 32bit EL1 vCPUs failed unexpectedly"); + ret = add_2vcpus_init_2vcpus(&init0, &init0); + TEST_ASSERT(ret == 0, + "Configuring 32bit EL1 vCPUs failed unexpectedly"); + + /* Test with mixed-width vCPUs */ + init0.features[0] = 0; + init1.features[0] = (1 << KVM_ARM_VCPU_EL1_32BIT); + ret = add_init_2vcpus(&init0, &init1); + TEST_ASSERT(ret != 0, + "Configuring mixed-width vCPUs worked unexpectedly"); + ret = add_2vcpus_init_2vcpus(&init0, &init1); + TEST_ASSERT(ret != 0, + "Configuring mixed-width vCPUs worked unexpectedly"); + + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/vgic_init.c b/tools/testing/selftests/kvm/aarch64/vgic_init.c new file mode 100644 index 000000000..9c131d977 --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/vgic_init.c @@ -0,0 +1,718 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * vgic init sequence tests + * + * Copyright (C) 2020, Red Hat, Inc. + */ +#define _GNU_SOURCE +#include <linux/kernel.h> +#include <sys/syscall.h> +#include <asm/kvm.h> +#include <asm/kvm_para.h> + +#include "test_util.h" +#include "kvm_util.h" +#include "processor.h" +#include "vgic.h" + +#define NR_VCPUS 4 + +#define REG_OFFSET(vcpu, offset) (((uint64_t)vcpu << 32) | offset) + +#define GICR_TYPER 0x8 + +#define VGIC_DEV_IS_V2(_d) ((_d) == KVM_DEV_TYPE_ARM_VGIC_V2) +#define VGIC_DEV_IS_V3(_d) ((_d) == KVM_DEV_TYPE_ARM_VGIC_V3) + +struct vm_gic { + struct kvm_vm *vm; + int gic_fd; + uint32_t gic_dev_type; +}; + +static uint64_t max_phys_size; + +/* + * Helpers to access a redistributor register and verify the ioctl() failed or + * succeeded as expected, and provided the correct value on success. + */ +static void v3_redist_reg_get_errno(int gicv3_fd, int vcpu, int offset, + int want, const char *msg) +{ + uint32_t ignored_val; + int ret = __kvm_device_attr_get(gicv3_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS, + REG_OFFSET(vcpu, offset), &ignored_val); + + TEST_ASSERT(ret && errno == want, "%s; want errno = %d", msg, want); +} + +static void v3_redist_reg_get(int gicv3_fd, int vcpu, int offset, uint32_t want, + const char *msg) +{ + uint32_t val; + + kvm_device_attr_get(gicv3_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS, + REG_OFFSET(vcpu, offset), &val); + TEST_ASSERT(val == want, "%s; want '0x%x', got '0x%x'", msg, want, val); +} + +/* dummy guest code */ +static void guest_code(void) +{ + GUEST_SYNC(0); + GUEST_SYNC(1); + GUEST_SYNC(2); + GUEST_DONE(); +} + +/* we don't want to assert on run execution, hence that helper */ +static int run_vcpu(struct kvm_vcpu *vcpu) +{ + ucall_init(vcpu->vm, NULL); + + return __vcpu_run(vcpu) ? -errno : 0; +} + +static struct vm_gic vm_gic_create_with_vcpus(uint32_t gic_dev_type, + uint32_t nr_vcpus, + struct kvm_vcpu *vcpus[]) +{ + struct vm_gic v; + + v.gic_dev_type = gic_dev_type; + v.vm = vm_create_with_vcpus(nr_vcpus, guest_code, vcpus); + v.gic_fd = kvm_create_device(v.vm, gic_dev_type); + + return v; +} + +static void vm_gic_destroy(struct vm_gic *v) +{ + close(v->gic_fd); + kvm_vm_free(v->vm); +} + +struct vgic_region_attr { + uint64_t attr; + uint64_t size; + uint64_t alignment; +}; + +struct vgic_region_attr gic_v3_dist_region = { + .attr = KVM_VGIC_V3_ADDR_TYPE_DIST, + .size = 0x10000, + .alignment = 0x10000, +}; + +struct vgic_region_attr gic_v3_redist_region = { + .attr = KVM_VGIC_V3_ADDR_TYPE_REDIST, + .size = NR_VCPUS * 0x20000, + .alignment = 0x10000, +}; + +struct vgic_region_attr gic_v2_dist_region = { + .attr = KVM_VGIC_V2_ADDR_TYPE_DIST, + .size = 0x1000, + .alignment = 0x1000, +}; + +struct vgic_region_attr gic_v2_cpu_region = { + .attr = KVM_VGIC_V2_ADDR_TYPE_CPU, + .size = 0x2000, + .alignment = 0x1000, +}; + +/** + * Helper routine that performs KVM device tests in general. Eventually the + * ARM_VGIC (GICv2 or GICv3) device gets created with an overlapping + * DIST/REDIST (or DIST/CPUIF for GICv2). Assumption is 4 vcpus are going to be + * used hence the overlap. In the case of GICv3, A RDIST region is set at @0x0 + * and a DIST region is set @0x70000. The GICv2 case sets a CPUIF @0x0 and a + * DIST region @0x1000. + */ +static void subtest_dist_rdist(struct vm_gic *v) +{ + int ret; + uint64_t addr; + struct vgic_region_attr rdist; /* CPU interface in GICv2*/ + struct vgic_region_attr dist; + + rdist = VGIC_DEV_IS_V3(v->gic_dev_type) ? gic_v3_redist_region + : gic_v2_cpu_region; + dist = VGIC_DEV_IS_V3(v->gic_dev_type) ? gic_v3_dist_region + : gic_v2_dist_region; + + /* Check existing group/attributes */ + kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, dist.attr); + + kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, rdist.attr); + + /* check non existing attribute */ + ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, -1); + TEST_ASSERT(ret && errno == ENXIO, "attribute not supported"); + + /* misaligned DIST and REDIST address settings */ + addr = dist.alignment / 0x10; + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + dist.attr, &addr); + TEST_ASSERT(ret && errno == EINVAL, "GIC dist base not aligned"); + + addr = rdist.alignment / 0x10; + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + rdist.attr, &addr); + TEST_ASSERT(ret && errno == EINVAL, "GIC redist/cpu base not aligned"); + + /* out of range address */ + addr = max_phys_size; + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + dist.attr, &addr); + TEST_ASSERT(ret && errno == E2BIG, "dist address beyond IPA limit"); + + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + rdist.attr, &addr); + TEST_ASSERT(ret && errno == E2BIG, "redist address beyond IPA limit"); + + /* Space for half a rdist (a