diff options
Diffstat (limited to 'Documentation/filesystems/nfs/exporting.rst')
-rw-r--r-- | Documentation/filesystems/nfs/exporting.rst | 217 |
1 files changed, 217 insertions, 0 deletions
diff --git a/Documentation/filesystems/nfs/exporting.rst b/Documentation/filesystems/nfs/exporting.rst new file mode 100644 index 000000000..0e98edd35 --- /dev/null +++ b/Documentation/filesystems/nfs/exporting.rst @@ -0,0 +1,217 @@ +:orphan: + +Making Filesystems Exportable +============================= + +Overview +-------- + +All filesystem operations require a dentry (or two) as a starting +point. Local applications have a reference-counted hold on suitable +dentries via open file descriptors or cwd/root. However remote +applications that access a filesystem via a remote filesystem protocol +such as NFS may not be able to hold such a reference, and so need a +different way to refer to a particular dentry. As the alternative +form of reference needs to be stable across renames, truncates, and +server-reboot (among other things, though these tend to be the most +problematic), there is no simple answer like 'filename'. + +The mechanism discussed here allows each filesystem implementation to +specify how to generate an opaque (outside of the filesystem) byte +string for any dentry, and how to find an appropriate dentry for any +given opaque byte string. +This byte string will be called a "filehandle fragment" as it +corresponds to part of an NFS filehandle. + +A filesystem which supports the mapping between filehandle fragments +and dentries will be termed "exportable". + + + +Dcache Issues +------------- + +The dcache normally contains a proper prefix of any given filesystem +tree. This means that if any filesystem object is in the dcache, then +all of the ancestors of that filesystem object are also in the dcache. +As normal access is by filename this prefix is created naturally and +maintained easily (by each object maintaining a reference count on +its parent). + +However when objects are included into the dcache by interpreting a +filehandle fragment, there is no automatic creation of a path prefix +for the object. This leads to two related but distinct features of +the dcache that are not needed for normal filesystem access. + +1. The dcache must sometimes contain objects that are not part of the + proper prefix. i.e that are not connected to the root. +2. The dcache must be prepared for a newly found (via ->lookup) directory + to already have a (non-connected) dentry, and must be able to move + that dentry into place (based on the parent and name in the + ->lookup). This is particularly needed for directories as + it is a dcache invariant that directories only have one dentry. + +To implement these features, the dcache has: + +a. A dentry flag DCACHE_DISCONNECTED which is set on + any dentry that might not be part of the proper prefix. + This is set when anonymous dentries are created, and cleared when a + dentry is noticed to be a child of a dentry which is in the proper + prefix. If the refcount on a dentry with this flag set + becomes zero, the dentry is immediately discarded, rather than being + kept in the dcache. If a dentry that is not already in the dcache + is repeatedly accessed by filehandle (as NFSD might do), an new dentry + will be a allocated for each access, and discarded at the end of + the access. + + Note that such a dentry can acquire children, name, ancestors, etc. + without losing DCACHE_DISCONNECTED - that flag is only cleared when + subtree is successfully reconnected to root. Until then dentries + in such subtree are retained only as long as there are references; + refcount reaching zero means immediate eviction, same as for unhashed + dentries. That guarantees that we won't need to hunt them down upon + umount. + +b. A primitive for creation of secondary roots - d_obtain_root(inode). + Those do _not_ bear DCACHE_DISCONNECTED. They are placed on the + per-superblock list (->s_roots), so they can be located at umount + time for eviction purposes. + +c. Helper routines to allocate anonymous dentries, and to help attach + loose directory dentries at lookup time. They are: + + d_obtain_alias(inode) will return a dentry for the given inode. + If the inode already has a dentry, one of those is returned. + + If it doesn't, a new anonymous (IS_ROOT and + DCACHE_DISCONNECTED) dentry is allocated and attached. + + In the case of a directory, care is taken that only one dentry + can ever be attached. + + d_splice_alias(inode, dentry) will introduce a new dentry into the tree; + either the passed-in dentry or a preexisting alias for the given inode + (such as an anonymous one created by d_obtain_alias), if appropriate. + It returns NULL when the passed-in dentry is used, following the calling + convention of ->lookup. + +Filesystem Issues +----------------- + +For a filesystem to be exportable it must: + + 1. provide the filehandle fragment routines described below. + 2. make sure that d_splice_alias is used rather than d_add + when ->lookup finds an inode for a given parent and name. + + If inode is NULL, d_splice_alias(inode, dentry) is equivalent to:: + + d_add(dentry, inode), NULL + + Similarly, d_splice_alias(ERR_PTR(err), dentry) = ERR_PTR(err) + + Typically the ->lookup routine will simply end with a:: + + return d_splice_alias(inode, dentry); + } + + + +A