diff options
Diffstat (limited to 'drivers/gpu/drm/i915/selftests/i915_request.c')
-rw-r--r-- | drivers/gpu/drm/i915/selftests/i915_request.c | 3288 |
1 files changed, 3288 insertions, 0 deletions
diff --git a/drivers/gpu/drm/i915/selftests/i915_request.c b/drivers/gpu/drm/i915/selftests/i915_request.c new file mode 100644 index 000000000..a46350c37 --- /dev/null +++ b/drivers/gpu/drm/i915/selftests/i915_request.c @@ -0,0 +1,3288 @@ +/* + * Copyright © 2016 Intel Corporation + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice (including the next + * paragraph) shall be included in all copies or substantial portions of the + * Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS + * IN THE SOFTWARE. + * + */ + +#include <linux/prime_numbers.h> +#include <linux/pm_qos.h> +#include <linux/sort.h> + +#include "gem/i915_gem_internal.h" +#include "gem/i915_gem_pm.h" +#include "gem/selftests/mock_context.h" + +#include "gt/intel_engine_heartbeat.h" +#include "gt/intel_engine_pm.h" +#include "gt/intel_engine_user.h" +#include "gt/intel_gt.h" +#include "gt/intel_gt_clock_utils.h" +#include "gt/intel_gt_requests.h" +#include "gt/selftest_engine_heartbeat.h" + +#include "i915_random.h" +#include "i915_selftest.h" +#include "igt_flush_test.h" +#include "igt_live_test.h" +#include "igt_spinner.h" +#include "lib_sw_fence.h" + +#include "mock_drm.h" +#include "mock_gem_device.h" + +static unsigned int num_uabi_engines(struct drm_i915_private *i915) +{ + struct intel_engine_cs *engine; + unsigned int count; + + count = 0; + for_each_uabi_engine(engine, i915) + count++; + + return count; +} + +static struct intel_engine_cs *rcs0(struct drm_i915_private *i915) +{ + return intel_engine_lookup_user(i915, I915_ENGINE_CLASS_RENDER, 0); +} + +static int igt_add_request(void *arg) +{ + struct drm_i915_private *i915 = arg; + struct i915_request *request; + + /* Basic preliminary test to create a request and let it loose! */ + + request = mock_request(rcs0(i915)->kernel_context, HZ / 10); + if (!request) + return -ENOMEM; + + i915_request_add(request); + + return 0; +} + +static int igt_wait_request(void *arg) +{ + const long T = HZ / 4; + struct drm_i915_private *i915 = arg; + struct i915_request *request; + int err = -EINVAL; + + /* Submit a request, then wait upon it */ + + request = mock_request(rcs0(i915)->kernel_context, T); + if (!request) + return -ENOMEM; + + i915_request_get(request); + + if (i915_request_wait(request, 0, 0) != -ETIME) { + pr_err("request wait (busy query) succeeded (expected timeout before submit!)\n"); + goto out_request; + } + + if (i915_request_wait(request, 0, T) != -ETIME) { + pr_err("request wait succeeded (expected timeout before submit!)\n"); + goto out_request; + } + + if (i915_request_completed(request)) { + pr_err("request completed before submit!!\n"); + goto out_request; + } + + i915_request_add(request); + + if (i915_request_wait(request, 0, 0) != -ETIME) { + pr_err("request wait (busy query) succeeded (expected timeout after submit!)\n"); + goto out_request; + } + + if (i915_request_completed(request)) { + pr_err("request completed immediately!\n"); + goto out_request; + } + + if (i915_request_wait(request, 0, T / 2) != -ETIME) { + pr_err("request wait succeeded (expected timeout!)\n"); + goto out_request; + } + + if (i915_request_wait(request, 0, T) == -ETIME) { + pr_err("request wait timed out!\n"); + goto out_request; + } + + if (!i915_request_completed(request)) { + pr_err("request not complete after waiting!\n"); + goto out_request; + } + + if (i915_request_wait(request, 0, T) == -ETIME) { + pr_err("request wait timed out when already complete!\n"); + goto out_request; + } + + err = 0; +out_request: + i915_request_put(request); + mock_device_flush(i915); + return err; +} + +static int igt_fence_wait(void *arg) +{ + const long T = HZ / 4; + struct drm_i915_private *i915 = arg; + struct i915_request *request; + int err = -EINVAL; + + /* Submit a request, treat it as a fence and wait upon it */ + + request = mock_request(rcs0(i915)->kernel_context, T); + if (!request) + return -ENOMEM; + + if (dma_fence_wait_timeout(&request->fence, false, T) != -ETIME) { + pr_err("fence wait success before submit (expected timeout)!\n"); + goto out; + } + + i915_request_add(request); + + if (dma_fence_is_signaled(&request->fence)) { + pr_err("fence signaled immediately!\n"); + goto out; + } + + if (dma_fence_wait_timeout(&request->fence, false, T / 2) != -ETIME) { + pr_err("fence wait success after submit (expected timeout)!\n"); + goto out; + } + + if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) { + pr_err("fence wait timed out (expected success)!\n"); + goto out; + } + + if (!dma_fence_is_signaled(&request->fence)) { + pr_err("fence unsignaled after waiting!\n"); + goto out; + } + + if (dma_fence_wait_timeout(&request->fence, false, T) <= 0) { + pr_err("fence wait timed out when complete (expected success)!\n"); + goto out; + } + + err = 0; +out: + mock_device_flush(i915); + return err; +} + +static int igt_request_rewind(void *arg) +{ + struct drm_i915_private *i915 = arg; + struct i915_request *request, *vip; + struct i915_gem_context *ctx[2]; + struct intel_context *ce; + int err = -EINVAL; + + ctx[0] = mock_context(i915, "A"); + if (!ctx[0]) { + err = -ENOMEM; + goto err_ctx_0; + } + + ce = i915_gem_context_get_engine(ctx[0], RCS0); + GEM_BUG_ON(IS_ERR(ce)); + request = mock_request(ce, 2 * HZ); + intel_context_put(ce); + if (!request) { + err = -ENOMEM; + goto err_context_0; + } + + i915_request_get(request); + i915_request_add(request); + + ctx[1] = mock_context(i915, "B"); + if (!ctx[1]) { + err = -ENOMEM; + goto err_ctx_1; + } + + ce = i915_gem_context_get_engine(ctx[1], RCS0); + GEM_BUG_ON(IS_ERR(ce)); + vip = mock_request(ce, 0); + intel_context_put(ce); + if (!vip) { + err = -ENOMEM; + goto err_context_1; + } + + /* Simulate preemption by manual reordering */ + if (!mock_cancel_request(request)) { + pr_err("failed to cancel request (already executed)!\n"); + i915_request_add(vip); + goto err_context_1; + } + i915_request_get(vip); + i915_request_add(vip); + rcu_read_lock(); + request->engine->submit_request(request); + rcu_read_unlock(); + + + if (i915_request_wait(vip, 0, HZ) == -ETIME) { + pr_err("timed out waiting for high priority request\n"); + goto err; + } + + if (i915_request_completed(request)) { + pr_err("low priority request already completed\n"); + goto err; + } + + err = 0; +err: + i915_request_put(vip); +err_context_1: + mock_context_close(ctx[1]); +err_ctx_1: + i915_request_put(request); +err_context_0: + mock_context_close(ctx[0]); +err_ctx_0: + mock_device_flush(i915); + return err; +} + +struct smoketest { + struct intel_engine_cs *engine; + struct i915_gem_context **contexts; + atomic_long_t num_waits, num_fences; + int ncontexts, max_batch; + struct i915_request *(*request_alloc)(struct intel_context *ce); +}; + +static struct i915_request * +__mock_request_alloc(struct intel_context *ce) +{ + return mock_request(ce, 0); +} + +static struct i915_request * +__live_request_alloc(struct intel_context *ce) +{ + return intel_context_create_request(ce); +} + +struct smoke_thread { + struct kthread_worker *worker; + struct kthread_work work; + struct smoketest *t; + bool stop; + int result; +}; + +static void __igt_breadcrumbs_smoketest(struct kthread_work *work) +{ + struct smoke_thread *thread = container_of(work, typeof(*thread), work); + struct smoketest *t = thread->t; + const unsigned int max_batch = min(t->ncontexts, t->max_batch) - 1; + const unsigned int total = 4 * t->ncontexts + 1; + unsigned int num_waits = 0, num_fences = 0; + struct i915_request **requests; + I915_RND_STATE(prng); + unsigned int *order; + int err = 0; + + /* + * A very simple test to catch the most egregious of list handling bugs. + * + * At its heart, we simply create oodles of requests running across + * multiple kthreads and enable signaling on them, for the sole purpose + * of stressing our breadcrumb handling. The only inspection we do is + * that the fences were marked as signaled. + */ + + requests = kcalloc(total, sizeof(*requests), GFP_KERNEL); + if (!requests) { + thread->result = -ENOMEM; + return; + } + + order = i915_random_order(total, &prng); + if (!order) { + err = -ENOMEM; + goto out_requests; + } + + while (!READ_ONCE(thread->stop)) { + struct i915_sw_fence *submit, *wait; + unsigned int n, count; + + submit = heap_fence_create(GFP_KERNEL); + if (!submit) { + err = -ENOMEM; + break; + } + + wait = heap_fence_create(GFP_KERNEL); + if (!wait) { + i915_sw_fence_commit(submit); + heap_fence_put(submit); + err = -ENOMEM; + break; + } + + i915_random_reorder(order, total, &prng); + count = 1 + i915_prandom_u32_max_state(max_batch, &prng); + + for (n = 0; n < count; n++) { + struct i915_gem_context *ctx = + t->contexts[order[n] % t->ncontexts]; + struct i915_request *rq; + struct intel_context *ce; + + ce = i915_gem_context_get_engine(ctx, t->engine->legacy_idx); + GEM_BUG_ON(IS_ERR(ce)); + rq = t->request_alloc(ce); + intel_context_put(ce); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + count = n; + break; + } + + err = i915_sw_fence_await_sw_fence_gfp(&rq->submit, + submit, + GFP_KERNEL); + + requests[n] = i915_request_get(rq); + i915_request_add(rq); + + if (err >= 0) + err = i915_sw_fence_await_dma_fence(wait, + &rq->fence, + 0, + GFP_KERNEL); + + if (err < 0) { + i915_request_put(rq); + count = n; + break; + } + } + + i915_sw_fence_commit(submit); + i915_sw_fence_commit(wait); + + if (!wait_event_timeout(wait->wait, + i915_sw_fence_done(wait), + 5 * HZ)) { + struct i915_request *rq = requests[count - 1]; + + pr_err("waiting for %d/%d fences (last %llx:%lld) on %s timed out!