summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk104.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk104.c')
-rw-r--r--drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk104.c517
1 files changed, 517 insertions, 0 deletions
diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk104.c b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk104.c
new file mode 100644
index 000000000..0d8e2ddcc
--- /dev/null
+++ b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gk104.c
@@ -0,0 +1,517 @@
+/*
+ * Copyright 2013 Red Hat Inc.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a
+ * copy of this software and associated documentation files (the "Software"),
+ * to deal in the Software without restriction, including without limitation
+ * the rights to use, copy, modify, merge, publish, distribute, sublicense,
+ * and/or sell copies of the Software, and to permit persons to whom the
+ * Software is furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
+ * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+ * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+ * OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * Authors: Ben Skeggs
+ */
+#define gk104_clk(p) container_of((p), struct gk104_clk, base)
+#include "priv.h"
+#include "pll.h"
+
+#include <subdev/timer.h>
+#include <subdev/bios.h>
+#include <subdev/bios/pll.h>
+
+struct gk104_clk_info {
+ u32 freq;
+ u32 ssel;
+ u32 mdiv;
+ u32 dsrc;
+ u32 ddiv;
+ u32 coef;
+};
+
+struct gk104_clk {
+ struct nvkm_clk base;
+ struct gk104_clk_info eng[16];
+};
+
+static u32 read_div(struct gk104_clk *, int, u32, u32);
+static u32 read_pll(struct gk104_clk *, u32);
+
+static u32
+read_vco(struct gk104_clk *clk, u32 dsrc)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+ u32 ssrc = nvkm_rd32(device, dsrc);
+ if (!(ssrc & 0x00000100))
+ return read_pll(clk, 0x00e800);
+ return read_pll(clk, 0x00e820);
+}
+
+static u32
+read_pll(struct gk104_clk *clk, u32 pll)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+ u32 ctrl = nvkm_rd32(device, pll + 0x00);
+ u32 coef = nvkm_rd32(device, pll + 0x04);
+ u32 P = (coef & 0x003f0000) >> 16;
+ u32 N = (coef & 0x0000ff00) >> 8;
+ u32 M = (coef & 0x000000ff) >> 0;
+ u32 sclk;
+ u16 fN = 0xf000;
+
+ if (!(ctrl & 0x00000001))
+ return 0;
+
+ switch (pll) {
+ case 0x00e800:
+ case 0x00e820:
+ sclk = device->crystal;
+ P = 1;
+ break;
+ case 0x132000:
+ sclk = read_pll(clk, 0x132020);
+ P = (coef & 0x10000000) ? 2 : 1;
+ break;
+ case 0x132020:
+ sclk = read_div(clk, 0, 0x137320, 0x137330);
+ fN = nvkm_rd32(device, pll + 0x10) >> 16;
+ break;
+ case 0x137000:
+ case 0x137020:
+ case 0x137040:
+ case 0x1370e0:
+ sclk = read_div(clk, (pll & 0xff) / 0x20, 0x137120, 0x137140);
+ break;
+ default:
+ return 0;
+ }
+
+ if (P == 0)
+ P = 1;
+
+ sclk = (sclk * N) + (((u16)(fN + 4096) * sclk) >> 13);
+ return sclk / (M * P);
+}
+
+static u32
+read_div(struct gk104_clk *clk, int doff, u32 dsrc, u32 dctl)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+ u32 ssrc = nvkm_rd32(device, dsrc + (doff * 4));
+ u32 sctl = nvkm_rd32(device, dctl + (doff * 4));
+
+ switch (ssrc & 0x00000003) {
+ case 0:
+ if ((ssrc & 0x00030000) != 0x00030000)
+ return device->crystal;
+ return 108000;
+ case 2:
+ return 100000;
+ case 3:
+ if (sctl & 0x80000000) {