rdist is: 2 * rdist.alignment). */ + addr = max_phys_size - dist.alignment; + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + rdist.attr, &addr); + TEST_ASSERT(ret && errno == E2BIG, + "half of the redist is beyond IPA limit"); + + /* set REDIST base address @0x0*/ + addr = 0x00000; + kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + rdist.attr, &addr); + + /* Attempt to create a second legacy redistributor region */ + addr = 0xE0000; + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + rdist.attr, &addr); + TEST_ASSERT(ret && errno == EEXIST, "GIC redist base set again"); + + ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST); + if (!ret) { + /* Attempt to mix legacy and new redistributor regions */ + addr = REDIST_REGION_ATTR_ADDR(NR_VCPUS, 0x100000, 0, 0); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, + "attempt to mix GICv3 REDIST and REDIST_REGION"); + } + + /* + * Set overlapping DIST / REDIST, cannot be detected here. Will be detected + * on first vcpu run instead. + */ + addr = rdist.size - rdist.alignment; + kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + dist.attr, &addr); +} + +/* Test the new REDIST region API */ +static void subtest_v3_redist_regions(struct vm_gic *v) +{ + uint64_t addr, expected_addr; + int ret; + + ret = __kvm_has_device_attr(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST); + TEST_ASSERT(!ret, "Multiple redist regions advertised"); + + addr = REDIST_REGION_ATTR_ADDR(NR_VCPUS, 0x100000, 2, 0); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "redist region attr value with flags != 0"); + + addr = REDIST_REGION_ATTR_ADDR(0, 0x100000, 0, 0); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "redist region attr value with count== 0"); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 1); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, + "attempt to register the first rdist region with index != 0"); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x201000, 0, 1); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "rdist region with misaligned address"); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0); + kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 1); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "register an rdist region with already used index"); + + addr = REDIST_REGION_ATTR_ADDR(1, 0x210000, 0, 2); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, + "register an rdist region overlapping with another one"); + + addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 2); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "register redist region with index not +1"); + + addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 1); + kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + addr = REDIST_REGION_ATTR_ADDR(1, max_phys_size, 0, 2); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == E2BIG, + "register redist region with base address beyond IPA range"); + + /* The last redist is above the pa range. */ + addr = REDIST_REGION_ATTR_ADDR(2, max_phys_size - 0x30000, 0, 2); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == E2BIG, + "register redist region with top address beyond IPA range"); + + addr = 0x260000; + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr); + TEST_ASSERT(ret && errno == EINVAL, + "Mix KVM_VGIC_V3_ADDR_TYPE_REDIST and REDIST_REGION"); + + /* + * Now there are 2 redist regions: + * region 0 @ 0x200000 2 redists + * region 1 @ 0x240000 1 redist + * Attempt to read their characteristics + */ + + addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 0); + expected_addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0); + ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(!ret && addr == expected_addr, "read characteristics of region #0"); + + addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 1); + expected_addr = REDIST_REGION_ATTR_ADDR(1, 0x240000, 0, 1); + ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(!ret && addr == expected_addr, "read characteristics of region #1"); + + addr = REDIST_REGION_ATTR_ADDR(0, 0, 0, 2); + ret = __kvm_device_attr_get(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == ENOENT, "read characteristics of non existing region"); + + addr = 0x260000; + kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_DIST, &addr); + + addr = REDIST_REGION_ATTR_ADDR(1, 0x260000, 0, 2); + ret = __kvm_device_attr_set(v->gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "register redist region colliding with dist"); +} + +/* + * VGIC KVM device is created and initialized before the secondary CPUs + * get created + */ +static void test_vgic_then_vcpus(uint32_t gic_dev_type) +{ + struct kvm_vcpu *vcpus[NR_VCPUS]; + struct vm_gic v; + int ret, i; + + v = vm_gic_create_with_vcpus(gic_dev_type, 1, vcpus); + + subtest_dist_rdist(&v); + + /* Add the rest of the VCPUs */ + for (i = 1; i < NR_VCPUS; ++i) + vcpus[i] = vm_vcpu_add(v.vm, i, guest_code); + + ret = run_vcpu(vcpus[3]); + TEST_ASSERT(ret == -EINVAL, "dist/rdist overlap detected on 1st vcpu run"); + + vm_gic_destroy(&v); +} + +/* All the VCPUs are created before the VGIC KVM device gets initialized */ +static void test_vcpus_then_vgic(uint32_t gic_dev_type) +{ + struct kvm_vcpu *vcpus[NR_VCPUS]; + struct vm_gic v; + int ret; + + v = vm_gic_create_with_vcpus(gic_dev_type, NR_VCPUS, vcpus); + + subtest_dist_rdist(&v); + + ret = run_vcpu(vcpus[3]); + TEST_ASSERT(ret == -EINVAL, "dist/rdist overlap detected on 1st vcpu run"); + + vm_gic_destroy(&v); +} + +static void test_v3_new_redist_regions(void) +{ + struct kvm_vcpu *vcpus[NR_VCPUS]; + void *dummy = NULL; + struct vm_gic v; + uint64_t addr; + int ret; + + v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus); + subtest_v3_redist_regions(&v); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, + KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); + + ret = run_vcpu(vcpus[3]); + TEST_ASSERT(ret == -ENXIO, "running without sufficient number of rdists"); + vm_gic_destroy(&v); + + /* step2 */ + + v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus); + subtest_v3_redist_regions(&v); + + addr = REDIST_REGION_ATTR_ADDR(1, 0x280000, 0, 2); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + ret = run_vcpu(vcpus[3]); + TEST_ASSERT(ret == -EBUSY, "running without vgic explicit init"); + + vm_gic_destroy(&v); + + /* step 3 */ + + v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus); + subtest_v3_redist_regions(&v); + + ret = __kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, dummy); + TEST_ASSERT(ret && errno == EFAULT, + "register a third region allowing to cover the 4 vcpus"); + + addr = REDIST_REGION_ATTR_ADDR(1, 0x280000, 0, 2); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, + KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); + + ret = run_vcpu(vcpus[3]); + TEST_ASSERT(!ret, "vcpu run"); + + vm_gic_destroy(&v); +} + +static void test_v3_typer_accesses(void) +{ + struct vm_gic v; + uint64_t addr; + int ret, i; + + v.vm = vm_create(NR_VCPUS); + (void)vm_vcpu_add(v.vm, 0, guest_code); + + v.gic_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_V3); + + (void)vm_vcpu_add(v.vm, 3, guest_code); + + v3_redist_reg_get_errno(v.gic_fd, 1, GICR_TYPER, EINVAL, + "attempting to read GICR_TYPER of non created vcpu"); + + (void)vm_vcpu_add(v.vm, 1, guest_code); + + v3_redist_reg_get_errno(v.gic_fd, 1, GICR_TYPER, EBUSY, + "read GICR_TYPER before GIC initialized"); + + (void)vm_vcpu_add(v.vm, 2, guest_code); + + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, + KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); + + for (i = 0; i < NR_VCPUS ; i++) { + v3_redist_reg_get(v.gic_fd, i, GICR_TYPER, i * 0x100, + "read GICR_TYPER before rdist region setting"); + } + + addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 0); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + /* The 2 first rdists should be put there (vcpu 0 and 3) */ + v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x0, "read typer of rdist #0"); + v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x310, "read typer of rdist #1"); + + addr = REDIST_REGION_ATTR_ADDR(10, 0x100000, 0, 1); + ret = __kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + TEST_ASSERT(ret && errno == EINVAL, "collision with previous rdist region"); + + v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, + "no redist region attached to vcpu #1 yet, last cannot be returned"); + v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x200, + "no redist region attached to vcpu #2, last cannot be returned"); + + addr = REDIST_REGION_ATTR_ADDR(10, 0x20000, 0, 1); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #1"); + v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x210, + "read typer of rdist #1, last properly returned"); + + vm_gic_destroy(&v); +} + +static struct vm_gic vm_gic_v3_create_with_vcpuids(int nr_vcpus, + uint32_t vcpuids[]) +{ + struct vm_gic v; + int i; + + v.vm = vm_create(nr_vcpus); + for (i = 0; i < nr_vcpus; i++) + vm_vcpu_add(v.vm, vcpuids[i], guest_code); + + v.gic_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_V3); + + return v; +} + +/** + * Test GICR_TYPER last bit with new redist regions + * rdist regions #1 and #2 are contiguous + * rdist region #0 @0x100000 2 rdist capacity + * rdists: 0, 3 (Last) + * rdist region #1 @0x240000 2 rdist capacity + * rdists: 5, 4 (Last) + * rdist region #2 @0x200000 2 rdist capacity + * rdists: 1, 2 + */ +static void test_v3_last_bit_redist_regions(void) +{ + uint32_t vcpuids[] = { 0, 3, 5, 4, 1, 2 }; + struct vm_gic v; + uint64_t addr; + + v = vm_gic_v3_create_with_vcpuids(ARRAY_SIZE(vcpuids), vcpuids); + + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, + KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x100000, 0, 0); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x240000, 0, 1); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + addr = REDIST_REGION_ATTR_ADDR(2, 0x200000, 0, 2); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, &addr); + + v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x000, "read typer of rdist #0"); + v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #1"); + v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x200, "read typer of rdist #2"); + v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x310, "read typer of rdist #3"); + v3_redist_reg_get(v.gic_fd, 5, GICR_TYPER, 0x500, "read typer of rdist #5"); + v3_redist_reg_get(v.gic_fd, 4, GICR_TYPER, 0x410, "read typer of rdist #4"); + + vm_gic_destroy(&v); +} + +/* Test last bit with legacy region */ +static void test_v3_last_bit_single_rdist(void) +{ + uint32_t vcpuids[] = { 0, 3, 5, 4, 1, 2 }; + struct vm_gic v; + uint64_t addr; + + v = vm_gic_v3_create_with_vcpuids(ARRAY_SIZE(vcpuids), vcpuids); + + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, + KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); + + addr = 0x10000; + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr); + + v3_redist_reg_get(v.gic_fd, 0, GICR_TYPER, 0x000, "read typer of rdist #0"); + v3_redist_reg_get(v.gic_fd, 3, GICR_TYPER, 0x300, "read typer of rdist #1"); + v3_redist_reg_get(v.gic_fd, 5, GICR_TYPER, 0x500, "read typer of rdist #2"); + v3_redist_reg_get(v.gic_fd, 1, GICR_TYPER, 0x100, "read typer of rdist #3"); + v3_redist_reg_get(v.gic_fd, 2, GICR_TYPER, 0x210, "read typer of rdist #3"); + + vm_gic_destroy(&v); +} + +/* Uses the legacy REDIST region API. */ +static void test_v3_redist_ipa_range_check_at_vcpu_run(void) +{ + struct kvm_vcpu *vcpus[NR_VCPUS]; + struct vm_gic v; + int ret, i; + uint64_t addr; + + v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, 1, vcpus); + + /* Set space for 3 redists, we have 1 vcpu, so this succeeds. */ + addr = max_phys_size - (3 * 2 * 0x10000); + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_REDIST, &addr); + + addr = 0x00000; + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_V3_ADDR_TYPE_DIST, &addr); + + /* Add the rest of the VCPUs */ + for (i = 1; i < NR_VCPUS; ++i) + vcpus[i] = vm_vcpu_add(v.vm, i, guest_code); + + kvm_device_attr_set(v.gic_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, + KVM_DEV_ARM_VGIC_CTRL_INIT, NULL); + + /* Attempt to run a vcpu without enough redist space. */ + ret = run_vcpu(vcpus[2]); + TEST_ASSERT(ret && errno == EINVAL, + "redist base+size above PA range detected on 1st vcpu run"); + + vm_gic_destroy(&v); +} + +static void test_v3_its_region(void) +{ + struct kvm_vcpu *vcpus[NR_VCPUS]; + struct vm_gic v; + uint64_t addr; + int its_fd, ret; + + v = vm_gic_create_with_vcpus(KVM_DEV_TYPE_ARM_VGIC_V3, NR_VCPUS, vcpus); + its_fd = kvm_create_device(v.vm, KVM_DEV_TYPE_ARM_VGIC_ITS); + + addr = 0x401000; + ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_ITS_ADDR_TYPE, &addr); + TEST_ASSERT(ret && errno == EINVAL, + "ITS region with misaligned address"); + + addr = max_phys_size; + ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_ITS_ADDR_TYPE, &addr); + TEST_ASSERT(ret && errno == E2BIG, + "register ITS region with base address beyond IPA range"); + + addr = max_phys_size - 0x10000; + ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_ITS_ADDR_TYPE, &addr); + TEST_ASSERT(ret && errno == E2BIG, + "Half of ITS region is beyond IPA range"); + + /* This one succeeds setting the ITS base */ + addr = 0x400000; + kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_ITS_ADDR_TYPE, &addr); + + addr = 0x300000; + ret = __kvm_device_attr_set(its_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, + KVM_VGIC_ITS_ADDR_TYPE, &addr); + TEST_ASSERT(ret && errno == EEXIST, "ITS base set again"); + + close(its_fd); + vm_gic_destroy(&v); +} + +/* + * Returns 0 if it's possible to create GIC device of a given type (V2 or V3). + */ +int test_kvm_device(uint32_t gic_dev_type) +{ + struct kvm_vcpu *vcpus[NR_VCPUS]; + struct vm_gic v; + uint32_t other; + int ret; + + v.vm = vm_create_with_vcpus(NR_VCPUS, guest_code, vcpus); + + /* try to create a non existing KVM device */ + ret = __kvm_test_create_device(v.vm, 0); + TEST_ASSERT(ret && errno == ENODEV, "unsupported device"); + + /* trial mode */ + ret = __kvm_test_create_device(v.vm, gic_dev_type); + if (ret) + return ret; + v.gic_fd = kvm_create_device(v.vm, gic_dev_type); + + ret = __kvm_create_device(v.vm, gic_dev_type); + TEST_ASSERT(ret < 0 && errno == EEXIST, "create GIC device twice"); + + /* try to create the other gic_dev_type */ + other = VGIC_DEV_IS_V2(gic_dev_type) ? KVM_DEV_TYPE_ARM_VGIC_V3 + : KVM_DEV_TYPE_ARM_VGIC_V2; + + if (!__kvm_test_create_device(v.vm, other)) { + ret = __kvm_create_device(v.vm, other); + TEST_ASSERT(ret < 0 && (errno == EINVAL || errno == EEXIST), + "create GIC device while other version exists"); + } + + vm_gic_destroy(&v); + + return 0; +} + +void run_tests(uint32_t gic_dev_type) +{ + test_vcpus_then_vgic(gic_dev_type); + test_vgic_then_vcpus(gic_dev_type); + + if (VGIC_DEV_IS_V3(gic_dev_type)) { + test_v3_new_redist_regions(); + test_v3_typer_accesses(); + test_v3_last_bit_redist_regions(); + test_v3_last_bit_single_rdist(); + test_v3_redist_ipa_range_check_at_vcpu_run(); + test_v3_its_region(); + } +} + +int main(int ac, char **av) +{ + int ret; + int pa_bits; + int cnt_impl = 0; + + pa_bits = vm_guest_mode_params[VM_MODE_DEFAULT].pa_bits; + max_phys_size = 1ULL << pa_bits; + + ret = test_kvm_device(KVM_DEV_TYPE_ARM_VGIC_V3); + if (!ret) { + pr_info("Running GIC_v3 tests.\n"); + run_tests(KVM_DEV_TYPE_ARM_VGIC_V3); + cnt_impl++; + } + + ret = test_kvm_device(KVM_DEV_TYPE_ARM_VGIC_V2); + if (!ret) { + pr_info("Running GIC_v2 tests.\n"); + run_tests(KVM_DEV_TYPE_ARM_VGIC_V2); + cnt_impl++; + } + + if (!cnt_impl) { + print_skip("No GICv2 nor GICv3 support"); + exit(KSFT_SKIP); + } + return 0; +} diff --git a/tools/testing/selftests/kvm/aarch64/vgic_irq.c b/tools/testing/selftests/kvm/aarch64/vgic_irq.c new file mode 100644 index 000000000..17417220a --- /dev/null +++ b/tools/testing/selftests/kvm/aarch64/vgic_irq.c @@ -0,0 +1,860 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * vgic_irq.c - Test userspace injection of IRQs + * + * This test validates the injection of IRQs from userspace using various + * methods (e.g., KVM_IRQ_LINE) and modes (e.g., EOI). The guest "asks" the + * host to inject a specific intid via a GUEST_SYNC call, and then checks that + * it received it. + */ + +#include <asm/kvm.h> +#include <asm/kvm_para.h> +#include <sys/eventfd.h> +#include <linux/sizes.h> + +#include "processor.h" +#include "test_util.h" +#include "kvm_util.h" +#include "gic.h" +#include "gic_v3.h" +#include "vgic.h" + +#define GICD_BASE_GPA 0x08000000ULL +#define GICR_BASE_GPA 0x080A0000ULL + +/* + * Stores the user specified args; it's passed to the guest and to every test + * function. + */ +struct test_args { + uint32_t nr_irqs; /* number of