\n", + atomic_read(&wait->pending), count, + rq->fence.context, rq->fence.seqno, + t->engine->name); + GEM_TRACE_DUMP(); + + intel_gt_set_wedged(t->engine->gt); + GEM_BUG_ON(!i915_request_completed(rq)); + i915_sw_fence_wait(wait); + err = -EIO; + } + + for (n = 0; n < count; n++) { + struct i915_request *rq = requests[n]; + + if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, + &rq->fence.flags)) { + pr_err("%llu:%llu was not signaled!\n", + rq->fence.context, rq->fence.seqno); + err = -EINVAL; + } + + i915_request_put(rq); + } + + heap_fence_put(wait); + heap_fence_put(submit); + + if (err < 0) + break; + + num_fences += count; + num_waits++; + + cond_resched(); + } + + atomic_long_add(num_fences, &t->num_fences); + atomic_long_add(num_waits, &t->num_waits); + + kfree(order); +out_requests: + kfree(requests); + thread->result = err; +} + +static int mock_breadcrumbs_smoketest(void *arg) +{ + struct drm_i915_private *i915 = arg; + struct smoketest t = { + .engine = rcs0(i915), + .ncontexts = 1024, + .max_batch = 1024, + .request_alloc = __mock_request_alloc + }; + unsigned int ncpus = num_online_cpus(); + struct smoke_thread *threads; + unsigned int n; + int ret = 0; + + /* + * Smoketest our breadcrumb/signal handling for requests across multiple + * threads. A very simple test to only catch the most egregious of bugs. + * See __igt_breadcrumbs_smoketest(); + */ + + threads = kcalloc(ncpus, sizeof(*threads), GFP_KERNEL); + if (!threads) + return -ENOMEM; + + t.contexts = kcalloc(t.ncontexts, sizeof(*t.contexts), GFP_KERNEL); + if (!t.contexts) { + ret = -ENOMEM; + goto out_threads; + } + + for (n = 0; n < t.ncontexts; n++) { + t.contexts[n] = mock_context(t.engine->i915, "mock"); + if (!t.contexts[n]) { + ret = -ENOMEM; + goto out_contexts; + } + } + + for (n = 0; n < ncpus; n++) { + struct kthread_worker *worker; + + worker = kthread_create_worker(0, "igt/%d", n); + if (IS_ERR(worker)) { + ret = PTR_ERR(worker); + ncpus = n; + break; + } + + threads[n].worker = worker; + threads[n].t = &t; + threads[n].stop = false; + threads[n].result = 0; + + kthread_init_work(&threads[n].work, + __igt_breadcrumbs_smoketest); + kthread_queue_work(worker, &threads[n].work); + } + + msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies)); + + for (n = 0; n < ncpus; n++) { + int err; + + WRITE_ONCE(threads[n].stop, true); + kthread_flush_work(&threads[n].work); + err = READ_ONCE(threads[n].result); + if (err < 0 && !ret) + ret = err; + + kthread_destroy_worker(threads[n].worker); + } + pr_info("Completed %lu waits for %lu fence across %d cpus\n", + atomic_long_read(&t.num_waits), + atomic_long_read(&t.num_fences), + ncpus); + +out_contexts: + for (n = 0; n < t.ncontexts; n++) { + if (!t.contexts[n]) + break; + mock_context_close(t.contexts[n]); + } + kfree(t.contexts); +out_threads: + kfree(threads); + return ret; +} + +int i915_request_mock_selftests(void) +{ + static const struct i915_subtest tests[] = { + SUBTEST(igt_add_request), + SUBTEST(igt_wait_request), + SUBTEST(igt_fence_wait), + SUBTEST(igt_request_rewind), + SUBTEST(mock_breadcrumbs_smoketest), + }; + struct drm_i915_private *i915; + intel_wakeref_t wakeref; + int err = 0; + + i915 = mock_gem_device(); + if (!i915) + return -ENOMEM; + + with_intel_runtime_pm(&i915->runtime_pm, wakeref) + err = i915_subtests(tests, i915); + + mock_destroy_device(i915); + + return err; +} + +static int live_nop_request(void *arg) +{ + struct drm_i915_private *i915 = arg; + struct intel_engine_cs *engine; + struct igt_live_test t; + int err = -ENODEV; + + /* + * Submit various sized batches of empty requests, to each engine + * (individually), and wait for the batch to complete. We can check + * the overhead of submitting requests to the hardware. + */ + + for_each_uabi_engine(engine, i915) { + unsigned long n, prime; + IGT_TIMEOUT(end_time); + ktime_t times[2] = {}; + + err = igt_live_test_begin(&t, i915, __func__, engine->name); + if (err) + return err; + + intel_engine_pm_get(engine); + for_each_prime_number_from(prime, 1, 8192) { + struct i915_request *request = NULL; + + times[1] = ktime_get_raw(); + + for (n = 0; n < prime; n++) { + i915_request_put(request); + request = i915_request_create(engine->kernel_context); + if (IS_ERR(request)) + return PTR_ERR(request); + + /* + * This space is left intentionally blank. + * + * We do not actually want to perform any + * action with this request, we just want + * to measure the latency in allocation + * and submission of our breadcrumbs - + * ensuring that the bare request is sufficient + * for the system to work (i.e. proper HEAD + * tracking of the rings, interrupt handling, + * etc). It also gives us the lowest bounds + * for latency. + */ + + i915_request_get(request); + i915_request_add(request); + } + i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT); + i915_request_put(request); + + times[1] = ktime_sub(ktime_get_raw(), times[1]); + if (prime == 1) + times[0] = times[1]; + + if (__igt_timeout(end_time, NULL)) + break; + } + intel_engine_pm_put(engine); + + err = igt_live_test_end(&t); + if (err) + return err; + + pr_info("Request latencies on %s: 1 = %lluns, %lu = %lluns\n", + engine->name, + ktime_to_ns(times[0]), + prime, div64_u64(ktime_to_ns(times[1]), prime)); + } + + return err; +} + +static int __cancel_inactive(struct intel_engine_cs *engine) +{ + struct intel_context *ce; + struct igt_spinner spin; + struct i915_request *rq; + int err = 0; + + if (igt_spinner_init(&spin, engine->gt)) + return -ENOMEM; + + ce = intel_context_create(engine); + if (IS_ERR(ce)) { + err = PTR_ERR(ce); + goto out_spin; + } + + rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + goto out_ce; + } + + pr_debug("%s: Cancelling inactive request\n", engine->name); + i915_request_cancel(rq, -EINTR); + i915_request_get(rq); + i915_request_add(rq); + + if (i915_request_wait(rq, 0, HZ / 5) < 0) { + struct drm_printer p = drm_info_printer(engine->i915->drm.dev); + + pr_err("%s: Failed to cancel inactive request\n", engine->name); + intel_engine_dump(engine, &p, "%s\n", engine->name); + err = -ETIME; + goto out_rq; + } + + if (rq->fence.error != -EINTR) { + pr_err("%s: fence not cancelled (%u)\n", + engine->name, rq->fence.error); + err = -EINVAL; + } + +out_rq: + i915_request_put(rq); +out_ce: + intel_context_put(ce); +out_spin: + igt_spinner_fini(&spin); + if (err) + pr_err("%s: %s error %d\n", __func__, engine->name, err); + return err; +} + +static int __cancel_active(struct intel_engine_cs *engine) +{ + struct intel_context *ce; + struct igt_spinner spin; + struct i915_request *rq; + int err = 0; + + if (igt_spinner_init(&spin, engine->gt)) + return -ENOMEM; + + ce = intel_context_create(engine); + if (IS_ERR(ce)) { + err = PTR_ERR(ce); + goto out_spin; + } + + rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + goto out_ce; + } + + pr_debug("%s: Cancelling active request\n", engine->name); + i915_request_get(rq); + i915_request_add(rq); + if (!igt_wait_for_spinner(&spin, rq)) { + struct drm_printer p = drm_info_printer(engine->i915->drm.dev); + + pr_err("Failed to start spinner on %s\n", engine->name); + intel_engine_dump(engine, &p, "%s\n", engine->name); + err = -ETIME; + goto out_rq; + } + i915_request_cancel(rq, -EINTR); + + if (i915_request_wait(rq, 0, HZ / 5) < 0) { + struct drm_printer p = drm_info_printer(engine->i915->drm.dev); + + pr_err("%s: Failed to cancel active request\n", engine->name); + intel_engine_dump(engine, &p, "%s\n", engine->name); + err = -ETIME; + goto out_rq; + } + + if (rq->fence.error != -EINTR) { + pr_err("%s: fence not cancelled (%u)\n", + engine->name, rq->fence.error); + err = -EINVAL; + } + +out_rq: + i915_request_put(rq); +out_ce: + intel_context_put(ce); +out_spin: + igt_spinner_fini(&spin); + if (err) + pr_err("%s: %s error %d\n", __func__, engine->name, err); + return err; +} + +static int __cancel_completed(struct intel_engine_cs *engine) +{ + struct intel_context *ce; + struct igt_spinner spin; + struct i915_request *rq; + int err = 0; + + if (igt_spinner_init(&spin, engine->gt)) + return -ENOMEM; + + ce = intel_context_create(engine); + if (IS_ERR(ce)) { + err = PTR_ERR(ce); + goto out_spin; + } + + rq = igt_spinner_create_request(&spin, ce, MI_ARB_CHECK); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + goto out_ce; + } + igt_spinner_end(&spin); + i915_request_get(rq); + i915_request_add(rq); + + if (i915_request_wait(rq, 0, HZ / 5) < 0) { + err = -ETIME; + goto out_rq; + } + + pr_debug("%s: Cancelling completed request\n", engine->name); + i915_request_cancel(rq, -EINTR); + if (rq->fence.error) { + pr_err("%s: fence not cancelled (%u)\n", + engine->name, rq->fence.error); + err = -EINVAL; + } + +out_rq: + i915_request_put(rq); +out_ce: + intel_context_put(ce); +out_spin: + igt_spinner_fini(&spin); + if (err) + pr_err("%s: %s error %d\n", __func__, engine->name, err); + return err; +} + +/* + * Test to prove a non-preemptable request can be cancelled and a subsequent + * request on the same context can successfully complete after cancellation. + * + * Testing methodology is to create a non-preemptible request and submit it, + * wait for spinner to start, create a NOP request and submit it, cancel the + * spinner, wait for spinner to complete and verify it failed with an error, + * finally wait for NOP request to complete verify it succeeded without an + * error. Preemption timeout also reduced / restored so test runs in a timely + * maner. + */ +static int __cancel_reset(struct drm_i915_private *i915, + struct intel_engine_cs *engine) +{ + struct intel_context *ce; + struct igt_spinner spin; + struct i915_request *rq, *nop; + unsigned long preempt_timeout_ms; + int err = 0; + + if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT || + !intel_has_reset_engine(engine->gt)) + return 0; + + preempt_timeout_ms = engine->props.preempt_timeout_ms; + engine->props.preempt_timeout_ms = 100; + + if (igt_spinner_init(&spin, engine->gt)) + goto out_restore; + + ce = intel_context_create(engine); + if (IS_ERR(ce)) { + err = PTR_ERR(ce); + goto out_spin; + } + + rq = igt_spinner_create_request(&spin, ce, MI_NOOP); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + goto out_ce; + } + + pr_debug("%s: Cancelling active non-preemptable request\n", + engine->name); + i915_request_get(rq); + i915_request_add(rq); + if (!igt_wait_for_spinner(&spin, rq)) { + struct drm_printer p = drm_info_printer(engine->i915->drm.dev); + + pr_err("Failed to start spinner on %s\n", engine->name); + intel_engine_dump(engine, &p, "%s\n", engine->name); + err = -ETIME; + goto out_rq; + } + + nop = intel_context_create_request(ce); + if (IS_ERR(nop)) + goto out_rq; + i915_request_get(nop); + i915_request_add(nop); + + i915_request_cancel(rq, -EINTR); + + if (i915_request_wait(rq, 0, HZ) < 0) { + struct drm_printer p = drm_info_printer(engine->i915->drm.dev); + + pr_err("%s: Failed to cancel hung request\n", engine->name); + intel_engine_dump(engine, &p, "%s\n", engine->name); + err = -ETIME; + goto out_nop; + } + + if (rq->fence.error != -EINTR) { + pr_err("%s: fence not cancelled (%u)\n", + engine->name, rq->fence.error); + err = -EINVAL; + goto out_nop; + } + + if (i915_request_wait(nop, 0, HZ) < 0) { + struct drm_printer p = drm_info_printer(engine->i915->drm.dev); + + pr_err("%s: Failed to complete nop request\n", engine->name); + intel_engine_dump(engine, &p, "%s\n", engine->name); + err = -ETIME; + goto out_nop; + } + + if (nop->fence.error != 0) { + pr_err("%s: Nop request errored (%u)\n", + engine->name, nop->fence.error); + err = -EINVAL; + } + +out_nop: + i915_request_put(nop); +out_rq: + i915_request_put(rq); +out_ce: + intel_context_put(ce); +out_spin: + igt_spinner_fini(&spin); +out_restore: + engine->props.preempt_timeout_ms = preempt_timeout_ms; + if (err) + pr_err("%s: %s error %d\n", __func__, engine->name, err); + return err; +} + +static int live_cancel_request(void *arg) +{ + struct drm_i915_private *i915 = arg; + struct intel_engine_cs *engine; + + /* + * Check cancellation of requests. We expect to be able to immediately + * cancel active requests, even if they are currently on the GPU. + */ + + for_each_uabi_engine(engine, i915) { + struct igt_live_test t; + int err, err2; + + if (!intel_engine_has_preemption(engine)) + continue; + + err = igt_live_test_begin(&t, i915, __func__, engine->name); + if (err) + return err; + + err = __cancel_inactive(engine); + if (err == 0) + err = __cancel_active(engine); + if (err == 0) + err = __cancel_completed(engine); + + err2 = igt_live_test_end(&t); + if (err) + return err; + if (err2) + return err2; + + /* Expects reset so call outside of igt_live_test_* */ + err = __cancel_reset(i915, engine); + if (err) + return err; + + if (igt_flush_test(i915)) + return -EIO; + } + + return 0; +} + +static struct i915_vma *empty_batch(struct drm_i915_private *i915) +{ + struct drm_i915_gem_object *obj; + struct i915_vma *vma; + u32 *cmd; + int err; + + obj = i915_gem_object_create_internal(i915, PAGE_SIZE); + if (IS_ERR(obj)) + return ERR_CAST(obj); + + cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WB); + if (IS_ERR(cmd)) { + err = PTR_ERR(cmd); + goto err; + } + + *cmd = MI_BATCH_BUFFER_END; + + __i915_gem_object_flush_map(obj, 0, 64); + i915_gem_object_unpin_map(obj); + + intel_gt_chipset_flush(to_gt(i915)); + + vma = i915_vma_instance(obj, &to_gt(i915)->ggtt->vm, NULL); + if (IS_ERR(vma)) { + err = PTR_ERR(vma); + goto err; + } + + err = i915_vma_pin(vma, 0, 0, PIN_USER | PIN_GLOBAL); + if (err) + goto err; + + /* Force the wait now to avoid including it in the benchmark */ + err = i915_vma_sync(vma); + if (err) + goto err_pin; + + return vma; + +err_pin: + i915_vma_unpin(vma); +err: + i915_gem_object_put(obj); + return ERR_PTR(err); +} + +static struct i915_request * +empty_request(struct intel_engine_cs *engine, + struct i915_vma *batch) +{ + struct i915_request *request; + int err; + + request = i915_request_create(engine->kernel_context); + if (IS_ERR(request)) + return request; + + err = engine->emit_bb_start(request, + batch->node.start, + batch->node.size, + I915_DISPATCH_SECURE); + if (err) + goto out_request; + + i915_request_get(request); +out_request: + i915_request_add(request); + return err ? ERR_PTR(err) : request; +} + +static int live_empty_request(void *arg) +{ + struct drm_i915_private *i915 = arg; + struct intel_engine_cs *engine; + struct igt_live_test t; + struct i915_vma *batch; + int err = 0; + + /* + * Submit various sized batches of empty requests, to each engine + * (individually), and wait for the batch to complete. We can check + * the overhead of submitting requests to the hardware. + */ + + batch = empty_batch(i915); + if (IS_ERR(batch)) + return PTR_ERR(batch); + + for_each_uabi_engine(engine, i915) { + IGT_TIMEOUT(end_time); + struct i915_request *request; + unsigned long n, prime; + ktime_t times[2] = {}; + + err = igt_live_test_begin(&t, i915, __func__, engine->name); + if (err) + goto out_batch; + + intel_engine_pm_get(engine); + + /* Warmup / preload */ + request = empty_request(engine, batch); + if (IS_ERR(request)) { + err = PTR_ERR(request); + intel_engine_pm_put(engine); + goto out_batch; + } + i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT); + + for_each_prime_number_from(prime, 1, 8192) { + times[1] = ktime_get_raw(); + + for (n = 0; n < prime; n++) { + i915_request_put(request); + request = empty_request(engine, batch); + if (IS_ERR(request)) { + err = PTR_ERR(request); + intel_engine_pm_put(engine); + goto out_batch; + } + } + i915_request_wait(request, 0, MAX_SCHEDULE_TIMEOUT); + + times[1] = ktime_sub(ktime_get_raw(), times[1]); + if (prime == 1) + times[0] = times[1]; + + if (__igt_timeout(end_time, NULL)) + break; + } + i915_request_put(request); + intel_engine_pm_put(engine); + + err = igt_live_test_end(&t); + if (err) + goto out_batch; + + pr_info("Batch latencies on %s: 1 = %lluns, %lu = %lluns\n", + engine->name, + ktime_to_ns(times[0]), + prime, div64_u64(ktime_to_ns(times[1]), prime)); + } + +out_batch: + i915_vma_unpin(batch); + i915_vma_put(batch); + return err; +} + +static struct i915_vma *recursive_batch(struct drm_i915_private *i915) +{ + struct drm_i915_gem_object *obj; + const int ver = GRAPHICS_VER(i915); + struct i915_vma *vma; + u32 *cmd; + int err; + + obj = i915_gem_object_create_internal(i915, PAGE_SIZE); + if (IS_ERR(obj)) + return ERR_CAST(obj); + + vma = i915_vma_instance(obj, to_gt(i915)->vm, NULL); + if (IS_ERR(vma)) { + err = PTR_ERR(vma); + goto err; + } + + err = i915_vma_pin(vma, 0, 0, PIN_USER); + if (err) + goto err; + + cmd = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); + if (IS_ERR(cmd)) { + err = PTR_ERR(cmd); + goto err; + } + + if (ver >= 8) { + *cmd++ = MI_BATCH_BUFFER_START | 1 << 8 | 1; + *cmd++ = lower_32_bits(vma->node.start); + *cmd++ = upper_32_bits(vma->node.start); + } else if (ver >= 6) { + *cmd++ = MI_BATCH_BUFFER_START | 1 << 8; + *cmd++ = lower_32_bits(vma->node.start); + } else { + *cmd++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT; + *cmd++ = lower_32_bits(vma->node.start); + } + *cmd++ = MI_BATCH_BUFFER_END; /* terminate early in case of error */ + + __i915_gem_object_flush_map(obj, 0, 64); + i915_gem_object_unpin_map(obj); + + intel_gt_chipset_flush(to_gt(i915)); + + return vma; + +err: + i915_gem_object_put(obj); + return ERR_PTR(err); +} + +static int recursive_batch_resolve(struct i915_vma *batch) +{ + u32 *cmd; + + cmd = i915_gem_object_pin_map_unlocked(batch->obj, I915_MAP_WC); + if (IS_ERR(cmd)) + return PTR_ERR(cmd); + + *cmd = MI_BATCH_BUFFER_END; + + __i915_gem_object_flush_map(batch->obj, 0, sizeof(*cmd)); + i915_gem_object_unpin_map(batch->obj); + + intel_gt_chipset_flush(batch->vm->gt); + + return 0; +} + +static int live_all_engines(void *arg) +{ + struct drm_i915_private *i915 = arg; + const unsigned int nengines = num_uabi_engines(i915); + struct intel_engine_cs *engine; + struct i915_request **request; + struct igt_live_test t; + struct i915_vma *batch; + unsigned int idx; + int err; + + /* + * Check we can submit requests to all engines simultaneously. We + * send a recursive batch to each engine - checking that we don't + * block doing so, and that they don't complete too soon. + */ + + request = kcalloc(nengines, sizeof(*request), GFP_KERNEL); + if (!request) + return -ENOMEM; + + err = igt_live_test_begin(&t, i915, __func__, ""); + if (err) + goto out_free; + + batch = recursive_batch(i915); + if (IS_ERR(batch)) { + err = PTR_ERR(batch); + pr_err("%s: Unable to create batch, err=%d\n", __func__, err); + goto out_free; + } + + i915_vma_lock(batch); + + idx = 0; + for_each_uabi_engine(engine, i915) { + request[idx] = intel_engine_create_kernel_request(engine); + if (IS_ERR(request[idx])) { + err = PTR_ERR(request[idx]); + pr_err("%s: Request allocation failed with err=%d\n", + __func__, err); + goto out_request; + } + + err = i915_request_await_object(request[idx], batch->obj, 0); + if (err == 0) + err = i915_vma_move_to_active(batch, request[idx], 0); + GEM_BUG_ON(err); + + err = engine->emit_bb_start(request[idx], + batch->node.start, + batch->node.size, + 0); + GEM_BUG_ON(err); + request[idx]->batch = batch; + + i915_request_get(request[idx]); + i915_request_add(request[idx]); + idx++; + } + + i915_vma_unlock(batch); + + idx = 0; + for_each_uabi_engine(engine, i915) { + if (i915_request_completed(request[idx])) { + pr_err("%s(%s): request completed too early!