diff options
Diffstat (limited to 'drivers/gpu/drm/nouveau/nvkm/subdev/clk/gm20b.c')
-rw-r--r-- | drivers/gpu/drm/nouveau/nvkm/subdev/clk/gm20b.c | 1071 |
1 files changed, 1071 insertions, 0 deletions
diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gm20b.c b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gm20b.c new file mode 100644 index 000000000..7c33542f6 --- /dev/null +++ b/drivers/gpu/drm/nouveau/nvkm/subdev/clk/gm20b.c @@ -0,0 +1,1071 @@ +/* + * Copyright (c) 2016, NVIDIA CORPORATION. All rights reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a + * copy of this software and associated documentation files (the "Software"), + * to deal in the Software without restriction, including without limitation + * the rights to use, copy, modify, merge, publish, distribute, sublicense, + * and/or sell copies of the Software, and to permit persons to whom the + * Software is furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in + * all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL + * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING + * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + * DEALINGS IN THE SOFTWARE. + */ + +#include <subdev/clk.h> +#include <subdev/volt.h> +#include <subdev/timer.h> +#include <core/device.h> +#include <core/tegra.h> + +#include "priv.h" +#include "gk20a.h" + +#define GPCPLL_CFG_SYNC_MODE BIT(2) + +#define BYPASSCTRL_SYS (SYS_GPCPLL_CFG_BASE + 0x340) +#define BYPASSCTRL_SYS_GPCPLL_SHIFT 0 +#define BYPASSCTRL_SYS_GPCPLL_WIDTH 1 + +#define GPCPLL_CFG2_SDM_DIN_SHIFT 0 +#define GPCPLL_CFG2_SDM_DIN_WIDTH 8 +#define GPCPLL_CFG2_SDM_DIN_MASK \ + (MASK(GPCPLL_CFG2_SDM_DIN_WIDTH) << GPCPLL_CFG2_SDM_DIN_SHIFT) +#define GPCPLL_CFG2_SDM_DIN_NEW_SHIFT 8 +#define GPCPLL_CFG2_SDM_DIN_NEW_WIDTH 15 +#define GPCPLL_CFG2_SDM_DIN_NEW_MASK \ + (MASK(GPCPLL_CFG2_SDM_DIN_NEW_WIDTH) << GPCPLL_CFG2_SDM_DIN_NEW_SHIFT) +#define GPCPLL_CFG2_SETUP2_SHIFT 16 +#define GPCPLL_CFG2_PLL_STEPA_SHIFT 24 + +#define GPCPLL_DVFS0 (SYS_GPCPLL_CFG_BASE + 0x10) +#define GPCPLL_DVFS0_DFS_COEFF_SHIFT 0 +#define GPCPLL_DVFS0_DFS_COEFF_WIDTH 7 +#define GPCPLL_DVFS0_DFS_COEFF_MASK \ + (MASK(GPCPLL_DVFS0_DFS_COEFF_WIDTH) << GPCPLL_DVFS0_DFS_COEFF_SHIFT) +#define GPCPLL_DVFS0_DFS_DET_MAX_SHIFT 8 +#define GPCPLL_DVFS0_DFS_DET_MAX_WIDTH 7 +#define GPCPLL_DVFS0_DFS_DET_MAX_MASK \ + (MASK(GPCPLL_DVFS0_DFS_DET_MAX_WIDTH) << GPCPLL_DVFS0_DFS_DET_MAX_SHIFT) + +#define GPCPLL_DVFS1 (SYS_GPCPLL_CFG_BASE + 0x14) +#define GPCPLL_DVFS1_DFS_EXT_DET_SHIFT 0 +#define GPCPLL_DVFS1_DFS_EXT_DET_WIDTH 7 +#define GPCPLL_DVFS1_DFS_EXT_STRB_SHIFT 7 +#define GPCPLL_DVFS1_DFS_EXT_STRB_WIDTH 1 +#define GPCPLL_DVFS1_DFS_EXT_CAL_SHIFT 8 +#define GPCPLL_DVFS1_DFS_EXT_CAL_WIDTH 7 +#define GPCPLL_DVFS1_DFS_EXT_SEL_SHIFT 15 +#define GPCPLL_DVFS1_DFS_EXT_SEL_WIDTH 1 +#define GPCPLL_DVFS1_DFS_CTRL_SHIFT 16 +#define GPCPLL_DVFS1_DFS_CTRL_WIDTH 12 +#define GPCPLL_DVFS1_EN_SDM_SHIFT 28 +#define GPCPLL_DVFS1_EN_SDM_WIDTH 1 +#define GPCPLL_DVFS1_EN_SDM_BIT BIT(28) +#define GPCPLL_DVFS1_EN_DFS_SHIFT 29 +#define GPCPLL_DVFS1_EN_DFS_WIDTH 1 +#define GPCPLL_DVFS1_EN_DFS_BIT BIT(29) +#define GPCPLL_DVFS1_EN_DFS_CAL_SHIFT 30 +#define GPCPLL_DVFS1_EN_DFS_CAL_WIDTH 1 +#define GPCPLL_DVFS1_EN_DFS_CAL_BIT BIT(30) +#define GPCPLL_DVFS1_DFS_CAL_DONE_SHIFT 31 +#define GPCPLL_DVFS1_DFS_CAL_DONE_WIDTH 1 +#define GPCPLL_DVFS1_DFS_CAL_DONE_BIT BIT(31) + +#define GPC_BCAST_GPCPLL_DVFS2 (GPC_BCAST_GPCPLL_CFG_BASE + 0x20) +#define GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT BIT(16) + +#define GPCPLL_CFG3_PLL_DFS_TESTOUT_SHIFT 24 +#define GPCPLL_CFG3_PLL_DFS_TESTOUT_WIDTH 7 + +#define DFS_DET_RANGE 6 /* -2^6 ... 2^6-1 */ +#define SDM_DIN_RANGE 12 /* -2^12 ... 