KVM supported IRQs. */ + bool eoi_split; /* 1 is eoir+dir, 0 is eoir only */ + bool level_sensitive; /* 1 is level, 0 is edge */ + int kvm_max_routes; /* output of KVM_CAP_IRQ_ROUTING */ + bool kvm_supports_irqfd; /* output of KVM_CAP_IRQFD */ +}; + +/* + * KVM implements 32 priority levels: + * 0x00 (highest priority) - 0xF8 (lowest priority), in steps of 8 + * + * Note that these macros will still be correct in the case that KVM implements + * more priority levels. Also note that 32 is the minimum for GICv3 and GICv2. + */ +#define KVM_NUM_PRIOS 32 +#define KVM_PRIO_SHIFT 3 /* steps of 8 = 1 << 3 */ +#define KVM_PRIO_STEPS (1 << KVM_PRIO_SHIFT) /* 8 */ +#define LOWEST_PRIO (KVM_NUM_PRIOS - 1) +#define CPU_PRIO_MASK (LOWEST_PRIO << KVM_PRIO_SHIFT) /* 0xf8 */ +#define IRQ_DEFAULT_PRIO (LOWEST_PRIO - 1) +#define IRQ_DEFAULT_PRIO_REG (IRQ_DEFAULT_PRIO << KVM_PRIO_SHIFT) /* 0xf0 */ + +static void *dist = (void *)GICD_BASE_GPA; +static void *redist = (void *)GICR_BASE_GPA; + +/* + * The kvm_inject_* utilities are used by the guest to ask the host to inject + * interrupts (e.g., using the KVM_IRQ_LINE ioctl). + */ + +typedef enum { + KVM_INJECT_EDGE_IRQ_LINE = 1, + KVM_SET_IRQ_LINE, + KVM_SET_IRQ_LINE_HIGH, + KVM_SET_LEVEL_INFO_HIGH, + KVM_INJECT_IRQFD, + KVM_WRITE_ISPENDR, + KVM_WRITE_ISACTIVER, +} kvm_inject_cmd; + +struct kvm_inject_args { + kvm_inject_cmd cmd; + uint32_t first_intid; + uint32_t num; + int level; + bool expect_failure; +}; + +/* Used on the guest side to perform the hypercall. */ +static void kvm_inject_call(kvm_inject_cmd cmd, uint32_t first_intid, + uint32_t num, int level, bool expect_failure); + +/* Used on the host side to get the hypercall info. */ +static void kvm_inject_get_call(struct kvm_vm *vm, struct ucall *uc, + struct kvm_inject_args *args); + +#define _KVM_INJECT_MULTI(cmd, intid, num, expect_failure) \ + kvm_inject_call(cmd, intid, num, -1 /* not used */, expect_failure) + +#define KVM_INJECT_MULTI(cmd, intid, num) \ + _KVM_INJECT_MULTI(cmd, intid, num, false) + +#define _KVM_INJECT(cmd, intid, expect_failure) \ + _KVM_INJECT_MULTI(cmd, intid, 1, expect_failure) + +#define KVM_INJECT(cmd, intid) \ + _KVM_INJECT_MULTI(cmd, intid, 1, false) + +#define KVM_ACTIVATE(cmd, intid) \ + kvm_inject_call(cmd, intid, 1, 1, false); + +struct kvm_inject_desc { + kvm_inject_cmd cmd; + /* can inject PPIs, PPIs, and/or SPIs. */ + bool sgi, ppi, spi; +}; + +static struct kvm_inject_desc inject_edge_fns[] = { + /* sgi ppi spi */ + { KVM_INJECT_EDGE_IRQ_LINE, false, false, true }, + { KVM_INJECT_IRQFD, false, false, true }, + { KVM_WRITE_ISPENDR, true, false, true }, + { 0, }, +}; + +static struct kvm_inject_desc inject_level_fns[] = { + /* sgi ppi spi */ + { KVM_SET_IRQ_LINE_HIGH, false, true, true }, + { KVM_SET_LEVEL_INFO_HIGH, false, true, true }, + { KVM_INJECT_IRQFD, false, false, true }, + { KVM_WRITE_ISPENDR, false, true, true }, + { 0, }, +}; + +static struct kvm_inject_desc set_active_fns[] = { + /* sgi ppi spi */ + { KVM_WRITE_ISACTIVER, true, true, true }, + { 0, }, +}; + +#define for_each_inject_fn(t, f) \ + for ((f) = (t); (f)->cmd; (f)++) + +#define for_each_supported_inject_fn(args, t, f) \ + for_each_inject_fn(t, f) \ + if ((args)->kvm_supports_irqfd || (f)->cmd != KVM_INJECT_IRQFD) + +#define for_each_supported_activate_fn(args, t, f) \ + for_each_supported_inject_fn((args), (t), (f)) + +/* Shared between the guest main thread and the IRQ handlers. */ +volatile uint64_t irq_handled; +volatile uint32_t irqnr_received[MAX_SPI + 1]; + +static void reset_stats(void) +{ + int i; + + irq_handled = 0; + for (i = 0; i <= MAX_SPI; i++) + irqnr_received[i] = 0; +} + +static uint64_t gic_read_ap1r0(void) +{ + uint64_t reg = read_sysreg_s(SYS_ICV_AP1R0_EL1); + + dsb(sy); + return reg; +} + +static void gic_write_ap1r0(uint64_t val) +{ + write_sysreg_s(val, SYS_ICV_AP1R0_EL1); + isb(); +} + +static void guest_set_irq_line(uint32_t intid, uint32_t level); + +static void guest_irq_generic_handler(bool eoi_split, bool level_sensitive) +{ + uint32_t intid = gic_get_and_ack_irq(); + + if (intid == IAR_SPURIOUS) + return; + + GUEST_ASSERT(gic_irq_get_active(intid)); + + if (!level_sensitive) + GUEST_ASSERT(!gic_irq_get_pending(intid)); + + if (level_sensitive) + guest_set_irq_line(intid, 0); + + GUEST_ASSERT(intid < MAX_SPI); + irqnr_received[intid] += 1; + irq_handled += 1; + + gic_set_eoi(intid); + GUEST_ASSERT_EQ(gic_read_ap1r0(), 0); + if (eoi_split) + gic_set_dir(intid); + + GUEST_ASSERT(!gic_irq_get_active(intid)); + GUEST_ASSERT(!gic_irq_get_pending(intid)); +} + +static void kvm_inject_call(kvm_inject_cmd cmd, uint32_t first_intid, + uint32_t num, int level, bool expect_failure) +{ + struct kvm_inject_args args = { + .cmd = cmd, + .first_intid = first_intid, + .num = num, + .level = level, + .expect_failure = expect_failure, + }; + GUEST_SYNC(&args); +} + +#define GUEST_ASSERT_IAR_EMPTY() \ +do { \ + uint32_t _intid; \ + _intid = gic_get_and_ack_irq(); \ + GUEST_ASSERT(_intid == 0 || _intid == IAR_SPURIOUS); \ +} while (0) + +#define CAT_HELPER(a, b) a ## b +#define CAT(a, b) CAT_HELPER(a, b) +#define PREFIX guest_irq_handler_ +#define GUEST_IRQ_HANDLER_NAME(split, lev) CAT(PREFIX, CAT(split, lev)) +#define GENERATE_GUEST_IRQ_HANDLER(split, lev) \ +static void CAT(PREFIX, CAT(split, lev))(struct ex_regs *regs) \ +{ \ + guest_irq_generic_handler(split, lev); \ +} + +GENERATE_GUEST_IRQ_HANDLER(0, 0); +GENERATE_GUEST_IRQ_HANDLER(0, 1); +GENERATE_GUEST_IRQ_HANDLER(1, 0); +GENERATE_GUEST_IRQ_HANDLER(1, 1); + +static void (*guest_irq_handlers[2][2])(struct ex_regs *) = { + {GUEST_IRQ_HANDLER_NAME(0, 0), GUEST_IRQ_HANDLER_NAME(0, 1),}, + {GUEST_IRQ_HANDLER_NAME(1, 0), GUEST_IRQ_HANDLER_NAME(1, 1),}, +}; + +static void reset_priorities(struct test_args *args) +{ + int i; + + for (i = 0; i < args->nr_irqs; i++) + gic_set_priority(i, IRQ_DEFAULT_PRIO_REG); +} + +static void guest_set_irq_line(uint32_t intid, uint32_t level) +{ + kvm_inject_call(KVM_SET_IRQ_LINE, intid, 1, level, false); +} + +static void test_inject_fail(struct test_args *args, + uint32_t intid, kvm_inject_cmd cmd) +{ + reset_stats(); + + _KVM_INJECT(cmd, intid, true); + /* no IRQ to handle on entry */ + + GUEST_ASSERT_EQ(irq_handled, 0); + GUEST_ASSERT_IAR_EMPTY(); +} + +static void guest_inject(struct test_args *args, + uint32_t first_intid, uint32_t num, + kvm_inject_cmd cmd) +{ + uint32_t i; + + reset_stats(); + + /* Cycle over all priorities to make things more interesting. */ + for (i = first_intid; i < num + first_intid; i++) + gic_set_priority(i, (i % (KVM_NUM_PRIOS - 1)) << 3); + + asm volatile("msr daifset, #2" : : : "memory"); + KVM_INJECT_MULTI(cmd, first_intid, num); + + while (irq_handled < num) { + asm volatile("wfi\n" + "msr daifclr, #2\n" + /* handle IRQ */ + "msr daifset, #2\n" + : : : "memory"); + } + asm volatile("msr daifclr, #2" : : : "memory"); + + GUEST_ASSERT_EQ(irq_handled, num); + for (i = first_intid; i < num + first_intid; i++) + GUEST_ASSERT_EQ(irqnr_received[i], 1); + GUEST_ASSERT_IAR_EMPTY(); + + reset_priorities(args); +} + +/* + * Restore the active state of multiple concurrent IRQs (given by + * concurrent_irqs). This does what a live-migration would do on the + * destination side assuming there are some active IRQs that were not + * deactivated yet. + */ +static void guest_restore_active(struct test_args *args, + uint32_t first_intid, uint32_t num, + kvm_inject_cmd cmd) +{ + uint32_t prio, intid, ap1r; + int i; + + /* + * Set the priorities of the first (KVM_NUM_PRIOS - 1) IRQs + * in descending order, so intid+1 can preempt intid. + */ + for (i = 0, prio = (num - 1) * 8; i < num; i++, prio -= 8) { + GUEST_ASSERT(prio >= 0); + intid = i + first_intid; + gic_set_priority(intid, prio); + } + + /* + * In a real migration, KVM would restore all GIC state before running + * guest code. + */ + for (i = 0; i < num; i++) { + intid = i + first_intid; + KVM_ACTIVATE(cmd, intid); + ap1r = gic_read_ap1r0(); + ap1r |= 1U << i; + gic_write_ap1r0(ap1r); + } + + /* This is where the "migration" would occur. */ + + /* finish handling the IRQs starting with the highest priority one. */ + for (i = 0; i < num; i++) { + intid = num - i - 1 + first_intid; + gic_set_eoi(intid); + if (args->eoi_split) + gic_set_dir(intid); + } + + for (i = 0; i < num; i++) + GUEST_ASSERT(!gic_irq_get_active(i + first_intid)); + GUEST_ASSERT_EQ(gic_read_ap1r0(), 0); + GUEST_ASSERT_IAR_EMPTY(); +} + +/* + * Polls the IAR until it's not a spurious interrupt. + * + * This function should only be used in test_inject_preemption (with IRQs + * masked). + */ +static uint32_t wait_for_and_activate_irq(void) +{ + uint32_t intid; + + do { + asm volatile("wfi" : : : "memory"); + intid = gic_get_and_ack_irq(); + } while (intid == IAR_SPURIOUS); + + return intid; +} + +/* + * Inject multiple concurrent IRQs (num IRQs starting at first_intid) and + * handle them without handling the actual exceptions. This is done by masking + * interrupts for the whole test. + */ +static void test_inject_preemption(struct test_args *args, + uint32_t first_intid, int num, + kvm_inject_cmd cmd) +{ + uint32_t intid, prio, step = KVM_PRIO_STEPS; + int i; + + /* Set the priorities of the first (KVM_NUM_PRIOS - 1) IRQs + * in descending order, so intid+1 can preempt intid. + */ + for (i = 0, prio = (num - 1) * step; i < num; i++, prio -= step) { + GUEST_ASSERT(prio >= 0); + intid = i + first_intid; + gic_set_priority(intid, prio); + } + + local_irq_disable(); + + for (i = 0; i < num; i++) { + uint32_t tmp; + intid = i + first_intid; + KVM_INJECT(cmd, intid); + /* Each successive IRQ will preempt the previous one. */ + tmp = wait_for_and_activate_irq(); + GUEST_ASSERT_EQ(tmp, intid); + if (args->level_sensitive) + guest_set_irq_line(intid, 0); + } + + /* finish handling the IRQs starting with the highest priority one. */ + for (i = 0; i < num; i++) { + intid = num - i - 1 + first_intid; + gic_set_eoi(intid); + if (args->eoi_split) + gic_set_dir(intid); + } + + local_irq_enable(); + + for (i = 0; i < num; i++) + GUEST_ASSERT(!gic_irq_get_active(i + first_intid)); + GUEST_ASSERT_EQ(gic_read_ap1r0(), 0); + GUEST_ASSERT_IAR_EMPTY(); + + reset_priorities(args); +} + +static void test_injection(struct test_args *args, struct kvm_inject_desc *f) +{ + uint32_t nr_irqs = args->nr_irqs; + + if (f->sgi) { + guest_inject(args, MIN_SGI, 1, f->cmd); + guest_inject(args, 0, 16, f->cmd); + } + + if (f->ppi) + guest_inject(args, MIN_PPI, 1, f->cmd); + + if (f->spi) { + guest_inject(args, MIN_SPI, 1, f->cmd); + guest_inject(args, nr_irqs - 1, 1, f->cmd); + guest_inject(args, MIN_SPI, nr_irqs - MIN_SPI, f->cmd); + } +} + +static void test_injection_failure(struct test_args *args, + struct kvm_inject_desc *f) +{ + uint32_t bad_intid[] = { args->nr_irqs, 1020, 1024, 1120, 5120, ~0U, }; + int i; + + for (i = 0; i < ARRAY_SIZE(bad_intid); i++) + test_inject_fail(args, bad_intid[i], f->cmd); +} + +static void test_preemption(struct test_args *args, struct kvm_inject_desc *f) +{ + /* + * Test up to 4 levels of preemption. The reason is that KVM doesn't + * currently implement the ability to have more than the number-of-LRs + * number of concurrently active IRQs. The number