\n", + __func__, engine->name); + err = -EINVAL; + goto out_request; + } + idx++; + } + + err = recursive_batch_resolve(batch); + if (err) { + pr_err("%s: failed to resolve batch, err=%d\n", __func__, err); + goto out_request; + } + + idx = 0; + for_each_uabi_engine(engine, i915) { + long timeout; + + timeout = i915_request_wait(request[idx], 0, + MAX_SCHEDULE_TIMEOUT); + if (timeout < 0) { + err = timeout; + pr_err("%s: error waiting for request on %s, err=%d\n", + __func__, engine->name, err); + goto out_request; + } + + GEM_BUG_ON(!i915_request_completed(request[idx])); + i915_request_put(request[idx]); + request[idx] = NULL; + idx++; + } + + err = igt_live_test_end(&t); + +out_request: + idx = 0; + for_each_uabi_engine(engine, i915) { + if (request[idx]) + i915_request_put(request[idx]); + idx++; + } + i915_vma_unpin(batch); + i915_vma_put(batch); +out_free: + kfree(request); + return err; +} + +static int live_sequential_engines(void *arg) +{ + struct drm_i915_private *i915 = arg; + const unsigned int nengines = num_uabi_engines(i915); + struct i915_request **request; + struct i915_request *prev = NULL; + struct intel_engine_cs *engine; + struct igt_live_test t; + unsigned int idx; + int err; + + /* + * Check we can submit requests to all engines sequentially, such + * that each successive request waits for the earlier ones. This + * tests that we don't execute requests out of order, even though + * they are running on independent engines. + */ + + request = kcalloc(nengines, sizeof(*request), GFP_KERNEL); + if (!request) + return -ENOMEM; + + err = igt_live_test_begin(&t, i915, __func__, ""); + if (err) + goto out_free; + + idx = 0; + for_each_uabi_engine(engine, i915) { + struct i915_vma *batch; + + batch = recursive_batch(i915); + if (IS_ERR(batch)) { + err = PTR_ERR(batch); + pr_err("%s: Unable to create batch for %s, err=%d\n", + __func__, engine->name, err); + goto out_free; + } + + i915_vma_lock(batch); + request[idx] = intel_engine_create_kernel_request(engine); + if (IS_ERR(request[idx])) { + err = PTR_ERR(request[idx]); + pr_err("%s: Request allocation failed for %s with err=%d\n", + __func__, engine->name, err); + goto out_unlock; + } + + if (prev) { + err = i915_request_await_dma_fence(request[idx], + &prev->fence); + if (err) { + i915_request_add(request[idx]); + pr_err("%s: Request await failed for %s with err=%d\n", + __func__, engine->name, err); + goto out_unlock; + } + } + + err = i915_request_await_object(request[idx], + batch->obj, false); + if (err == 0) + err = i915_vma_move_to_active(batch, request[idx], 0); + GEM_BUG_ON(err); + + err = engine->emit_bb_start(request[idx], + batch->node.start, + batch->node.size, + 0); + GEM_BUG_ON(err); + request[idx]->batch = batch; + + i915_request_get(request[idx]); + i915_request_add(request[idx]); + + prev = request[idx]; + idx++; + +out_unlock: + i915_vma_unlock(batch); + if (err) + goto out_request; + } + + idx = 0; + for_each_uabi_engine(engine, i915) { + long timeout; + + if (i915_request_completed(request[idx])) { + pr_err("%s(%s): request completed too early!\n", + __func__, engine->name); + err = -EINVAL; + goto out_request; + } + + err = recursive_batch_resolve(request[idx]->batch); + if (err) { + pr_err("%s: failed to resolve batch, err=%d\n", + __func__, err); + goto out_request; + } + + timeout = i915_request_wait(request[idx], 0, + MAX_SCHEDULE_TIMEOUT); + if (timeout < 0) { + err = timeout; + pr_err("%s: error waiting for request on %s, err=%d\n", + __func__, engine->name, err); + goto out_request; + } + + GEM_BUG_ON(!i915_request_completed(request[idx])); + idx++; + } + + err = igt_live_test_end(&t); + +out_request: + idx = 0; + for_each_uabi_engine(engine, i915) { + u32 *cmd; + + if (!request[idx]) + break; + + cmd = i915_gem_object_pin_map_unlocked(request[idx]->batch->obj, + I915_MAP_WC); + if (!IS_ERR(cmd)) { + *cmd = MI_BATCH_BUFFER_END; + + __i915_gem_object_flush_map(request[idx]->batch->obj, + 0, sizeof(*cmd)); + i915_gem_object_unpin_map(request[idx]->batch->obj); + + intel_gt_chipset_flush(engine->gt); + } + + i915_vma_put(request[idx]->batch); + i915_request_put(request[idx]); + idx++; + } +out_free: + kfree(request); + return err; +} + +struct parallel_thread { + struct kthread_worker *worker; + struct kthread_work work; + struct intel_engine_cs *engine; + int result; +}; + +static void __live_parallel_engine1(struct kthread_work *work) +{ + struct parallel_thread *thread = + container_of(work, typeof(*thread), work); + struct intel_engine_cs *engine = thread->engine; + IGT_TIMEOUT(end_time); + unsigned long count; + int err = 0; + + count = 0; + intel_engine_pm_get(engine); + do { + struct i915_request *rq; + + rq = i915_request_create(engine->kernel_context); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + break; + } + + i915_request_get(rq); + i915_request_add(rq); + + err = 0; + if (i915_request_wait(rq, 0, HZ) < 0) + err = -ETIME; + i915_request_put(rq); + if (err) + break; + + count++; + } while (!__igt_timeout(end_time, NULL)); + intel_engine_pm_put(engine); + + pr_info("%s: %lu request + sync\n", engine->name, count); + thread->result = err; +} + +static void __live_parallel_engineN(struct kthread_work *work) +{ + struct parallel_thread *thread = + container_of(work, typeof(*thread), work); + struct intel_engine_cs *engine = thread->engine; + IGT_TIMEOUT(end_time); + unsigned long count; + int err = 0; + + count = 0; + intel_engine_pm_get(engine); + do { + struct i915_request *rq; + + rq = i915_request_create(engine->kernel_context); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + break; + } + + i915_request_add(rq); + count++; + } while (!__igt_timeout(end_time, NULL)); + intel_engine_pm_put(engine); + + pr_info("%s: %lu requests\n", engine->name, count); + thread->result = err; +} + +static bool wake_all(struct drm_i915_private *i915) +{ + if (atomic_dec_and_test(&i915->selftest.counter)) { + wake_up_var(&i915->selftest.counter); + return true; + } + + return false; +} + +static int wait_for_all(struct drm_i915_private *i915) +{ + if (wake_all(i915)) + return 0; + + if (wait_var_event_timeout(&i915->selftest.counter, + !atomic_read(&i915->selftest.counter), + i915_selftest.timeout_jiffies)) + return 0; + + return -ETIME; +} + +static void __live_parallel_spin(struct kthread_work *work) +{ + struct parallel_thread *thread = + container_of(work, typeof(*thread), work); + struct intel_engine_cs *engine = thread->engine; + struct igt_spinner spin; + struct i915_request *rq; + int err = 0; + + /* + * Create a spinner running for eternity on each engine. If a second + * spinner is incorrectly placed on the same engine, it will not be + * able to start in time. + */ + + if (igt_spinner_init(&spin, engine->gt)) { + wake_all(engine->i915); + thread->result = -ENOMEM; + return; + } + + intel_engine_pm_get(engine); + rq = igt_spinner_create_request(&spin, + engine->kernel_context, + MI_NOOP); /* no preemption */ + intel_engine_pm_put(engine); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + if (err == -ENODEV) + err = 0; + wake_all(engine->i915); + goto out_spin; + } + + i915_request_get(rq); + i915_request_add(rq); + if (igt_wait_for_spinner(&spin, rq)) { + /* Occupy this engine for the whole test */ + err = wait_for_all(engine->i915); + } else { + pr_err("Failed to start spinner on %s\n", engine->name); + err = -EINVAL; + } + igt_spinner_end(&spin); + + if (err == 0 && i915_request_wait(rq, 0, HZ) < 0) + err = -EIO; + i915_request_put(rq); + +out_spin: + igt_spinner_fini(&spin); + thread->result = err; +} + +static int live_parallel_engines(void *arg) +{ + struct drm_i915_private *i915 = arg; + static void (* const func[])(struct kthread_work *) = { + __live_parallel_engine1, + __live_parallel_engineN, + __live_parallel_spin, + NULL, + }; + const unsigned int nengines = num_uabi_engines(i915); + struct parallel_thread *threads; + struct intel_engine_cs *engine; + void (* const *fn)(struct