2^12-1 */ + +struct gm20b_clk_dvfs_params { + s32 coeff_slope; + s32 coeff_offs; + u32 vco_ctrl; +}; + +static const struct gm20b_clk_dvfs_params gm20b_dvfs_params = { + .coeff_slope = -165230, + .coeff_offs = 214007, + .vco_ctrl = 0x7 << 3, +}; + +/* + * base.n is now the *integer* part of the N factor. + * sdm_din contains n's decimal part. + */ +struct gm20b_pll { + struct gk20a_pll base; + u32 sdm_din; +}; + +struct gm20b_clk_dvfs { + u32 dfs_coeff; + s32 dfs_det_max; + s32 dfs_ext_cal; +}; + +struct gm20b_clk { + /* currently applied parameters */ + struct gk20a_clk base; + struct gm20b_clk_dvfs dvfs; + u32 uv; + + /* new parameters to apply */ + struct gk20a_pll new_pll; + struct gm20b_clk_dvfs new_dvfs; + u32 new_uv; + + const struct gm20b_clk_dvfs_params *dvfs_params; + + /* fused parameters */ + s32 uvdet_slope; + s32 uvdet_offs; + + /* safe frequency we can use at minimum voltage */ + u32 safe_fmax_vmin; +}; +#define gm20b_clk(p) container_of((gk20a_clk(p)), struct gm20b_clk, base) + +static u32 pl_to_div(u32 pl) +{ + return pl; +} + +static u32 div_to_pl(u32 div) +{ + return div; +} + +static const struct gk20a_clk_pllg_params gm20b_pllg_params = { + .min_vco = 1300000, .max_vco = 2600000, + .min_u = 12000, .max_u = 38400, + .min_m = 1, .max_m = 255, + .min_n = 8, .max_n = 255, + .min_pl = 1, .max_pl = 31, +}; + +static void +gm20b_pllg_read_mnp(struct gm20b_clk *clk, struct gm20b_pll *pll) +{ + struct nvkm_subdev *subdev = &clk->base.base.subdev; + struct nvkm_device *device = subdev->device; + u32 val; + + gk20a_pllg_read_mnp(&clk->base, &pll->base); + val = nvkm_rd32(device, GPCPLL_CFG2); + pll->sdm_din = (val >> GPCPLL_CFG2_SDM_DIN_SHIFT) & + MASK(GPCPLL_CFG2_SDM_DIN_WIDTH); +} + +static void +gm20b_pllg_write_mnp(struct gm20b_clk *clk, const struct gm20b_pll *pll) +{ + struct nvkm_device *device = clk->base.base.subdev.device; + + nvkm_mask(device, GPCPLL_CFG2, GPCPLL_CFG2_SDM_DIN_MASK, + pll->sdm_din << GPCPLL_CFG2_SDM_DIN_SHIFT); + gk20a_pllg_write_mnp(&clk->base, &pll->base); +} + +/* + * Determine DFS_COEFF for the requested voltage. Always select external + * calibration override equal to the voltage, and set maximum detection + * limit "0" (to make sure that PLL output remains under F/V curve when + * voltage increases). + */ +static void +gm20b_dvfs_calc_det_coeff(struct gm20b_clk *clk, s32 uv, + struct gm20b_clk_dvfs *dvfs) +{ + struct nvkm_subdev *subdev = &clk->base.base.subdev; + const struct gm20b_clk_dvfs_params *p = clk->dvfs_params; + u32 coeff; + /* Work with mv as uv would likely trigger an overflow */ + s32 mv = DIV_ROUND_CLOSEST(uv, 1000); + + /* coeff = slope * voltage + offset */ + coeff = DIV_ROUND_CLOSEST(mv * p->coeff_slope, 1000) + p->coeff_offs; + coeff = DIV_ROUND_CLOSEST(coeff, 1000); + dvfs->dfs_coeff = min_t(u32, coeff, MASK(GPCPLL_DVFS0_DFS_COEFF_WIDTH)); + + dvfs->dfs_ext_cal = DIV_ROUND_CLOSEST(uv - clk->uvdet_offs, + clk->uvdet_slope); + /* should never happen */ + if (abs(dvfs->dfs_ext_cal) >= BIT(DFS_DET_RANGE)) + nvkm_error(subdev, "dfs_ext_cal overflow!\n"); + + dvfs->dfs_det_max = 0; + + nvkm_debug(subdev, "%s uv: %d coeff: %x, ext_cal: %d, det_max: %d\n", + __func__, uv, dvfs->dfs_coeff, dvfs->dfs_ext_cal, + dvfs->dfs_det_max); +} + +/* + * Solve equation for integer and fractional part of the effective NDIV: + * + * n_eff = n_int + 1/2 + (SDM_DIN / 2^(SDM_DIN_RANGE + 1)) + + * (DVFS_COEFF * DVFS_DET_DELTA) / 2^DFS_DET_RANGE + * + * The SDM_DIN LSB is finally shifted out, since it is not accessible by sw. + */ +static void +gm20b_dvfs_calc_ndiv(struct gm20b_clk *clk, u32 n_eff, u32 *n_int, u32 *sdm_din) +{ + struct nvkm_subdev *subdev = &clk->base.base.subdev; + const struct gk20a_clk_pllg_params *p = clk->base.params; + u32 n; + s32 det_delta; + u32 rem, rem_range; + + /* calculate current ext_cal and subtract previous one */ + det_delta = DIV_ROUND_CLOSEST(((s32)clk->uv) - clk->uvdet_offs, + clk->uvdet_slope); + det_delta -= clk->dvfs.dfs_ext_cal; + det_delta = min(det_delta, clk->dvfs.dfs_det_max); + det_delta *= clk->dvfs.dfs_coeff; + + /* integer part of n */ + n = (n_eff << DFS_DET_RANGE) - det_delta; + /* should never happen! */ + if (n <= 0) { + nvkm_error(subdev, "ndiv <= 0 - setting to 1...