file system implementation declares that instances of the filesystem +are exportable by setting the s_export_op field in the struct +super_block. This field must point to a "struct export_operations" +struct which has the following members: + + encode_fh (optional) + Takes a dentry and creates a filehandle fragment which can later be used + to find or create a dentry for the same object. The default + implementation creates a filehandle fragment that encodes a 32bit inode + and generation number for the inode encoded, and if necessary the + same information for the parent. + + fh_to_dentry (mandatory) + Given a filehandle fragment, this should find the implied object and + create a dentry for it (possibly with d_obtain_alias). + + fh_to_parent (optional but strongly recommended) + Given a filehandle fragment, this should find the parent of the + implied object and create a dentry for it (possibly with + d_obtain_alias). May fail if the filehandle fragment is too small. + + get_parent (optional but strongly recommended) + When given a dentry for a directory, this should return a dentry for + the parent. Quite possibly the parent dentry will have been allocated + by d_alloc_anon. The default get_parent function just returns an error + so any filehandle lookup that requires finding a parent will fail. + ->lookup("..") is *not* used as a default as it can leave ".." entries + in the dcache which are too messy to work with. + + get_name (optional) + When given a parent dentry and a child dentry, this should find a name + in the directory identified by the parent dentry, which leads to the + object identified by the child dentry. If no get_name function is + supplied, a default implementation is provided which uses vfs_readdir + to find potential names, and matches inode numbers to find the correct + match. + + flags + Some filesystems may need to be handled differently than others. The + export_operations struct also includes a flags field that allows the + filesystem to communicate such information to nfsd. See the Export + Operations Flags section below for more explanation. + +A filehandle fragment consists of an array of 1 or more 4byte words, +together with a one byte "type". +The decode_fh routine should not depend on the stated size that is +passed to it. This size may be larger than the original filehandle +generated by encode_fh, in which case it will have been padded with +nuls. Rather, the encode_fh routine should choose a "type" which +indicates the decode_fh how much of the filehandle is valid, and how +it should be interpreted. + +Export Operations Flags +----------------------- +In addition to the operation vector pointers, struct export_operations also +contains a "flags" field that allows the filesystem to communicate to nfsd +that it may want to do things differently when dealing with it. The +following flags are defined: + + EXPORT_OP_NOWCC - disable NFSv3 WCC attributes on this filesystem + RFC 1813 recommends that servers always send weak cache consistency + (WCC) data to the client after each operation. The server should + atomically collect attributes about the inode, do an operation on it, + and then collect the attributes afterward. This allows the client to + skip issuing GETATTRs in some situations but means that the server + is calling vfs_getattr for almost all RPCs. On some filesystems + (particularly those that are clustered or networked) this is expensive + and atomicity is difficult to guarantee. This flag indicates to nfsd + that it should skip providing WCC attributes to the client in NFSv3 + replies when doing operations on this filesystem. Consider enabling + this on filesystems that have an expensive ->getattr inode operation, + or when atomicity between pre and post operation attribute collection + is impossible to guarantee. + + EXPORT_OP_NOSUBTREECHK - disallow subtree checking on this fs + Many NFS operations deal with filehandles, which the server must then + vet to ensure that they live inside of an exported tree. When the + export consists of an entire filesystem, this is trivial. nfsd can just + ensure that the filehandle live on the filesystem. When only part of a + filesystem is exported however, then nfsd must walk the ancestors of the + inode to ensure that it's within an exported subtree. This is an + expensive operation and not all filesystems can support it properly. + This flag exempts the filesystem from subtree checking and causes + exportfs to get back an error if it tries to enable subtree checking + on it. + + EXPORT_OP_CLOSE_BEFORE_UNLINK - always close cached files before unlinking + On some exportable filesystems (such as NFS) unlinking a file that + is still open can cause a fair bit of extra work. For instance, + the NFS client will do a "sillyrename" to ensure that the file + sticks around while it's still open. When reexporting, that open + file is held by nfsd so we usually end up doing a sillyrename, and + then immediately deleting the sillyrenamed file just afterward when + the link count actually goes to zero. Sometimes this delete can race + with other operations (for instance an rmdir of the parent directory). + This flag causes nfsd to close any open files for this inode _before_ + calling into the vfs to do an unlink or a rename that would replace + an existing file. |