kthread_work *); + int err = 0; + + /* + * Check we can submit requests to all engines concurrently. This + * tests that we load up the system maximally. + */ + + threads = kcalloc(nengines, sizeof(*threads), GFP_KERNEL); + if (!threads) + return -ENOMEM; + + for (fn = func; !err && *fn; fn++) { + char name[KSYM_NAME_LEN]; + struct igt_live_test t; + unsigned int idx; + + snprintf(name, sizeof(name), "%ps", *fn); + err = igt_live_test_begin(&t, i915, __func__, name); + if (err) + break; + + atomic_set(&i915->selftest.counter, nengines); + + idx = 0; + for_each_uabi_engine(engine, i915) { + struct kthread_worker *worker; + + worker = kthread_create_worker(0, "igt/parallel:%s", + engine->name); + if (IS_ERR(worker)) { + err = PTR_ERR(worker); + break; + } + + threads[idx].worker = worker; + threads[idx].result = 0; + threads[idx].engine = engine; + + kthread_init_work(&threads[idx].work, *fn); + kthread_queue_work(worker, &threads[idx].work); + idx++; + } + + idx = 0; + for_each_uabi_engine(engine, i915) { + int status; + + if (!threads[idx].worker) + break; + + kthread_flush_work(&threads[idx].work); + status = READ_ONCE(threads[idx].result); + if (status && !err) + err = status; + + kthread_destroy_worker(threads[idx++].worker); + } + + if (igt_live_test_end(&t)) + err = -EIO; + } + + kfree(threads); + return err; +} + +static int +max_batches(struct i915_gem_context *ctx, struct intel_engine_cs *engine) +{ + struct i915_request *rq; + int ret; + + /* + * Before execlists, all contexts share the same ringbuffer. With + * execlists, each context/engine has a separate ringbuffer and + * for the purposes of this test, inexhaustible. + * + * For the global ringbuffer though, we have to be very careful + * that we do not wrap while preventing the execution of requests + * with a unsignaled fence. + */ + if (HAS_EXECLISTS(ctx->i915)) + return INT_MAX; + + rq = igt_request_alloc(ctx, engine); + if (IS_ERR(rq)) { + ret = PTR_ERR(rq); + } else { + int sz; + + ret = rq->ring->size - rq->reserved_space; + i915_request_add(rq); + + sz = rq->ring->emit - rq->head; + if (sz < 0) + sz += rq->ring->size; + ret /= sz; + ret /= 2; /* leave half spare, in case of emergency! */ + } + + return ret; +} + +static int live_breadcrumbs_smoketest(void *arg) +{ + struct drm_i915_private *i915 = arg; + const unsigned int nengines = num_uabi_engines(i915); + const unsigned int ncpus = num_online_cpus(); + unsigned long num_waits, num_fences; + struct intel_engine_cs *engine; + struct smoke_thread *threads; + struct igt_live_test live; + intel_wakeref_t wakeref; + struct smoketest *smoke; + unsigned int n, idx; + struct file *file; + int ret = 0; + + /* + * Smoketest our breadcrumb/signal handling for requests across multiple + * threads. A very simple test to only catch the most egregious of bugs. + * See __igt_breadcrumbs_smoketest(); + * + * On real hardware this time. + */ + + wakeref = intel_runtime_pm_get(&i915->runtime_pm); + + file = mock_file(i915); + if (IS_ERR(file)) { + ret = PTR_ERR(file); + goto out_rpm; + } + + smoke = kcalloc(nengines, sizeof(*smoke), GFP_KERNEL); + if (!smoke) { + ret = -ENOMEM; + goto out_file; + } + + threads = kcalloc(ncpus * nengines, sizeof(*threads), GFP_KERNEL); + if (!threads) { + ret = -ENOMEM; + goto out_smoke; + } + + smoke[0].request_alloc = __live_request_alloc; + smoke[0].ncontexts = 64; + smoke[0].contexts = kcalloc(smoke[0].ncontexts, + sizeof(*smoke[0].contexts), + GFP_KERNEL); + if (!smoke[0].contexts) { + ret = -ENOMEM; + goto out_threads; + } + + for (n = 0; n < smoke[0].ncontexts; n++) { + smoke[0].contexts[n] = live_context(i915, file); + if (IS_ERR(smoke[0].contexts[n])) { + ret = PTR_ERR(smoke[0].contexts[n]); + goto out_contexts; + } + } + + ret = igt_live_test_begin(&live, i915, __func__, ""); + if (ret) + goto out_contexts; + + idx = 0; + for_each_uabi_engine(engine, i915) { + smoke[idx] = smoke[0]; + smoke[idx].engine = engine; + smoke[idx].max_batch = + max_batches(smoke[0].contexts[0], engine); + if (smoke[idx].max_batch < 0) { + ret = smoke[idx].max_batch; + goto out_flush; + } + /* One ring interleaved between requests from all cpus */ + smoke[idx].max_batch /= num_online_cpus() + 1; + pr_debug("Limiting batches to %d requests on %s\n", + smoke[idx].max_batch, engine->name); + + for (n = 0; n < ncpus; n++) { + unsigned int i = idx * ncpus + n; + struct kthread_worker *worker; + + worker = kthread_create_worker(0, "igt/%d.%d", idx, n); + if (IS_ERR(worker)) { + ret = PTR_ERR(worker); + goto out_flush; + } + + threads[i].worker = worker; + threads[i].t = &smoke[idx]; + + kthread_init_work(&threads[i].work, + __igt_breadcrumbs_smoketest); + kthread_queue_work(worker, &threads[i].work); + } + + idx++; + } + + msleep(jiffies_to_msecs(i915_selftest.timeout_jiffies)); + +out_flush: + idx = 0; + num_waits = 0; + num_fences = 0; + for_each_uabi_engine(engine, i915) { + for (n = 0; n < ncpus; n++) { + unsigned int i = idx * ncpus + n; + int err; + + if (!threads[i].worker) + continue; + + WRITE_ONCE(threads[i].stop, true); + kthread_flush_work(&threads[i].work); + err = READ_ONCE(threads[i].result); + if (err < 0 && !ret) + ret = err; + + kthread_destroy_worker(threads[i].worker); + } + + num_waits += atomic_long_read(&smoke[idx].num_waits); + num_fences += atomic_long_read(&smoke[idx].num_fences); + idx++; + } + pr_info("Completed %lu waits for %lu fences across %d engines and %d cpus\n", + num_waits, num_fences, idx, ncpus); + + ret = igt_live_test_end(&live) ?: ret; +out_contexts: + kfree(smoke[0].contexts); +out_threads: + kfree(threads); +out_smoke: + kfree(smoke); +out_file: + fput(file); +out_rpm: + intel_runtime_pm_put(&i915->runtime_pm, wakeref); + + return ret; +} + +int i915_request_live_selftests(struct drm_i915_private *i915) +{ + static const struct i915_subtest tests[] = { + SUBTEST(live_nop_request), + SUBTEST(live_all_engines), + SUBTEST(live_sequential_engines), + SUBTEST(live_parallel_engines), + SUBTEST(live_empty_request), + SUBTEST(live_cancel_request), + SUBTEST(live_breadcrumbs_smoketest), + }; + + if (intel_gt_is_wedged(to_gt(i915))) + return 0; + + return i915_live_subtests(tests, i915); +} + +static int switch_to_kernel_sync(struct intel_context *ce, int err) +{ + struct i915_request *rq; + struct dma_fence *fence; + + rq = intel_engine_create_kernel_request(ce->engine); + if (IS_ERR(rq)) + return PTR_ERR(rq); + + fence = i915_active_fence_get(&ce->timeline->last_request); + if (fence) { + i915_request_await_dma_fence(rq, fence); + dma_fence_put(fence); + } + + rq = i915_request_get(rq); + i915_request_add(rq); + if (i915_request_wait(rq, 0, HZ / 2) < 0 && !err) + err = -ETIME; + i915_request_put(rq); + + while (!err && !intel_engine_is_idle(ce->engine)) + intel_engine_flush_submission(ce->engine); + + return err; +} + +struct perf_stats { + struct intel_engine_cs *engine; + unsigned long count; + ktime_t time; + ktime_t busy; + u64 runtime; +}; + +struct perf_series { + struct drm_i915_private *i915; + unsigned int nengines; + struct intel_context *ce[]; +}; + +static int cmp_u32(const void *A, const void *B) +{ + const u32 *a = A, *b = B; + + return *a - *b; +} + +static u32 trifilter(u32 *a) +{ + u64 sum; + +#define TF_COUNT 5 + sort(a, TF_COUNT, sizeof(*a), cmp_u32, NULL); + + sum = mul_u32_u32(a[2], 2); + sum += a[1]; + sum += a[3]; + + GEM_BUG_ON(sum > U32_MAX); + return sum; +#define TF_BIAS 2 +} + +static u64 cycles_to_ns(struct intel_engine_cs *engine, u32 cycles) +{ + u64 ns = intel_gt_clock_interval_to_ns(engine->gt, cycles); + + return DIV_ROUND_CLOSEST(ns, 1 << TF_BIAS); +} + +static u32 *emit_timestamp_store(u32 *cs, struct intel_context *ce, u32 offset) +{ + *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; + *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP((ce->engine->mmio_base))); + *cs++ = offset; + *cs++ = 0; + + return cs; +} + +static u32 *emit_store_dw(u32 *cs, u32 offset, u32 value) +{ + *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; + *cs++ = offset; + *cs++ = 0; + *cs++ = value; + + return cs; +} + +static u32 *emit_semaphore_poll(u32 *cs, u32 mode, u32 value, u32 offset) +{ + *cs++ = MI_SEMAPHORE_WAIT | + MI_SEMAPHORE_GLOBAL_GTT | + MI_SEMAPHORE_POLL | + mode; + *cs++ = value; + *cs++ = offset; + *cs++ = 0; + + return cs; +} + +static u32 *emit_semaphore_poll_until(u32 *cs, u32 offset, u32 value) +{ + return emit_semaphore_poll(cs, MI_SEMAPHORE_SAD_EQ_SDD, value, offset); +} + +static void semaphore_set(u32 *sema, u32 value) +{ + WRITE_ONCE(*sema, value); + wmb(); /* flush the update to the cache, and beyond */ +} + +static u32 *hwsp_scratch(const struct intel_context *ce) +{ + return memset32(ce->engine->status_page.addr + 1000, 0, 21); +} + +static u32 hwsp_offset(const struct intel_context *ce, u32 *dw) +{ + return (i915_ggtt_offset(ce->engine->status_page.vma) + + offset_in_page(dw)); +} + +static int measure_semaphore_response(struct intel_context *ce) +{ + u32 *sema = hwsp_scratch(ce); + const u32 offset = hwsp_offset(ce, sema); + u32 elapsed[TF_COUNT], cycles; + struct i915_request *rq; + u32 *cs; + int err; + int i; + + /* + * Measure how many cycles it takes for the HW to detect the change + * in a semaphore value. + * + * A: read CS_TIMESTAMP from CPU + * poke semaphore + * B: read