\n"); + n = 1 << DFS_DET_RANGE; + } + if (n >> DFS_DET_RANGE > p->max_n) { + nvkm_error(subdev, "ndiv > max_n - setting to max_n...\n"); + n = p->max_n << DFS_DET_RANGE; + } + *n_int = n >> DFS_DET_RANGE; + + /* fractional part of n */ + rem = ((u32)n) & MASK(DFS_DET_RANGE); + rem_range = SDM_DIN_RANGE + 1 - DFS_DET_RANGE; + /* subtract 2^SDM_DIN_RANGE to account for the 1/2 of the equation */ + rem = (rem << rem_range) - BIT(SDM_DIN_RANGE); + /* lose 8 LSB and clip - sdm_din only keeps the most significant byte */ + *sdm_din = (rem >> BITS_PER_BYTE) & MASK(GPCPLL_CFG2_SDM_DIN_WIDTH); + + nvkm_debug(subdev, "%s n_eff: %d, n_int: %d, sdm_din: %d\n", __func__, + n_eff, *n_int, *sdm_din); +} + +static int +gm20b_pllg_slide(struct gm20b_clk *clk, u32 n) +{ + struct nvkm_subdev *subdev = &clk->base.base.subdev; + struct nvkm_device *device = subdev->device; + struct gm20b_pll pll; + u32 n_int, sdm_din; + int ret = 0; + + /* calculate the new n_int/sdm_din for this n/uv */ + gm20b_dvfs_calc_ndiv(clk, n, &n_int, &sdm_din); + + /* get old coefficients */ + gm20b_pllg_read_mnp(clk, &pll); + /* do nothing if NDIV is the same */ + if (n_int == pll.base.n && sdm_din == pll.sdm_din) + return 0; + + /* pll slowdown mode */ + nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, + BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT), + BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT)); + + /* new ndiv ready for ramp */ + /* in DVFS mode SDM is updated via "new" field */ + nvkm_mask(device, GPCPLL_CFG2, GPCPLL_CFG2_SDM_DIN_NEW_MASK, + sdm_din << GPCPLL_CFG2_SDM_DIN_NEW_SHIFT); + pll.base.n = n_int; + udelay(1); + gk20a_pllg_write_mnp(&clk->base, &pll.base); + + /* dynamic ramp to new ndiv */ + udelay(1); + nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, + BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), + BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT)); + + /* wait for ramping to complete */ + if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG, + GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK, + GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0) + ret = -ETIMEDOUT; + + /* in DVFS mode complete SDM update */ + nvkm_mask(device, GPCPLL_CFG2, GPCPLL_CFG2_SDM_DIN_MASK, + sdm_din << GPCPLL_CFG2_SDM_DIN_SHIFT); + + /* exit slowdown mode */ + nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, + BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) | + BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0); + nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN); + + return ret; +} + +static int +gm20b_pllg_enable(struct gm20b_clk *clk) +{ + struct nvkm_device *device = clk->base.base.subdev.device; + + nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE); + nvkm_rd32(device, GPCPLL_CFG); + + /* In DVFS mode lock cannot be used - so just delay */ + udelay(40); + + /* set SYNC_MODE for glitchless switch out of bypass */ + nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_SYNC_MODE, + GPCPLL_CFG_SYNC_MODE); + nvkm_rd32(device, GPCPLL_CFG); + + /* switch to VCO mode */ + nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), + BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); + + return 0; +} + +static void +gm20b_pllg_disable(struct gm20b_clk *clk) +{ + struct nvkm_device *device = clk->base.base.subdev.device; + + /* put PLL in bypass before disabling it */ + nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0); + + /* clear SYNC_MODE before disabling PLL */ + nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_SYNC_MODE, 0); + + nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0); + nvkm_rd32(device, GPCPLL_CFG); +} + +static