+ u32 sclk = read_vco(clk, dsrc + (doff * 4));
+ u32 sdiv = (sctl & 0x0000003f) + 2;
+ return (sclk * 2) / sdiv;
+ }
+
+ return read_vco(clk, dsrc + (doff * 4));
+ default:
+ return 0;
+ }
+}
+
+static u32
+read_mem(struct gk104_clk *clk)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+ switch (nvkm_rd32(device, 0x1373f4) & 0x0000000f) {
+ case 1: return read_pll(clk, 0x132020);
+ case 2: return read_pll(clk, 0x132000);
+ default:
+ return 0;
+ }
+}
+
+static u32
+read_clk(struct gk104_clk *clk, int idx)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+ u32 sctl = nvkm_rd32(device, 0x137250 + (idx * 4));
+ u32 sclk, sdiv;
+
+ if (idx < 7) {
+ u32 ssel = nvkm_rd32(device, 0x137100);
+ if (ssel & (1 << idx)) {
+ sclk = read_pll(clk, 0x137000 + (idx * 0x20));
+ sdiv = 1;
+ } else {
+ sclk = read_div(clk, idx, 0x137160, 0x1371d0);
+ sdiv = 0;
+ }
+ } else {
+ u32 ssrc = nvkm_rd32(device, 0x137160 + (idx * 0x04));
+ if ((ssrc & 0x00000003) == 0x00000003) {
+ sclk = read_div(clk, idx, 0x137160, 0x1371d0);
+ if (ssrc & 0x00000100) {
+ if (ssrc & 0x40000000)
+ sclk = read_pll(clk, 0x1370e0);
+ sdiv = 1;
+ } else {
+ sdiv = 0;
+ }
+ } else {
+ sclk = read_div(clk, idx, 0x137160, 0x1371d0);
+ sdiv = 0;
+ }
+ }
+
+ if (sctl & 0x80000000) {
+ if (sdiv)
+ sdiv = ((sctl & 0x00003f00) >> 8) + 2;
+ else
+ sdiv = ((sctl & 0x0000003f) >> 0) + 2;
+ return (sclk * 2) / sdiv;
+ }
+
+ return sclk;
+}
+
+static int
+gk104_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
+{
+ struct gk104_clk *clk = gk104_clk(base);
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ struct nvkm_device *device = subdev->device;
+
+ switch (src) {
+ case nv_clk_src_crystal:
+ return device->crystal;
+ case nv_clk_src_href:
+ return 100000;
+ case nv_clk_src_mem:
+ return read_mem(clk);
+ case nv_clk_src_gpc:
+ return read_clk(clk, 0x00);
+ case nv_clk_src_rop:
+ return read_clk(clk, 0x01);
+ case nv_clk_src_hubk07:
+ return read_clk(clk, 0x02);
+ case nv_clk_src_hubk06:
+ return read_clk(clk, 0x07);
+ case nv_clk_src_hubk01:
+ return read_clk(clk, 0x08);
+ case nv_clk_src_pmu:
+ return read_clk(clk, 0x0c);
+ case nv_clk_src_vdec:
+ return read_clk(clk, 0x0e);
+ default:
+ nvkm_error(subdev, "invalid clock source %d\n", src);
+ return -EINVAL;
+ }
+}
+
+static u32
+calc_div(struct gk104_clk *clk, int idx, u32 ref, u32 freq, u32 *ddiv)
+{
+ u32 div = min((ref * 2) / freq, (u32)65);
+ if (div < 2)
+ div = 2;
+
+ *ddiv = div - 2;
+ return (ref * 2) / div;
+}
+
+static u32
+calc_src(struct gk104_clk *clk, int idx, u32 freq, u32 *dsrc, u32 *ddiv)
+{
+ u32 sclk;
+
+ /* use one of the fixed frequencies if possible */
+ *ddiv = 0x00000000;
+ switch (freq) {
+ case 27000:
+ case 108000:
+ *dsrc = 0x00000000;
+ if (freq == 108000)
+ *dsrc |= 0x00030000;
+ return freq;
+ case 100000:
+ *dsrc = 0x00000002;
+ return freq;
+ default:
+ *dsrc = 0x00000003;
+ break;
+ }
+
+ /* otherwise, calculate the closest divider */
+ sclk = read_vco(clk, 0x137160 + (idx * 4));
+ if (idx < 7)
+ sclk = calc_div(clk, idx, sclk, freq, ddiv);
+ return sclk;
+}
+
+static u32
+calc_pll(struct gk104_clk *clk, int idx, u32 freq, u32 *coef)
+{
+ struct nvkm_subdev *subdev = &clk->base.subdev;
+ struct nvkm_bios *bios = subdev->device->bios;
+ struct nvbios_pll limits;
+ int N, M, P, ret;
+
+ ret = nvbios_pll_parse(bios, 0x137000 + (idx * 0x20), &limits);