CS_TIMESTAMP on GPU + * + * Semaphore latency: B - A + */ + + semaphore_set(sema, -1); + + rq = i915_request_create(ce); + if (IS_ERR(rq)) + return PTR_ERR(rq); + + cs = intel_ring_begin(rq, 4 + 12 * ARRAY_SIZE(elapsed)); + if (IS_ERR(cs)) { + i915_request_add(rq); + err = PTR_ERR(cs); + goto err; + } + + cs = emit_store_dw(cs, offset, 0); + for (i = 1; i <= ARRAY_SIZE(elapsed); i++) { + cs = emit_semaphore_poll_until(cs, offset, i); + cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32)); + cs = emit_store_dw(cs, offset, 0); + } + + intel_ring_advance(rq, cs); + i915_request_add(rq); + + if (wait_for(READ_ONCE(*sema) == 0, 50)) { + err = -EIO; + goto err; + } + + for (i = 1; i <= ARRAY_SIZE(elapsed); i++) { + preempt_disable(); + cycles = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP); + semaphore_set(sema, i); + preempt_enable(); + + if (wait_for(READ_ONCE(*sema) == 0, 50)) { + err = -EIO; + goto err; + } + + elapsed[i - 1] = sema[i] - cycles; + } + + cycles = trifilter(elapsed); + pr_info("%s: semaphore response %d cycles, %lluns\n", + ce->engine->name, cycles >> TF_BIAS, + cycles_to_ns(ce->engine, cycles)); + + return intel_gt_wait_for_idle(ce->engine->gt, HZ); + +err: + intel_gt_set_wedged(ce->engine->gt); + return err; +} + +static int measure_idle_dispatch(struct intel_context *ce) +{ + u32 *sema = hwsp_scratch(ce); + const u32 offset = hwsp_offset(ce, sema); + u32 elapsed[TF_COUNT], cycles; + u32 *cs; + int err; + int i; + + /* + * Measure how long it takes for us to submit a request while the + * engine is idle, but is resting in our context. + * + * A: read CS_TIMESTAMP from CPU + * submit request + * B: read CS_TIMESTAMP on GPU + * + * Submission latency: B - A + */ + + for (i = 0; i < ARRAY_SIZE(elapsed); i++) { + struct i915_request *rq; + + err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2); + if (err) + return err; + + rq = i915_request_create(ce); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + goto err; + } + + cs = intel_ring_begin(rq, 4); + if (IS_ERR(cs)) { + i915_request_add(rq); + err = PTR_ERR(cs); + goto err; + } + + cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32)); + + intel_ring_advance(rq, cs); + + preempt_disable(); + local_bh_disable(); + elapsed[i] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP); + i915_request_add(rq); + local_bh_enable(); + preempt_enable(); + } + + err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2); + if (err) + goto err; + + for (i = 0; i < ARRAY_SIZE(elapsed); i++) + elapsed[i] = sema[i] - elapsed[i]; + + cycles = trifilter(elapsed); + pr_info("%s: idle dispatch latency %d cycles, %lluns\n", + ce->engine->name, cycles >> TF_BIAS, + cycles_to_ns(ce->engine, cycles)); + + return intel_gt_wait_for_idle(ce->engine->gt, HZ); + +err: + intel_gt_set_wedged(ce->engine->gt); + return err; +} + +static int measure_busy_dispatch(struct intel_context *ce) +{ + u32 *sema = hwsp_scratch(ce); + const u32 offset = hwsp_offset(ce, sema); + u32 elapsed[TF_COUNT + 1], cycles; + u32 *cs; + int err; + int i; + + /* + * Measure how long it takes for us to submit a request while the + * engine is busy, polling on a semaphore in our context. With + * direct submission, this will include the cost of a lite restore. + * + * A: read CS_TIMESTAMP from CPU + * submit request + * B: read CS_TIMESTAMP on GPU + * + * Submission latency: B - A + */ + + for (i = 1; i <= ARRAY_SIZE(elapsed); i++) { + struct i915_request *rq; + + rq = i915_request_create(ce); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + goto err; + } + + cs = intel_ring_begin(rq, 12); + if (IS_ERR(cs)) { + i915_request_add(rq); + err = PTR_ERR(cs); + goto err; + } + + cs = emit_store_dw(cs, offset + i * sizeof(u32), -1); + cs = emit_semaphore_poll_until(cs, offset, i); + cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32)); + + intel_ring_advance(rq, cs); + + if (i > 1 && wait_for(READ_ONCE(sema[i - 1]), 500)) { + err = -EIO; + goto err; + } + + preempt_disable(); + local_bh_disable(); + elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP); + i915_request_add(rq); + local_bh_enable(); + semaphore_set(sema, i - 1); + preempt_enable(); + } + + wait_for(READ_ONCE(sema[i - 1]), 500); + semaphore_set(sema, i - 1); + + for (i = 1; i <= TF_COUNT; i++) { + GEM_BUG_ON(sema[i] == -1); + elapsed[i - 1] = sema[i] - elapsed[i]; + } + + cycles = trifilter(elapsed); + pr_info("%s: busy dispatch latency %d cycles, %lluns\n", + ce->engine->name, cycles >> TF_BIAS, + cycles_to_ns(ce->engine, cycles)); + + return intel_gt_wait_for_idle(ce->engine->gt, HZ); + +err: + intel_gt_set_wedged(ce->engine->gt); + return err; +} + +static int plug(struct intel_engine_cs *engine, u32 *sema, u32 mode, int value) +{ + const u32 offset = + i915_ggtt_offset(engine->status_page.vma) + + offset_in_page(sema); + struct i915_request *rq; + u32 *cs; + + rq = i915_request_create(engine->kernel_context); + if (IS_ERR(rq)) + return PTR_ERR(rq); + + cs = intel_ring_begin(rq, 4); + if (IS_ERR(cs)) { + i915_request_add(rq); + return PTR_ERR(cs); + } + + cs = emit_semaphore_poll(cs, mode, value, offset); + + intel_ring_advance(rq, cs); + i915_request_add(rq); + + return 0; +} + +static int measure_inter_request(struct intel_context *ce) +{ + u32 *sema = hwsp_scratch(ce); + const u32 offset = hwsp_offset(ce, sema); + u32 elapsed[TF_COUNT + 1], cycles; + struct i915_sw_fence *submit; + int i, err; + + /* + * Measure how long it takes to advance from one request into the + * next. Between each request we flush the GPU caches to memory, + * update the breadcrumbs, and then invalidate those caches. + * We queue up all the requests to be submitted in one batch so + * it should be one set of contiguous measurements. + * + * A: read CS_TIMESTAMP on GPU + * advance request + * B: read CS_TIMESTAMP on GPU + * + * Request latency: B - A + */ + + err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0); + if (err) + return err; + + submit = heap_fence_create(GFP_KERNEL); + if (!submit) { + semaphore_set(sema, 1); + return -ENOMEM; + } + + intel_engine_flush_submission(ce->engine); + for (i = 1; i <= ARRAY_SIZE(elapsed); i++) { + struct i915_request *rq; + u32 *cs; + + rq = i915_request_create(ce); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + goto err_submit; + } + + err = i915_sw_fence_await_sw_fence_gfp(&rq->submit, + submit, + GFP_KERNEL); + if (err < 0) { + i915_request_add(rq); + goto err_submit; + } + + cs = intel_ring_begin(rq, 4); + if (IS_ERR(cs)) { + i915_request_add(rq); + err = PTR_ERR(cs); + goto err_submit; + } + + cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32)); + + intel_ring_advance(rq, cs); + i915_request_add(rq); + } + i915_sw_fence_commit(submit); + intel_engine_flush_submission(ce->engine); + heap_fence_put(submit); + + semaphore_set(sema, 1); + err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2); + if (err) + goto err; + + for (i = 1; i <= TF_COUNT; i++) + elapsed[i - 1] = sema[i + 1] - sema[i]; + + cycles = trifilter(elapsed); + pr_info("%s: inter-request latency %d cycles, %lluns\n", + ce->engine->name, cycles >> TF_BIAS, + cycles_to_ns(ce->engine, cycles)); + + return intel_gt_wait_for_idle(ce->engine->gt, HZ); + +err_submit: + i915_sw_fence_commit(submit); + heap_fence_put(submit); + semaphore_set(sema, 1); +err: + intel_gt_set_wedged(ce->engine->gt); + return err; +} + +static int measure_context_switch(struct intel_context *ce) +{ + u32 *sema = hwsp_scratch(ce); + const u32 offset = hwsp_offset(ce, sema); + struct i915_request *fence = NULL; + u32 elapsed[TF_COUNT + 1], cycles; + int i, j, err; + u32 *cs; + + /* + * Measure how long it takes to advance from one request in one + * context to a request in another context. This allows us to + * measure how long the context save/restore take, along with all + * the inter-context setup we require. + * + * A: read CS_TIMESTAMP on GPU + * switch context + * B: read CS_TIMESTAMP on GPU + * + * Context switch latency: B - A + */ + + err = plug(ce->engine, sema, MI_SEMAPHORE_SAD_NEQ_SDD, 0); + if (err) + return err; + + for (i = 1; i <= ARRAY_SIZE(elapsed); i++) { + struct intel_context *arr[] = { + ce, ce->engine->kernel_context + }; + u32 addr = offset + ARRAY_SIZE(arr) * i * sizeof(u32); + + for (j = 0; j < ARRAY_SIZE(arr); j++) { + struct i915_request *rq; + + rq = i915_request_create(arr[j]); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + goto err_fence; + } + + if (fence) { + err = i915_request_await_dma_fence(rq, + &fence->fence); + if (err) { + i915_request_add(rq); + goto err_fence; + } + } + + cs = intel_ring_begin(rq, 4); + if (IS_ERR(cs)) { + i915_request_add(rq); + err = PTR_ERR(cs); + goto err_fence; + } + + cs = emit_timestamp_store(cs, ce, addr); + addr += sizeof(u32); + + intel_ring_advance(rq, cs); + + i915_request_put(fence); + fence = i915_request_get(rq); + + i915_request_add(rq); + } + } + i915_request_put(fence); + intel_engine_flush_submission(ce->engine); + + semaphore_set(sema, 1); + err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2); + if (err) + goto err; + + for (i = 1; i <= TF_COUNT; i++) + elapsed[i - 1] = sema[2 * i + 2] - sema[2 * i + 1]; + + cycles = trifilter(elapsed); + pr_info("%s: context switch latency %d cycles, %lluns\n", + ce->engine->name, cycles >> TF_BIAS, + cycles_to_ns(ce->engine, cycles)); + + return intel_gt_wait_for_idle(ce->engine->gt, HZ); + +err_fence: + i915_request_put(fence); + semaphore_set(sema, 1); +err: + intel_gt_set_wedged(ce->engine->gt); + return err; +} + +static int measure_preemption(struct intel_context *ce) +{ + u32 *sema = hwsp_scratch(ce); + const u32 offset = hwsp_offset(ce, sema); + u32 elapsed[TF_COUNT], cycles; + u32 *cs; + int err; + int i; + + /* + * We measure two latencies while triggering preemption. The first + * latency is how long it takes for us to submit a preempting request. + * The second latency is how it takes for us to return from the + * preemption back to the original context. + * + * A: read CS_TIMESTAMP from CPU + * submit preemption + * B: read CS_TIMESTAMP on GPU (in preempting context) + * context switch + * C: read CS_TIMESTAMP on GPU (in original context) + * + * Preemption dispatch latency: B - A + * Preemption switch latency: C - B + */ + + if (!intel_engine_has_preemption(ce->engine)) + return 0; + + for (i = 1; i <= ARRAY_SIZE(elapsed); i++) { + u32 addr = offset + 2 * i * sizeof(u32); + struct i915_request *rq; + + rq = i915_request_create(ce); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + goto err; + } + + cs = intel_ring_begin(rq, 12); + if (IS_ERR(cs)) { + i915_request_add(rq); + err = PTR_ERR(cs); + goto err; + } + + cs = emit_store_dw(cs, addr, -1); + cs = emit_semaphore_poll_until(cs, offset, i); + cs = emit_timestamp_store(cs, ce, addr + sizeof(u32)); + + intel_ring_advance(rq, cs); + i915_request_add(rq); + + if (wait_for(READ_ONCE(sema[2 * i]) == -1, 500)) { + err = -EIO; + goto err; + } + + rq = i915_request_create(ce->engine->kernel_context); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + goto err; + } + + cs = intel_ring_begin(rq, 8); + if (IS_ERR(cs)) { + i915_request_add(rq); + err = PTR_ERR(cs); + goto err; + } + + cs = emit_timestamp_store(cs, ce, addr); + cs = emit_store_dw(cs, offset, i); + + intel_ring_advance(rq, cs); + rq->sched.attr.priority = I915_PRIORITY_BARRIER; + + elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP); + i915_request_add(rq); + } + + if (wait_for(READ_ONCE(sema[2 * i - 2]) != -1, 500)) { + err = -EIO; + goto err; + } + + for (i = 1; i <= TF_COUNT; i++) + elapsed[i - 1] = sema[2 * i + 0] - elapsed[i - 1]; + + cycles = trifilter(elapsed); + pr_info("%s: preemption dispatch latency %d cycles, %lluns\n", + ce->engine->name, cycles >> TF_BIAS, + cycles_to_ns(ce->engine, cycles)); + + for (i = 1; i <= TF_COUNT; i++) + elapsed[i - 1] = sema[2 * i + 1] - sema[2 * i + 0]; + + cycles = trifilter(elapsed); + pr_info("%s: preemption switch latency %d cycles, %lluns\n", + ce->engine->name, cycles >> TF_BIAS, + cycles_to_ns(ce->engine, cycles)); + + return intel_gt_wait_for_idle(ce->engine->gt, HZ); + +err: + intel_gt_set_wedged(ce->engine->gt); + return err; +} + +struct signal_cb { + struct dma_fence_cb base; + bool seen; +}; + +static void signal_cb(struct dma_fence *fence, struct dma_fence_cb *cb) +{ + struct signal_cb *s = container_of(cb, typeof(*s), base); + + smp_store_mb(s->seen, true); /* be safe, be strong */ +} + +static int measure_completion(struct intel_context *ce) +{ + u32 *sema = hwsp_scratch(ce); + const u32 offset = hwsp_offset(ce, sema); + u32 elapsed[TF_COUNT], cycles; + u32 *cs; + int err; + int i; + + /* + * Measure how long it takes for the signal (interrupt) to be + * sent from the GPU to be processed by the CPU. + * + * A: read CS_TIMESTAMP on GPU + * signal + * B: read CS_TIMESTAMP from CPU + * + * Completion latency: B - A + */ + + for (i = 1; i <= ARRAY_SIZE(elapsed); i++) { + struct signal_cb cb = { .seen = false }; + struct i915_request *rq; + + rq = i915_request_create(ce); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + goto err; + } + + cs = intel_ring_begin(rq, 12); + if (IS_ERR(cs)) { + i915_request_add(rq); + err = PTR_ERR(cs); + goto err; + } + + cs = emit_store_dw(cs, offset + i * sizeof(u32), -1); + cs = emit_semaphore_poll_until(cs, offset, i); + cs = emit_timestamp_store(cs, ce, offset + i * sizeof(u32)); + + intel_ring_advance(rq, cs); + + dma_fence_add_callback(&rq->fence, &cb.base, signal_cb); + i915_request_add(rq); + + intel_engine_flush_submission(ce->engine); + if (wait_for(READ_ONCE(sema[i]) == -1, 50)) { + err = -EIO; + goto err; + } + + preempt_disable(); + semaphore_set(sema, i); + while (!READ_ONCE(cb.seen)) + cpu_relax(); + + elapsed[i - 1] = ENGINE_READ_FW(ce->engine, RING_TIMESTAMP); + preempt_enable(); + } + + err = intel_gt_wait_for_idle(ce->engine->gt, HZ / 2); + if (err) + goto err; + + for (i = 0; i < ARRAY_SIZE(elapsed); i++) { + GEM_BUG_ON(sema[i + 1] == -1); + elapsed[i] = elapsed[i] - sema[i + 1]; + } + + cycles = trifilter(elapsed); + pr_info("%s: completion latency %d cycles, %lluns\n", + ce->engine->name, cycles >> TF_BIAS, + cycles_to_ns(ce->engine, cycles)); + + return intel_gt_wait_for_idle(ce->engine->gt, HZ); + +err: + intel_gt_set_wedged(ce->engine->gt); + return err; +} + +static void rps_pin(struct intel_gt *gt) +{ + /* Pin the frequency to max */ + atomic_inc(>->rps.num_waiters); + intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); + + mutex_lock(>->rps.lock); + intel_rps_set(>->rps, gt->rps.max_freq); + mutex_unlock(>->rps.lock); +} + +static void rps_unpin(struct intel_gt *gt) +{ + intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); + atomic_dec(>->rps.num_waiters); +} + +static int perf_request_latency(void *arg) +{ + struct drm_i915_private *i915 = arg; + struct intel_engine_cs *engine; + struct pm_qos_request qos; + int err = 0; + + if (GRAPHICS_VER(i915) < 8) /* per-engine CS timestamp, semaphores */ + return 0; + + cpu_latency_qos_add_request(&qos, 0); /* disable cstates */ + + for_each_uabi_engine(engine, i915) { + struct intel_context *ce; + + ce = intel_context_create(engine); + if (IS_ERR(ce)) { + err = PTR_ERR(ce); + goto out; + } + + err = intel_context_pin(ce); + if (err) { + intel_context_put(ce); + goto out; + } + + st_engine_heartbeat_disable(engine); + rps_pin(engine->gt); + + if (err == 0) + err = measure_semaphore_response(ce); + if (err == 0) + err = measure_idle_dispatch(ce); + if (err == 0) + err = measure_busy_dispatch(ce); + if (err == 0) + err = measure_inter_request(ce); + if (err == 0) + err = measure_context_switch(ce); + if (err == 0) + err = measure_preemption(ce); + if (err == 0) + err = measure_completion(ce); + + rps_unpin(engine->gt); + st_engine_heartbeat_enable(engine); + + intel_context_unpin(ce); + intel_context_put(ce); + if (err) + goto out; + } + +out: + if (igt_flush_test(i915)) + err = -EIO; + + cpu_latency_qos_remove_request(&qos); + return err; +} + +static int s_sync0(void *arg) +{ + struct perf_series *ps = arg; + IGT_TIMEOUT(end_time); + unsigned int idx = 0; + int err = 0; + + GEM_BUG_ON(!ps->nengines); + do { + struct i915_request *rq; + + rq = i915_request_create(ps->ce[idx]); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + break; + } + + i915_request_get(rq); + i915_request_add(rq); + + if (i915_request_wait(rq, 0, HZ / 5) < 0) + err = -ETIME; + i915_request_put(rq); + if (err) + break; + + if (++idx == ps->nengines) + idx = 0; + } while (!__igt_timeout(end_time, NULL)); + + return err; +} + +static int s_sync1(void *arg) +{ + struct perf_series *ps = arg; + struct i915_request *prev = NULL; + IGT_TIMEOUT(end_time); + unsigned int idx = 0; + int err = 0; + + GEM_BUG_ON(!ps->nengines); + do { + struct i915_request *rq; + + rq = i915_request_create(ps->ce[idx]); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + break; + } + + i915_request_get(rq); + i915_request_add(rq); + + if (prev && i915_request_wait(prev, 0, HZ / 5) < 0) + err = -ETIME; + i915_request_put(prev); + prev = rq; + if (err) + break; + + if (++idx == ps->nengines) + idx = 0; + } while (!__igt_timeout(end_time, NULL)); + i915_request_put(prev); + + return err; +} + +static int s_many(void *arg) +{ + struct perf_series *ps = arg; + IGT_TIMEOUT(end_time); + unsigned int idx = 0; + + GEM_BUG_ON(!ps->nengines); + do { + struct i915_request *rq; + + rq = i915_request_create(ps->ce[idx]); + if (IS_ERR(rq)) + return PTR_ERR(rq); + + i915_request_add(rq); + + if (++idx == ps->nengines) + idx = 0; + } while (!