int +gm20b_pllg_program_mnp(struct gm20b_clk *clk, const struct gk20a_pll *pll) +{ + struct nvkm_subdev *subdev = &clk->base.base.subdev; + struct nvkm_device *device = subdev->device; + struct gm20b_pll cur_pll; + u32 n_int, sdm_din; + /* if we only change pdiv, we can do a glitchless transition */ + bool pdiv_only; + int ret; + + gm20b_dvfs_calc_ndiv(clk, pll->n, &n_int, &sdm_din); + gm20b_pllg_read_mnp(clk, &cur_pll); + pdiv_only = cur_pll.base.n == n_int && cur_pll.sdm_din == sdm_din && + cur_pll.base.m == pll->m; + + /* need full sequence if clock not enabled yet */ + if (!gk20a_pllg_is_enabled(&clk->base)) + pdiv_only = false; + + /* split VCO-to-bypass jump in half by setting out divider 1:2 */ + nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, + GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT); + /* Intentional 2nd write to assure linear divider operation */ + nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, + GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT); + nvkm_rd32(device, GPC2CLK_OUT); + udelay(2); + + if (pdiv_only) { + u32 old = cur_pll.base.pl; + u32 new = pll->pl; + + /* + * we can do a glitchless transition only if the old and new PL + * parameters share at least one bit set to 1. If this is not + * the case, calculate and program an interim PL that will allow + * us to respect that rule. + */ + if ((old & new) == 0) { + cur_pll.base.pl = min(old | BIT(ffs(new) - 1), + new | BIT(ffs(old) - 1)); + gk20a_pllg_write_mnp(&clk->base, &cur_pll.base); + } + + cur_pll.base.pl = new; + gk20a_pllg_write_mnp(&clk->base, &cur_pll.base); + } else { + /* disable before programming if more than pdiv changes */ + gm20b_pllg_disable(clk); + + cur_pll.base = *pll; + cur_pll.base.n = n_int; + cur_pll.sdm_din = sdm_din; + gm20b_pllg_write_mnp(clk, &cur_pll); + + ret = gm20b_pllg_enable(clk); + if (ret) + return ret; + } + + /* restore out divider 1:1 */ + udelay(2); + nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, + GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT); + /* Intentional 2nd write to assure linear divider operation */ + nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, + GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT); + nvkm_rd32(device, GPC2CLK_OUT); + + return 0; +} + +static int +gm20b_pllg_program_mnp_slide(struct gm20b_clk *clk, const struct gk20a_pll *pll) +{ + struct gk20a_pll cur_pll; + int ret; + + if (gk20a_pllg_is_enabled(&clk->base)) { + gk20a_pllg_read_mnp(&clk->base, &cur_pll); + + /* just do NDIV slide if there is no change to M and PL */ + if (pll->m == cur_pll.m && pll->pl == cur_pll.pl) + return gm20b_pllg_slide(clk, pll->n); + + /* slide down to current NDIV_LO */ + cur_pll.n = gk20a_pllg_n_lo(&clk->base, &cur_pll); + ret = gm20b_pllg_slide(clk, cur_pll.n); + if (ret) + return ret; + } + + /* program MNP with the new clock parameters and new NDIV_LO */ + cur_pll = *pll; + cur_pll.n = gk20a_pllg_n_lo(&clk->base, &cur_pll); + ret = gm20b_pllg_program_mnp(clk, &cur_pll); + if (ret) + return ret; + + /* slide up to new NDIV */ + return gm20b_pllg_slide(clk, pll->n); +} + +static int +gm20b_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate) +{ + struct gm20b_clk *clk = gm20b_clk(base); + struct nvkm_subdev *subdev = &base->subdev; + struct nvkm_volt *volt = base->subdev.device->volt; + int ret; + + ret = gk20a_pllg_calc_mnp(&clk->base, cstate->domain[nv_clk_src_gpc] * + GK20A_CLK_GPC_MDIV, &clk->new_pll); + if (ret) + return ret; + + clk->new_uv = volt->vid[cstate->voltage].uv; + gm20b_dvfs_calc_det_coeff(clk, clk->new_uv, &clk->new_dvfs); + + nvkm_debug(subdev, "%s uv: %d uv\n", __func__, clk->new_uv); + + return 0; +} + +/* + * Compute PLL parameters that are always safe for the current voltage + */ +static void +gm20b_dvfs_calc_safe_pll(struct