+ if (ret)
+ return 0;
+
+ limits.refclk = read_div(clk, idx, 0x137120, 0x137140);
+ if (!limits.refclk)
+ return 0;
+
+ ret = gt215_pll_calc(subdev, &limits, freq, &N, NULL, &M, &P);
+ if (ret <= 0)
+ return 0;
+
+ *coef = (P << 16) | (N << 8) | M;
+ return ret;
+}
+
+static int
+calc_clk(struct gk104_clk *clk,
+ struct nvkm_cstate *cstate, int idx, int dom)
+{
+ struct gk104_clk_info *info = &clk->eng[idx];
+ u32 freq = cstate->domain[dom];
+ u32 src0, div0, div1D, div1P = 0;
+ u32 clk0, clk1 = 0;
+
+ /* invalid clock domain */
+ if (!freq)
+ return 0;
+
+ /* first possible path, using only dividers */
+ clk0 = calc_src(clk, idx, freq, &src0, &div0);
+ clk0 = calc_div(clk, idx, clk0, freq, &div1D);
+
+ /* see if we can get any closer using PLLs */
+ if (clk0 != freq && (0x0000ff87 & (1 << idx))) {
+ if (idx <= 7)
+ clk1 = calc_pll(clk, idx, freq, &info->coef);
+ else
+ clk1 = cstate->domain[nv_clk_src_hubk06];
+ clk1 = calc_div(clk, idx, clk1, freq, &div1P);
+ }
+
+ /* select the method which gets closest to target freq */
+ if (abs((int)freq - clk0) <= abs((int)freq - clk1)) {
+ info->dsrc = src0;
+ if (div0) {
+ info->ddiv |= 0x80000000;
+ info->ddiv |= div0;
+ }
+ if (div1D) {
+ info->mdiv |= 0x80000000;
+ info->mdiv |= div1D;
+ }
+ info->ssel = 0;
+ info->freq = clk0;
+ } else {
+ if (div1P) {
+ info->mdiv |= 0x80000000;
+ info->mdiv |= div1P << 8;
+ }
+ info->ssel = (1 << idx);
+ info->dsrc = 0x40000100;
+ info->freq = clk1;
+ }
+
+ return 0;
+}
+
+static int
+gk104_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
+{
+ struct gk104_clk *clk = gk104_clk(base);
+ int ret;
+
+ if ((ret = calc_clk(clk, cstate, 0x00, nv_clk_src_gpc)) ||
+ (ret = calc_clk(clk, cstate, 0x01, nv_clk_src_rop)) ||
+ (ret = calc_clk(clk, cstate, 0x02, nv_clk_src_hubk07)) ||
+ (ret = calc_clk(clk, cstate, 0x07, nv_clk_src_hubk06)) ||
+ (ret = calc_clk(clk, cstate, 0x08, nv_clk_src_hubk01)) ||
+ (ret = calc_clk(clk, cstate, 0x0c, nv_clk_src_pmu)) ||
+ (ret = calc_clk(clk, cstate, 0x0e, nv_clk_src_vdec)))
+ return ret;
+
+ return 0;
+}
+
+static void
+gk104_clk_prog_0(struct gk104_clk *clk, int idx)
+{
+ struct gk104_clk_info *info = &clk->eng[idx];
+ struct nvkm_device *device = clk->base.subdev.device;
+ if (!info->ssel) {
+ nvkm_mask(device, 0x1371d0 + (idx * 0x04), 0x8000003f, info->ddiv);
+ nvkm_wr32(device, 0x137160 + (idx * 0x04), info->dsrc);
+ }
+}
+
+static void
+gk104_clk_prog_1_0(struct gk104_clk *clk, int idx)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+ nvkm_mask(device, 0x137100, (1 << idx), 0x00000000);
+ nvkm_msec(device, 2000,
+ if (!(nvkm_rd32(device, 0x137100) & (1 << idx)))
+ break;
+ );
+}
+
+static void
+gk104_clk_prog_1_1(struct gk104_clk *clk, int idx)
+{
+ struct nvkm_device *device = clk->base.subdev.device;
+ nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000000);
+}
+
+static void
+gk104_clk_prog_2(struct gk104_clk *clk, int idx)
+{
+ struct gk104_clk_info *info = &clk->eng[idx];
+ struct nvkm_device *device = clk->base.subdev.device;
+ const u32 addr = 0x137000 + (idx * 0x20);
+ nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000000);
+ nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000000);
+ if (info->coef) {
+ nvkm_wr32(device, addr + 0x04, info->coef);