of LRs implemented is + * IMPLEMENTATION DEFINED, however, it seems that most implement 4. + */ + if (f->sgi) + test_inject_preemption(args, MIN_SGI, 4, f->cmd); + + if (f->ppi) + test_inject_preemption(args, MIN_PPI, 4, f->cmd); + + if (f->spi) + test_inject_preemption(args, MIN_SPI, 4, f->cmd); +} + +static void test_restore_active(struct test_args *args, struct kvm_inject_desc *f) +{ + /* Test up to 4 active IRQs. Same reason as in test_preemption. */ + if (f->sgi) + guest_restore_active(args, MIN_SGI, 4, f->cmd); + + if (f->ppi) + guest_restore_active(args, MIN_PPI, 4, f->cmd); + + if (f->spi) + guest_restore_active(args, MIN_SPI, 4, f->cmd); +} + +static void guest_code(struct test_args *args) +{ + uint32_t i, nr_irqs = args->nr_irqs; + bool level_sensitive = args->level_sensitive; + struct kvm_inject_desc *f, *inject_fns; + + gic_init(GIC_V3, 1, dist, redist); + + for (i = 0; i < nr_irqs; i++) + gic_irq_enable(i); + + for (i = MIN_SPI; i < nr_irqs; i++) + gic_irq_set_config(i, !level_sensitive); + + gic_set_eoi_split(args->eoi_split); + + reset_priorities(args); + gic_set_priority_mask(CPU_PRIO_MASK); + + inject_fns = level_sensitive ? inject_level_fns + : inject_edge_fns; + + local_irq_enable(); + + /* Start the tests. */ + for_each_supported_inject_fn(args, inject_fns, f) { + test_injection(args, f); + test_preemption(args, f); + test_injection_failure(args, f); + } + + /* + * Restore the active state of IRQs. This would happen when live + * migrating IRQs in the middle of being handled. + */ + for_each_supported_activate_fn(args, set_active_fns, f) + test_restore_active(args, f); + + GUEST_DONE(); +} + +static void kvm_irq_line_check(struct kvm_vm *vm, uint32_t intid, int level, + struct test_args *test_args, bool expect_failure) +{ + int ret; + + if (!expect_failure) { + kvm_arm_irq_line(vm, intid, level); + } else { + /* The interface doesn't allow larger intid's. */ + if (intid > KVM_ARM_IRQ_NUM_MASK) + return; + + ret = _kvm_arm_irq_line(vm, intid, level); + TEST_ASSERT(ret != 0 && errno == EINVAL, + "Bad intid %i did not cause KVM_IRQ_LINE " + "error: rc: %i errno: %i", intid, ret, errno); + } +} + +void kvm_irq_set_level_info_check(int gic_fd, uint32_t intid, int level, + bool expect_failure) +{ + if (!expect_failure) { + kvm_irq_set_level_info(gic_fd, intid, level); + } else { + int ret = _kvm_irq_set_level_info(gic_fd, intid, level); + /* + * The kernel silently fails for invalid SPIs and SGIs (which + * are not level-sensitive). It only checks for intid to not + * spill over 1U << 10 (the max reserved SPI). Also, callers + * are supposed to mask the intid with 0x3ff (1023). + */ + if (intid > VGIC_MAX_RESERVED) + TEST_ASSERT(ret != 0 && errno == EINVAL, + "Bad intid %i did not cause VGIC_GRP_LEVEL_INFO " + "error: rc: %i errno: %i", intid, ret, errno); + else + TEST_ASSERT(!ret, "KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO " + "for intid %i failed, rc: %i errno: %i", + intid, ret, errno); + } +} + +static void kvm_set_gsi_routing_irqchip_check(struct kvm_vm *vm, + uint32_t intid, uint32_t num, uint32_t kvm_max_routes, + bool expect_failure) +{ + struct kvm_irq_routing *routing; + int ret; + uint64_t i; + + assert(num <= kvm_max_routes && kvm_max_routes <= KVM_MAX_IRQ_ROUTES); + + routing = kvm_gsi_routing_create(); + for (i = intid; i < (uint64_t)intid + num; i++) + kvm_gsi_routing_irqchip_add(routing, i - MIN_SPI, i - MIN_SPI); + + if (!expect_failure) { + kvm_gsi_routing_write(vm, routing); + } else { + ret = _kvm_gsi_routing_write(vm, routing); + /* The kernel only checks e->irqchip.pin >= KVM_IRQCHIP_NUM_PINS */ + if (((uint64_t)intid + num - 1 - MIN_SPI) >= KVM_IRQCHIP_NUM_PINS) + TEST_ASSERT(ret != 0 && errno == EINVAL, + "Bad intid %u did not cause KVM_SET_GSI_ROUTING " + "error: rc: %i errno: %i", intid, ret, errno); + else + TEST_ASSERT(ret == 0, "KVM_SET_GSI_ROUTING " + "for intid %i failed, rc: %i errno: %i", + intid, ret, errno); + } +} + +static void kvm_irq_write_ispendr_check(int gic_fd, uint32_t intid, + struct kvm_vcpu *vcpu, + bool expect_failure) +{ + /* + * Ignore this when expecting failure as invalid intids will lead to + * either trying to inject SGIs when we configured the test to be + * level_sensitive (or the reverse), or inject large intids which + * will lead to writing above the ISPENDR register space (and we + * don't want to do that either). + */ + if (!expect_failure) + kvm_irq_write_ispendr(gic_fd, intid, vcpu); +} + +static void kvm_routing_and_irqfd_check(struct kvm_vm *vm, + uint32_t intid, uint32_t num, uint32_t kvm_max_routes, + bool expect_failure) +{ + int fd[MAX_SPI]; + uint64_t val; + int ret, f; + uint64_t i; + + /* + * There is no way to try injecting an SGI or PPI as the interface + * starts counting from the first SPI (above the private ones), so just + * exit. + */ + if (INTID_IS_SGI(intid) || INTID_IS_PPI(intid)) + return; + + kvm_set_gsi_routing_irqchip_check(vm, intid, num, + kvm_max_routes, expect_failure); + + /* + * If expect_failure, then just to inject anyway. These + * will silently fail. And in any case, the guest will check + * that no actual interrupt was injected for those cases. + */ + + for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) { + fd[f] = eventfd(0, 0); + TEST_ASSERT(fd[f] != -1, __KVM_SYSCALL_ERROR("eventfd()", fd[f])); + } + + for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) { + struct kvm_irqfd irqfd = { + .fd = fd[f], + .gsi = i - MIN_SPI, + }; + assert(i <= (uint64_t)UINT_MAX); + vm_ioctl(vm, KVM_IRQFD, &irqfd); + } + + for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) { + val = 1; + ret = write(fd[f], &val, sizeof(uint64_t)); + TEST_ASSERT(ret == sizeof(uint64_t), + __KVM_SYSCALL_ERROR("write()", ret)); + } + + for (f = 0, i = intid; i < (uint64_t)intid + num; i++, f++) + close(fd[f]); +} + +/* handles the valid case: intid=0xffffffff num=1 */ +#define for_each_intid(first, num, tmp, i) \ + for ((tmp) = (i) = (first); \ + (tmp) < (uint64_t)(first) + (uint64_t)(num); \ + (tmp)++, (i)++) + +static void run_guest_cmd(struct kvm_vcpu *vcpu, int gic_fd, + struct kvm_inject_args *inject_args, + struct test_args *test_args) +{ + kvm_inject_cmd cmd = inject_args->cmd; + uint32_t intid = inject_args->first_intid; + uint32_t num = inject_args->num; + int level = inject_args->level; + bool expect_failure = inject_args->expect_failure; + struct kvm_vm *vm = vcpu->vm; + uint64_t tmp; + uint32_t i; + + /* handles the valid case: intid=0xffffffff num=1 */ + assert(intid < UINT_MAX - num || num == 1); + + switch (cmd) { + case KVM_INJECT_EDGE_IRQ_LINE: + for_each_intid(intid, num, tmp, i) + kvm_irq_line_check(vm, i, 1, test_args, + expect_failure); + for_each_intid(intid, num, tmp, i) + kvm_irq_line_check(vm, i, 0, test_args, + expect_failure); + break; + case KVM_SET_IRQ_LINE: + for_each_intid(intid, num, tmp, i) + kvm_irq_line_check(vm, i, level, test_args, + expect_failure); + break; + case KVM_SET_IRQ_LINE_HIGH: + for_each_intid(intid, num, tmp, i) + kvm_irq_line_check(vm, i, 1, test_args, + expect_failure); + break; + case KVM_SET_LEVEL_INFO_HIGH: + for_each_intid(intid, num, tmp, i) + kvm_irq_set_level_info_check(gic_fd, i, 1, + expect_failure); + break; + case KVM_INJECT_IRQFD: + kvm_routing_and_irqfd_check(vm, intid, num, + test_args->kvm_max_routes, + expect_failure); + break; + case KVM_WRITE_ISPENDR: + for (i = intid; i < intid + num; i++) + kvm_irq_write_ispendr_check(gic_fd, i, vcpu, + expect_failure); + break; + case KVM_WRITE_ISACTIVER: + for (i = intid; i < intid + num; i++) + kvm_irq_write_isactiver(gic_fd, i, vcpu); + break; + default: + break; + } +} + +static void kvm_inject_get_call(struct kvm_vm *vm, struct ucall *uc, + struct kvm_inject_args *args) +{ + struct kvm_inject_args *kvm_args_hva; + vm_vaddr_t kvm_args_gva; + + kvm_args_gva = uc->args[1]; + kvm_args_hva = (struct kvm_inject_args *)addr_gva2hva(vm, kvm_args_gva); + memcpy(args, kvm_args_hva, sizeof(struct kvm_inject_args)); +} + +static void print_args(struct test_args *args) +{ + printf("nr-irqs=%d level-sensitive=%d eoi-split=%d\n", + args->nr_irqs, args->level_sensitive, + args->eoi_split); +} + +static void test_vgic(uint32_t nr_irqs, bool level_sensitive, bool eoi_split) +{ + struct ucall uc; + int gic_fd; + struct kvm_vcpu *vcpu; + struct kvm_vm *vm; + struct kvm_inject_args inject_args; + vm_vaddr_t args_gva; + + struct test_args args = { + .nr_irqs = nr_irqs, + .level_sensitive = level_sensitive, + .eoi_split = eoi_split, + .kvm_max_routes = kvm_check_cap(KVM_CAP_IRQ_ROUTING), + .kvm_supports_irqfd = kvm_check_cap(KVM_CAP_IRQFD), + }; + + print_args(&args); + + vm = vm_create_with_one_vcpu(&vcpu, guest_code); + ucall_init(vm, NULL); + + vm_init_descriptor_tables(vm); + vcpu_init_descriptor_tables(vcpu); + + /* Setup the guest args page (so it gets the args). */ + args_gva = vm_vaddr_alloc_page(vm); + memcpy(addr_gva2hva(vm, args_gva), &args, sizeof(args)); + vcpu_args_set(vcpu, 1, args_gva); + + gic_fd = vgic_v3_setup(vm, 1, nr_irqs, + GICD_BASE_GPA, GICR_BASE_GPA); + __TEST_REQUIRE(gic_fd >= 0, "Failed to create vgic-v3, skipping"); + + vm_install_exception_handler(vm, VECTOR_IRQ_CURRENT, + guest_irq_handlers[args.eoi_split][args.level_sensitive]); + + while (1) { + vcpu_run(vcpu); + + switch (get_ucall(vcpu, &uc)) { + case UCALL_SYNC: + kvm_inject_get_call(vm, &uc, &inject_args); + run_guest_cmd(vcpu, gic_fd, &inject_args, &args); + break; + case UCALL_ABORT: + REPORT_GUEST_ASSERT_2(uc, "values: %#lx, %#lx"); + break; + case UCALL_DONE: + goto done; + default: + TEST_FAIL("Unknown ucall %lu", uc.cmd); + } + } + +done: + close(gic_fd); + kvm_vm_free(vm); +} + +static void help(const char *name) +{ + printf( + "\n" + "usage: %s [-n num_irqs] [-e eoi_split] [-l level_sensitive]\n", name); + printf(" -n: specify number of IRQs to setup the vgic with. " + "It has to be a multiple of 32 and between 64 and 1024.\n"); + printf(" -e: if 1 then EOI is split into a write to DIR on top " + "of writing EOI.\n"); + printf(" -l: specify whether the IRQs are level-sensitive (1) or not (0)."); + puts(""); + exit(1); +} + +int main(int argc, char **argv) +{ + uint32_t nr_irqs = 64; + bool default_args = true; + bool level_sensitive = false; + int opt; + bool eoi_split = false; + + /* Tell stdout not to buffer its content */ + setbuf(stdout, NULL); + + while ((opt = getopt(argc, argv, "hn:e:l:")) != -1) { + switch (opt) { + case 'n': + nr_irqs = atoi(optarg); + if (nr_irqs > 1024 || nr_irqs % 32) + help(argv[0]); + break; + case 'e': + eoi_split = (bool)atoi(optarg); + default_args = false; + break; + case 'l': + level_sensitive = (bool)atoi(optarg); + default_args = false; + break; + case 'h': + default: + help(argv[0]); + break; + } + } + + /* + * If the user just specified nr_irqs and/or gic_version, then run all + * combinations. + */ + if (default_args) { + test_vgic(nr_irqs, false /* level */, false /* eoi_split */); + test_vgic(nr_irqs, false /* level */, true /* eoi_split */); + test_vgic(nr_irqs, true /* level */, false /* eoi_split */); + test_vgic(nr_irqs, true /* level */, true /* eoi_split */); + } else { + test_vgic(nr_irqs, level_sensitive, eoi_split); + } + + return 0; +} |