gm20b_clk *clk, struct gk20a_pll *pll) +{ + u32 rate = gk20a_pllg_calc_rate(&clk->base, pll) / KHZ; + u32 parent_rate = clk->base.parent_rate / KHZ; + u32 nmin, nsafe; + + /* remove a safe margin of 10% */ + if (rate > clk->safe_fmax_vmin) + rate = rate * (100 - 10) / 100; + + /* gpc2clk */ + rate *= 2; + + nmin = DIV_ROUND_UP(pll->m * clk->base.params->min_vco, parent_rate); + nsafe = pll->m * rate / (clk->base.parent_rate); + + if (nsafe < nmin) { + pll->pl = DIV_ROUND_UP(nmin * parent_rate, pll->m * rate); + nsafe = nmin; + } + + pll->n = nsafe; +} + +static void +gm20b_dvfs_program_coeff(struct gm20b_clk *clk, u32 coeff) +{ + struct nvkm_device *device = clk->base.base.subdev.device; + + /* strobe to read external DFS coefficient */ + nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2, + GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT, + GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT); + + nvkm_mask(device, GPCPLL_DVFS0, GPCPLL_DVFS0_DFS_COEFF_MASK, + coeff << GPCPLL_DVFS0_DFS_COEFF_SHIFT); + + udelay(1); + nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2, + GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT, 0); +} + +static void +gm20b_dvfs_program_ext_cal(struct gm20b_clk *clk, u32 dfs_det_cal) +{ + struct nvkm_device *device = clk->base.base.subdev.device; + u32 val; + + nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2, MASK(DFS_DET_RANGE + 1), + dfs_det_cal); + udelay(1); + + val = nvkm_rd32(device, GPCPLL_DVFS1); + if (!(val & BIT(25))) { + /* Use external value to overwrite calibration value */ + val |= BIT(25) | BIT(16); + nvkm_wr32(device, GPCPLL_DVFS1, val); + } +} + +static void +gm20b_dvfs_program_dfs_detection(struct gm20b_clk *clk, + struct gm20b_clk_dvfs *dvfs) +{ + struct nvkm_device *device = clk->base.base.subdev.device; + + /* strobe to read external DFS coefficient */ + nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2, + GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT, + GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT); + + nvkm_mask(device, GPCPLL_DVFS0, + GPCPLL_DVFS0_DFS_COEFF_MASK | GPCPLL_DVFS0_DFS_DET_MAX_MASK, + dvfs->dfs_coeff << GPCPLL_DVFS0_DFS_COEFF_SHIFT | + dvfs->dfs_det_max << GPCPLL_DVFS0_DFS_DET_MAX_SHIFT); + + udelay(1); + nvkm_mask(device, GPC_BCAST_GPCPLL_DVFS2, + GPC_BCAST_GPCPLL_DVFS2_DFS_EXT_STROBE_BIT, 0); + + gm20b_dvfs_program_ext_cal(clk, dvfs->dfs_ext_cal); +} + +static int +gm20b_clk_prog(struct nvkm_clk *base) +{ + struct gm20b_clk *clk = gm20b_clk(base); + u32 cur_freq; + int ret; + + /* No change in DVFS settings? */ + if (clk->uv == clk->new_uv) + goto prog; + + /* + * Interim step for changing DVFS detection settings: low enough + * frequency to be safe at DVFS coeff = 0. + * + * 1. If voltage is increasing: + * - safe frequency target matches the lowest - old - frequency + * - DVFS settings are still old + * - Voltage already increased to new level by volt, but maximum + * detection limit assures PLL output remains under F/V curve + * + * 2. If voltage is decreasing: + * - safe frequency target matches the lowest - new - frequency + * - DVFS settings are still old + * - Voltage is also old, it will be lowered by volt afterwards + * + * Interim step can be skipped if old frequency is below safe minimum, + * i.e., it is low enough to be safe at any voltage in operating range + * with zero DVFS coefficient. + */ + cur_freq = nvkm_clk_read(&clk->base.base, nv_clk_src_gpc); + if (cur_freq > clk->safe_fmax_vmin) { + struct gk20a_pll pll_safe; + + if (clk->uv < clk->new_uv) + /* voltage will raise: safe frequency is current one */ + pll_safe = clk->base.pll; + else + /* voltage will drop: safe frequency is new one */ + pll_safe = clk->new_pll; + + gm20b_dvfs_calc_safe_pll(clk, &pll_safe); + ret = gm20b_pllg_program_mnp_slide(clk, &pll_safe); + if (ret) + return