+ nvkm_mask(device, addr + 0x00, 0x00000001, 0x00000001);
+
+ /* Test PLL lock */
+ nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000000);
+ nvkm_msec(device, 2000,
+ if (nvkm_rd32(device, addr + 0x00) & 0x00020000)
+ break;
+ );
+ nvkm_mask(device, addr + 0x00, 0x00000010, 0x00000010);
+
+ /* Enable sync mode */
+ nvkm_mask(device, addr + 0x00, 0x00000004, 0x00000004);
+ }
+}
+
+static void
+gk104_clk_prog_3(struct gk104_clk *clk, int idx)
+{
+ struct gk104_clk_info *info = &clk->eng[idx];
+ struct nvkm_device *device = clk->base.subdev.device;
+ if (info->ssel)
+ nvkm_mask(device, 0x137250 + (idx * 0x04), 0x00003f00, info->mdiv);
+ else
+ nvkm_mask(device, 0x137250 + (idx * 0x04), 0x0000003f, info->mdiv);
+}
+
+static void
+gk104_clk_prog_4_0(struct gk104_clk *clk, int idx)
+{
+ struct gk104_clk_info *info = &clk->eng[idx];
+ struct nvkm_device *device = clk->base.subdev.device;
+ if (info->ssel) {
+ nvkm_mask(device, 0x137100, (1 << idx), info->ssel);
+ nvkm_msec(device, 2000,
+ u32 tmp = nvkm_rd32(device, 0x137100) & (1 << idx);
+ if (tmp == info->ssel)
+ break;
+ );
+ }
+}
+
+static void
+gk104_clk_prog_4_1(struct gk104_clk *clk, int idx)
+{
+ struct gk104_clk_info *info = &clk->eng[idx];
+ struct nvkm_device *device = clk->base.subdev.device;
+ if (info->ssel) {
+ nvkm_mask(device, 0x137160 + (idx * 0x04), 0x40000000, 0x40000000);
+ nvkm_mask(device, 0x137160 + (idx * 0x04), 0x00000100, 0x00000100);
+ }
+}
+
+static int
+gk104_clk_prog(struct nvkm_clk *base)
+{
+ struct gk104_clk *clk = gk104_clk(base);
+ struct {
+ u32 mask;
+ void (*exec)(struct gk104_clk *, int);
+ } stage[] = {
+ { 0x007f, gk104_clk_prog_0 }, /* div programming */
+ { 0x007f, gk104_clk_prog_1_0 }, /* select div mode */
+ { 0xff80, gk104_clk_prog_1_1 },
+ { 0x00ff, gk104_clk_prog_2 }, /* (maybe) program pll */
+ { 0xff80, gk104_clk_prog_3 }, /* final divider */
+ { 0x007f, gk104_clk_prog_4_0 }, /* (maybe) select pll mode */
+ { 0xff80, gk104_clk_prog_4_1 },
+ };
+ int i, j;
+
+ for (i = 0; i < ARRAY_SIZE(stage); i++) {
+ for (j = 0; j < ARRAY_SIZE(clk->eng); j++) {
+ if (!(stage[i].mask & (1 << j)))
+ continue;
+ if (!clk->eng[j].freq)
+ continue;
+ stage[i].exec(clk, j);
+ }
+ }
+
+ return 0;
+}
+
+static void
+gk104_clk_tidy(struct nvkm_clk *base)
+{
+ struct gk104_clk *clk = gk104_clk(base);
+ memset(clk->eng, 0x00, sizeof(clk->eng));
+}
+
+static const struct nvkm_clk_func
+gk104_clk = {
+ .read = gk104_clk_read,
+ .calc = gk104_clk_calc,
+ .prog = gk104_clk_prog,
+ .tidy = gk104_clk_tidy,
+ .domains = {
+ { nv_clk_src_crystal, 0xff },
+ { nv_clk_src_href , 0xff },
+ { nv_clk_src_gpc , 0x00, NVKM_CLK_DOM_FLAG_CORE | NVKM_CLK_DOM_FLAG_VPSTATE, "core", 2000 },
+ { nv_clk_src_hubk07 , 0x01, NVKM_CLK_DOM_FLAG_CORE },
+ { nv_clk_src_rop , 0x02, NVKM_CLK_DOM_FLAG_CORE },
+ { nv_clk_src_mem , 0x03, 0, "memory", 500 },
+ { nv_clk_src_hubk06 , 0x04, NVKM_CLK_DOM_FLAG_CORE },
+ { nv_clk_src_hubk01 , 0x05 },
+ { nv_clk_src_vdec , 0x06 },
+ { nv_clk_src_pmu , 0x07 },
+ { nv_clk_src_max }
+ }
+};
+
+int
+gk104_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst,
+ struct nvkm_clk **pclk)
+{
+ struct gk104_clk *clk;
+
+ if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
+ return -ENOMEM;
+ *pclk = &clk->base;
+
+ return nvkm_clk_ctor(&gk104_clk, device, type, inst, true, &clk->base);
+}