__igt_timeout(end_time, NULL)); + + return 0; +} + +static int perf_series_engines(void *arg) +{ + struct drm_i915_private *i915 = arg; + static int (* const func[])(void *arg) = { + s_sync0, + s_sync1, + s_many, + NULL, + }; + const unsigned int nengines = num_uabi_engines(i915); + struct intel_engine_cs *engine; + int (* const *fn)(void *arg); + struct pm_qos_request qos; + struct perf_stats *stats; + struct perf_series *ps; + unsigned int idx; + int err = 0; + + stats = kcalloc(nengines, sizeof(*stats), GFP_KERNEL); + if (!stats) + return -ENOMEM; + + ps = kzalloc(struct_size(ps, ce, nengines), GFP_KERNEL); + if (!ps) { + kfree(stats); + return -ENOMEM; + } + + cpu_latency_qos_add_request(&qos, 0); /* disable cstates */ + + ps->i915 = i915; + ps->nengines = nengines; + + idx = 0; + for_each_uabi_engine(engine, i915) { + struct intel_context *ce; + + ce = intel_context_create(engine); + if (IS_ERR(ce)) { + err = PTR_ERR(ce); + goto out; + } + + err = intel_context_pin(ce); + if (err) { + intel_context_put(ce); + goto out; + } + + ps->ce[idx++] = ce; + } + GEM_BUG_ON(idx != ps->nengines); + + for (fn = func; *fn && !err; fn++) { + char name[KSYM_NAME_LEN]; + struct igt_live_test t; + + snprintf(name, sizeof(name), "%ps", *fn); + err = igt_live_test_begin(&t, i915, __func__, name); + if (err) + break; + + for (idx = 0; idx < nengines; idx++) { + struct perf_stats *p = + memset(&stats[idx], 0, sizeof(stats[idx])); + struct intel_context *ce = ps->ce[idx]; + + p->engine = ps->ce[idx]->engine; + intel_engine_pm_get(p->engine); + + if (intel_engine_supports_stats(p->engine)) + p->busy = intel_engine_get_busy_time(p->engine, + &p->time) + 1; + else + p->time = ktime_get(); + p->runtime = -intel_context_get_total_runtime_ns(ce); + } + + err = (*fn)(ps); + if (igt_live_test_end(&t)) + err = -EIO; + + for (idx = 0; idx < nengines; idx++) { + struct perf_stats *p = &stats[idx]; + struct intel_context *ce = ps->ce[idx]; + int integer, decimal; + u64 busy, dt, now; + + if (p->busy) + p->busy = ktime_sub(intel_engine_get_busy_time(p->engine, + &now), + p->busy - 1); + else + now = ktime_get(); + p->time = ktime_sub(now, p->time); + + err = switch_to_kernel_sync(ce, err); + p->runtime += intel_context_get_total_runtime_ns(ce); + intel_engine_pm_put(p->engine); + + busy = 100 * ktime_to_ns(p->busy); + dt = ktime_to_ns(p->time); + if (dt) { + integer = div64_u64(busy, dt); + busy -= integer * dt; + decimal = div64_u64(100 * busy, dt); + } else { + integer = 0; + decimal = 0; + } + + pr_info("%s %5s: { seqno:%d, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n", + name, p->engine->name, ce->timeline->seqno, + integer, decimal, + div_u64(p->runtime, 1000 * 1000), + div_u64(ktime_to_ns(p->time), 1000 * 1000)); + } + } + +out: + for (idx = 0; idx < nengines; idx++) { + if (IS_ERR_OR_NULL(ps->ce[idx])) + break; + + intel_context_unpin(ps->ce[idx]); + intel_context_put(ps->ce[idx]); + } + kfree(ps); + + cpu_latency_qos_remove_request(&qos); + kfree(stats); + return err; +} + +struct p_thread { + struct perf_stats p; + struct kthread_worker *worker; + struct kthread_work work; + struct intel_engine_cs *engine; + int result; +}; + +static void p_sync0(struct kthread_work *work) +{ + struct p_thread *thread = container_of(work, typeof(*thread), work); + struct perf_stats *p = &thread->p; + struct intel_engine_cs *engine = p->engine; + struct intel_context *ce; + IGT_TIMEOUT(end_time); + unsigned long count; + bool busy; + int err = 0; + + ce = intel_context_create(engine); + if (IS_ERR(ce)) { + thread->result = PTR_ERR(ce); + return; + } + + err = intel_context_pin(ce); + if (err) { + intel_context_put(ce); + thread->result = err; + return; + } + + if (intel_engine_supports_stats(engine)) { + p->busy = intel_engine_get_busy_time(engine, &p->time); + busy = true; + } else { + p->time = ktime_get(); + busy = false; + } + + count = 0; + do { + struct i915_request *rq; + + rq = i915_request_create(ce); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + break; + } + + i915_request_get(rq); + i915_request_add(rq); + + err = 0; + if (i915_request_wait(rq, 0, HZ) < 0) + err = -ETIME; + i915_request_put(rq); + if (err) + break; + + count++; + } while (!__igt_timeout(end_time, NULL)); + + if (busy) { + ktime_t now; + + p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now), + p->busy); + p->time = ktime_sub(now, p->time); + } else { + p->time = ktime_sub(ktime_get(), p->time); + } + + err = switch_to_kernel_sync(ce, err); + p->runtime = intel_context_get_total_runtime_ns(ce); + p->count = count; + + intel_context_unpin(ce); + intel_context_put(ce); + thread->result = err; +} + +static void p_sync1(struct kthread_work *work) +{ + struct p_thread *thread = container_of(work, typeof(*thread), work); + struct perf_stats *p = &thread->p; + struct intel_engine_cs *engine = p->engine; + struct i915_request *prev = NULL; + struct intel_context *ce; + IGT_TIMEOUT(end_time); + unsigned long count; + bool busy; + int err = 0; + + ce = intel_context_create(engine); + if (IS_ERR(ce)) { + thread->result = PTR_ERR(ce); + return; + } + + err = intel_context_pin(ce); + if (err) { + intel_context_put(ce); + thread->result = err; + return; + } + + if (intel_engine_supports_stats(engine)) { + p->busy = intel_engine_get_busy_time(engine, &p->time); + busy = true; + } else { + p->time = ktime_get(); + busy = false; + } + + count = 0; + do { + struct i915_request *rq; + + rq = i915_request_create(ce); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + break; + } + + i915_request_get(rq); + i915_request_add(rq); + + err = 0; + if (prev && i915_request_wait(prev, 0, HZ) < 0) + err = -ETIME; + i915_request_put(prev); + prev = rq; + if (err) + break; + + count++; + } while (!__igt_timeout(end_time, NULL)); + i915_request_put(prev); + + if (busy) { + ktime_t now; + + p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now), + p->busy); + p->time = ktime_sub(now, p->time); + } else { + p->time = ktime_sub(ktime_get(), p->time); + } + + err = switch_to_kernel_sync(ce, err); + p->runtime = intel_context_get_total_runtime_ns(ce); + p->count = count; + + intel_context_unpin(ce); + intel_context_put(ce); + thread->result = err; +} + +static void p_many(struct kthread_work *work) +{ + struct p_thread *thread = container_of(work, typeof(*thread), work); + struct perf_stats *p = &thread->p; + struct intel_engine_cs *engine = p->engine; + struct intel_context *ce; + IGT_TIMEOUT(end_time); + unsigned long count; + int err = 0; + bool busy; + + ce = intel_context_create(engine); + if (IS_ERR(ce)) { + thread->result = PTR_ERR(ce); + return; + } + + err = intel_context_pin(ce); + if (err) { + intel_context_put(ce); + thread->result = err; + return; + } + + if (intel_engine_supports_stats(engine)) { + p->busy = intel_engine_get_busy_time(engine, &p->time); + busy = true; + } else { + p->time = ktime_get(); + busy = false; + } + + count = 0; + do { + struct i915_request *rq; + + rq = i915_request_create(ce); + if (IS_ERR(rq)) { + err = PTR_ERR(rq); + break; + } + + i915_request_add(rq); + count++; + } while (!__igt_timeout(end_time, NULL)); + + if (busy) { + ktime_t now; + + p->busy = ktime_sub(intel_engine_get_busy_time(engine, &now), + p->busy); + p->time = ktime_sub(now, p->time); + } else { + p->time = ktime_sub(ktime_get(), p->time); + } + + err = switch_to_kernel_sync(ce, err); + p->runtime = intel_context_get_total_runtime_ns(ce); + p->count = count; + + intel_context_unpin(ce); + intel_context_put(ce); + thread->result = err; +} + +static int perf_parallel_engines(void *arg) +{ + struct drm_i915_private *i915 = arg; + static void (* const func[])(struct kthread_work *) = { + p_sync0, + p_sync1, + p_many, + NULL, + }; + const unsigned int nengines = num_uabi_engines(i915); + void (* const *fn)(struct kthread_work *); + struct intel_engine_cs *engine; + struct pm_qos_request qos; + struct p_thread *engines; + int err = 0; + + engines = kcalloc(nengines, sizeof(*engines), GFP_KERNEL); + if (!engines) + return -ENOMEM; + + cpu_latency_qos_add_request(&qos, 0); + + for (fn = func; *fn; fn++) { + char name[KSYM_NAME_LEN]; + struct igt_live_test t; + unsigned int idx; + + snprintf(name, sizeof(name), "%ps", *fn); + err = igt_live_test_begin(&t, i915, __func__, name); + if (err) + break; + + atomic_set(&i915->selftest.counter, nengines); + + idx = 0; + for_each_uabi_engine(engine, i915) { + struct kthread_worker *worker; + + intel_engine_pm_get(engine); + + memset(&engines[idx].p, 0, sizeof(engines[idx].p)); + + worker = kthread_create_worker(0, "igt:%s", + engine->name); + if (IS_ERR(worker)) { + err = PTR_ERR(worker); + intel_engine_pm_put(engine); + break; + } + engines[idx].worker = worker; + engines[idx].result = 0; + engines[idx].p.engine = engine; + engines[idx].engine = engine; + + kthread_init_work(&engines[idx].work, *fn); + kthread_queue_work(worker, &engines[idx].work); + idx++; + } + + idx = 0; + for_each_uabi_engine(engine, i915) { + int status; + + if (!engines[idx].worker) + break; + + kthread_flush_work(&engines[idx].work); + status = READ_ONCE(engines[idx].result); + if (status && !err) + err = status; + + intel_engine_pm_put(engine); + + kthread_destroy_worker(engines[idx].worker); + idx++; + } + + if (igt_live_test_end(&t)) + err = -EIO; + if (err) + break; + + idx = 0; + for_each_uabi_engine(engine, i915) { + struct perf_stats *p = &engines[idx].p; + u64 busy = 100 * ktime_to_ns(p->busy); + u64 dt = ktime_to_ns(p->time); + int integer, decimal; + + if (dt) { + integer = div64_u64(busy, dt); + busy -= integer * dt; + decimal = div64_u64(100 * busy, dt); + } else { + integer = 0; + decimal = 0; + } + + GEM_BUG_ON(engine != p->engine); + pr_info("%s %5s: { count:%lu, busy:%d.%02d%%, runtime:%lldms, walltime:%lldms }\n", + name, engine->name, p->count, integer, decimal, + div_u64(p->runtime, 1000 * 1000), + div_u64(ktime_to_ns(p->time), 1000 * 1000)); + idx++; + } + } + + cpu_latency_qos_remove_request(&qos); + kfree(engines); + return err; +} + +int i915_request_perf_selftests(struct drm_i915_private *i915) +{ + static const struct i915_subtest tests[] = { + SUBTEST(perf_request_latency), + SUBTEST(perf_series_engines), + SUBTEST(perf_parallel_engines), + }; + + if (intel_gt_is_wedged(to_gt(i915))) + return 0; + + return i915_subtests(tests, i915); +} |