ret; + } + + /* + * DVFS detection settings transition: + * - Set DVFS coefficient zero + * - Set calibration level to new voltage + * - Set DVFS coefficient to match new voltage + */ + gm20b_dvfs_program_coeff(clk, 0); + gm20b_dvfs_program_ext_cal(clk, clk->new_dvfs.dfs_ext_cal); + gm20b_dvfs_program_coeff(clk, clk->new_dvfs.dfs_coeff); + gm20b_dvfs_program_dfs_detection(clk, &clk->new_dvfs); + +prog: + clk->uv = clk->new_uv; + clk->dvfs = clk->new_dvfs; + clk->base.pll = clk->new_pll; + + return gm20b_pllg_program_mnp_slide(clk, &clk->base.pll); +} + +static struct nvkm_pstate +gm20b_pstates[] = { + { + .base = { + .domain[nv_clk_src_gpc] = 76800, + .voltage = 0, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 153600, + .voltage = 1, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 230400, + .voltage = 2, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 307200, + .voltage = 3, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 384000, + .voltage = 4, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 460800, + .voltage = 5, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 537600, + .voltage = 6, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 614400, + .voltage = 7, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 691200, + .voltage = 8, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 768000, + .voltage = 9, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 844800, + .voltage = 10, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 921600, + .voltage = 11, + }, + }, + { + .base = { + .domain[nv_clk_src_gpc] = 998400, + .voltage = 12, + }, + }, +}; + +static void +gm20b_clk_fini(struct nvkm_clk *base) +{ + struct nvkm_device *device = base->subdev.device; + struct gm20b_clk *clk = gm20b_clk(base); + + /* slide to VCO min */ + if (gk20a_pllg_is_enabled(&clk->base)) { + struct gk20a_pll pll; + u32 n_lo; + + gk20a_pllg_read_mnp(&clk->base, &pll); + n_lo = gk20a_pllg_n_lo(&clk->base, &pll); + gm20b_pllg_slide(clk, n_lo); + } + + gm20b_pllg_disable(clk); + + /* set IDDQ */ + nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1); +} + +static int +gm20b_clk_init_dvfs(struct gm20b_clk *clk) +{ + struct nvkm_subdev *subdev = &clk->base.base.subdev; + struct nvkm_device *device = subdev->device; + bool fused = clk->uvdet_offs && clk->uvdet_slope; + static const s32 ADC_SLOPE_UV = 10000; /* default ADC detection slope */ + u32 data; + int ret; + + /* Enable NA DVFS */ + nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_BIT, + GPCPLL_DVFS1_EN_DFS_BIT); + + /* Set VCO_CTRL */ + if (clk->dvfs_params->vco_ctrl) + nvkm_mask(device, GPCPLL_CFG3, GPCPLL_CFG3_VCO_CTRL_MASK, + clk->dvfs_params->vco_ctrl << GPCPLL_CFG3_VCO_CTRL_SHIFT); + + if (fused) { + /* Start internal calibration, but ignore results */ + nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_CAL_BIT, + GPCPLL_DVFS1_EN_DFS_CAL_BIT); + + /* got uvdev parameters from fuse, skip calibration */ + goto calibrated; + } + + /* + * If calibration parameters are not fused, start internal calibration, + * wait for completion, and use results along with default slope to + * calculate ADC offset during boot. + */ + nvkm_mask(device, GPCPLL_DVFS1, GPCPLL_DVFS1_EN_DFS_CAL_BIT, + GPCPLL_DVFS1_EN_DFS_CAL_BIT); + + /* Wait for internal calibration done (spec < 2us). */ + ret = nvkm_wait_usec(device, 10, GPCPLL_DVFS1, + GPCPLL_DVFS1_DFS_CAL_DONE_BIT, + GPCPLL_DVFS1_DFS_CAL_DONE_BIT); + if (ret < 0) { + nvkm_error(subdev, "GPCPLL calibration timeout\n"); + return -ETIMEDOUT; + } + + data = nvkm_rd32(device, GPCPLL_CFG3) >> + GPCPLL_CFG3_PLL_DFS_TESTOUT_SHIFT; + data &= MASK(GPCPLL_CFG3_PLL_DFS_TESTOUT_WIDTH); + + clk->uvdet_slope = ADC_SLOPE_UV; + clk->uvdet_offs = ((s32)clk->uv) - data * ADC_SLOPE_UV; + + nvkm_debug(subdev, "calibrated DVFS parameters: offs %d, slope %d\n", + clk->uvdet_offs, clk->uvdet_slope); + +calibrated: + /* Compute and apply initial DVFS parameters */ + gm20b_dvfs_calc_det_coeff(clk, clk->uv, &clk->dvfs); + gm20b_dvfs_program_coeff(clk, 0); + gm20b_dvfs_program_ext_cal(clk, clk->dvfs.dfs_ext_cal); + gm20b_dvfs_program_coeff(clk, clk->dvfs.dfs_coeff); + gm20b_dvfs_program_dfs_detection(clk, &clk->new_dvfs); + + return 0; +} + +/* Forward declaration to detect speedo >=1 in gm20b_clk_init() */ +static const struct nvkm_clk_func gm20b_clk; + +static int +gm20b_clk_init(struct nvkm_clk *base) +{ + struct gk20a_clk *clk = gk20a_clk(base); + struct nvkm_subdev *subdev = &clk->base.subdev; + struct nvkm_device *device = subdev->device; + int ret; + u32 data; + + /* get out from IDDQ */ + nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0); + nvkm_rd32(device, GPCPLL_CFG); + udelay(5); + + nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, + GPC2CLK_OUT_INIT_VAL); + + /* Set the global bypass control to VCO */ + nvkm_mask(device, BYPASSCTRL_SYS, + MASK(BYPASSCTRL_SYS_GPCPLL_WIDTH) << BYPASSCTRL_SYS_GPCPLL_SHIFT, + 0); + + ret = gk20a_clk_setup_slide(clk); + if (ret) + return ret; + + /* If not fused, set RAM SVOP PDP data 0x2, and enable fuse override */ + data = nvkm_rd32(device, 0x021944); + if (!(data & 0x3)) { + data |= 0x2; + nvkm_wr32(device, 0x021944, data); + + data = nvkm_rd32(device, 0x021948); + data |= 0x1; + nvkm_wr32(device, 0x021948, data); + } + + /* Disable idle slow down */ + nvkm_mask(device, 0x20160, 0x003f0000, 0x0); + + /* speedo >= 1? */ + if (clk->base.func == &gm20b_clk) { + struct gm20b_clk *_clk = gm20b_clk(base); + struct nvkm_volt *volt = device->volt; + + /* Get current voltage */ + _clk->uv = nvkm_volt_get(volt); + + /* Initialize DVFS */ + ret = gm20b_clk_init_dvfs(_clk); + if (ret) + return ret; + } + + /* Start with lowest frequency */ + base->func->calc(base, &base->func->pstates[0].base); + ret = base->func->prog(base); + if (ret) { + nvkm_error(subdev, "cannot initialize clock\n"); + return ret; + } + + return 0; +} + +static const struct nvkm_clk_func +gm20b_clk_speedo0 = { + .init = gm20b_clk_init, + .fini = gk20a_clk_fini, + .read = gk20a_clk_read, + .calc = gk20a_clk_calc, + .prog = gk20a_clk_prog, + .tidy = gk20a_clk_tidy, + .pstates = gm20b_pstates, + /* Speedo 0 only supports 12 voltages */ + .nr_pstates = ARRAY_SIZE(gm20b_pstates) - 1, + .domains = { + { nv_clk_src_crystal, 0xff }, + { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV }, + { nv_clk_src_max }, + }, +}; + +static const struct nvkm_clk_func +gm20b_clk = { + .init = gm20b_clk_init, + .fini = gm20b_clk_fini, + .read = gk20a_clk_read, + .calc = gm20b_clk_calc, + .prog = gm20b_clk_prog, + .tidy = gk20a_clk_tidy, + .pstates = gm20b_pstates, + .nr_pstates = ARRAY_SIZE(gm20b_pstates), + .domains = { + { nv_clk_src_crystal, 0xff }, + { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV }, + { nv_clk_src_max }, + }, +}; + +static int +gm20b_clk_new_speedo0(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, + struct nvkm_clk **pclk) +{ + struct gk20a_clk *clk; + int ret; + + clk = kzalloc(sizeof(*clk), GFP_KERNEL); + if (!clk) + return -ENOMEM; + *pclk = &clk->base; + + ret = gk20a_clk_ctor(device, type, inst, &gm20b_clk_speedo0, &gm20b_pllg_params, clk); + clk->pl_to_div = pl_to_div; + clk->div_to_pl = div_to_pl; + return ret; +} + +/* FUSE register */ +#define FUSE_RESERVED_CALIB0 0x204 +#define FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_SHIFT 0 +#define FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_WIDTH 4 +#define FUSE_RESERVED_CALIB0_INTERCEPT_INT_SHIFT 4 +#define FUSE_RESERVED_CALIB0_INTERCEPT_INT_WIDTH 10 +#define FUSE_RESERVED_CALIB0_SLOPE_FRAC_SHIFT 14 +#define FUSE_RESERVED_CALIB0_SLOPE_FRAC_WIDTH 10 +#define FUSE_RESERVED_CALIB0_SLOPE_INT_SHIFT 24 +#define FUSE_RESERVED_CALIB0_SLOPE_INT_WIDTH 6 +#define FUSE_RESERVED_CALIB0_FUSE_REV_SHIFT 30 +#define FUSE_RESERVED_CALIB0_FUSE_REV_WIDTH 2 + +static int +gm20b_clk_init_fused_params(struct gm20b_clk *clk) +{ + struct nvkm_subdev *subdev = &clk->base.base.subdev; + u32 val = 0; + u32 rev = 0; + +#if IS_ENABLED(CONFIG_ARCH_TEGRA) + tegra_fuse_readl(FUSE_RESERVED_CALIB0, &val); + rev = (val >> FUSE_RESERVED_CALIB0_FUSE_REV_SHIFT) & + MASK(FUSE_RESERVED_CALIB0_FUSE_REV_WIDTH); +#endif + + /* No fused parameters, we will calibrate later */ + if (rev == 0) + return -EINVAL; + + /* Integer part in mV + fractional part in uV */ + clk->uvdet_slope = ((val >> FUSE_RESERVED_CALIB0_SLOPE_INT_SHIFT) & + MASK(FUSE_RESERVED_CALIB0_SLOPE_INT_WIDTH)) * 1000 + + ((val >> FUSE_RESERVED_CALIB0_SLOPE_FRAC_SHIFT) & + MASK(FUSE_RESERVED_CALIB0_SLOPE_FRAC_WIDTH)); + + /* Integer part in mV + fractional part in 100uV */ + clk->uvdet_offs = ((val >> FUSE_RESERVED_CALIB0_INTERCEPT_INT_SHIFT) & + MASK(FUSE_RESERVED_CALIB0_INTERCEPT_INT_WIDTH)) * 1000 + + ((val >> FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_SHIFT) & + MASK(FUSE_RESERVED_CALIB0_INTERCEPT_FRAC_WIDTH)) * 100; + + nvkm_debug(subdev, "fused calibration data: slope %d, offs %d\n", + clk->uvdet_slope, clk->uvdet_offs); + return 0; +} + +static int +gm20b_clk_init_safe_fmax(struct gm20b_clk *clk) +{ + struct nvkm_subdev *subdev = &clk->base.base.subdev; + struct nvkm_volt *volt = subdev->device->volt; + struct nvkm_pstate *pstates = clk->base.base.func->pstates; + int nr_pstates = clk->base.base.func->nr_pstates; + int vmin, id = 0; + u32 fmax = 0; + int i; + + /* find lowest voltage we can use */ + vmin = volt->vid[0].uv; + for (i = 1; i < volt->vid_nr; i++) { + if (volt->vid[i].uv <= vmin) { + vmin = volt->vid[i].uv; + id = volt->vid[i].vid; + } + } + + /* find max frequency at this voltage */ + for (i = 0; i < nr_pstates; i++) + if (pstates[i].base.voltage == id) + fmax = max(fmax, + pstates[i].base.domain[nv_clk_src_gpc]); + + if (!fmax) { + nvkm_error(subdev, "failed to evaluate safe fmax\n"); + return -EINVAL; + } + + /* we are safe at 90% of the max frequency */ + clk->safe_fmax_vmin = fmax * (100 - 10) / 100; + nvkm_debug(subdev, "safe fmax @ vmin = %u Khz\n", clk->safe_fmax_vmin); + + return 0; +} + +int +gm20b_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, + struct nvkm_clk **pclk) +{ + struct nvkm_device_tegra *tdev = device->func->tegra(device); + struct gm20b_clk *clk; + struct nvkm_subdev *subdev; + struct gk20a_clk_pllg_params *clk_params; + int ret; + + /* Speedo 0 GPUs cannot use noise-aware PLL */ + if (tdev->gpu_speedo_id == 0) + return gm20b_clk_new_speedo0(device, type, inst, pclk); + + /* Speedo >= 1, use NAPLL */ + clk = kzalloc(sizeof(*clk) + sizeof(*clk_params), GFP_KERNEL); + if (!clk) + return -ENOMEM; + *pclk = &clk->base.base; + subdev = &clk->base.base.subdev; + + /* duplicate the clock parameters since we will patch them below */ + clk_params = (void *) (clk + 1); + *clk_params = gm20b_pllg_params; + ret = gk20a_clk_ctor(device, type, inst, &gm20b_clk, clk_params, &clk->base); + if (ret) + return ret; + + /* + * NAPLL can only work with max_u, clamp the m range so + * gk20a_pllg_calc_mnp always uses it + */ + clk_params->max_m = clk_params->min_m = DIV_ROUND_UP(clk_params->max_u, + (clk->base.parent_rate / KHZ)); + if (clk_params->max_m == 0) { + nvkm_warn(subdev, "cannot use NAPLL, using legacy clock...\n"); + kfree(clk); + return gm20b_clk_new_speedo0(device, type, inst, pclk); + } + + clk->base.pl_to_div = pl_to_div; + clk->base.div_to_pl = div_to_pl; + + clk->dvfs_params = &gm20b_dvfs_params; + + ret = gm20b_clk_init_fused_params(clk); + /* + * we will calibrate during init - should never happen on + * prod parts + */ + if (ret) + nvkm_warn(subdev, "no fused calibration parameters\n"); + + ret = gm20b_clk_init_safe_fmax(clk); + if (ret) + return ret; + + return 0; +} |