summaryrefslogtreecommitdiffstats
path: root/drivers/misc/habanalabs/common/device.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/misc/habanalabs/common/device.c')
-rw-r--r--drivers/misc/habanalabs/common/device.c2258
1 files changed, 2258 insertions, 0 deletions
diff --git a/drivers/misc/habanalabs/common/device.c b/drivers/misc/habanalabs/common/device.c
new file mode 100644
index 000000000..9ee1b6abd
--- /dev/null
+++ b/drivers/misc/habanalabs/common/device.c
@@ -0,0 +1,2258 @@
+// SPDX-License-Identifier: GPL-2.0
+
+/*
+ * Copyright 2016-2022 HabanaLabs, Ltd.
+ * All Rights Reserved.
+ */
+
+#define pr_fmt(fmt) "habanalabs: " fmt
+
+#include <uapi/misc/habanalabs.h>
+#include "habanalabs.h"
+
+#include <linux/pci.h>
+#include <linux/hwmon.h>
+
+#include <trace/events/habanalabs.h>
+
+#define HL_RESET_DELAY_USEC 10000 /* 10ms */
+
+enum dma_alloc_type {
+ DMA_ALLOC_COHERENT,
+ DMA_ALLOC_CPU_ACCESSIBLE,
+ DMA_ALLOC_POOL,
+};
+
+#define MEM_SCRUB_DEFAULT_VAL 0x1122334455667788
+
+/*
+ * hl_set_dram_bar- sets the bar to allow later access to address
+ *
+ * @hdev: pointer to habanalabs device structure.
+ * @addr: the address the caller wants to access.
+ * @region: the PCI region.
+ *
+ * @return: the old BAR base address on success, U64_MAX for failure.
+ * The caller should set it back to the old address after use.
+ *
+ * In case the bar space does not cover the whole address space,
+ * the bar base address should be set to allow access to a given address.
+ * This function can be called also if the bar doesn't need to be set,
+ * in that case it just won't change the base.
+ */
+static u64 hl_set_dram_bar(struct hl_device *hdev, u64 addr, struct pci_mem_region *region)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ u64 bar_base_addr, old_base;
+
+ if (is_power_of_2(prop->dram_pci_bar_size))
+ bar_base_addr = addr & ~(prop->dram_pci_bar_size - 0x1ull);
+ else
+ bar_base_addr = DIV_ROUND_DOWN_ULL(addr, prop->dram_pci_bar_size) *
+ prop->dram_pci_bar_size;
+
+ old_base = hdev->asic_funcs->set_dram_bar_base(hdev, bar_base_addr);
+
+ /* in case of success we need to update the new BAR base */
+ if (old_base != U64_MAX)
+ region->region_base = bar_base_addr;
+
+ return old_base;
+}
+
+static int hl_access_sram_dram_region(struct hl_device *hdev, u64 addr, u64 *val,
+ enum debugfs_access_type acc_type, enum pci_region region_type)
+{
+ struct pci_mem_region *region = &hdev->pci_mem_region[region_type];
+ void __iomem *acc_addr;
+ u64 old_base = 0, rc;
+
+ if (region_type == PCI_REGION_DRAM) {
+ old_base = hl_set_dram_bar(hdev, addr, region);
+ if (old_base == U64_MAX)
+ return -EIO;
+ }
+
+ acc_addr = hdev->pcie_bar[region->bar_id] + addr - region->region_base +
+ region->offset_in_bar;
+ switch (acc_type) {
+ case DEBUGFS_READ8:
+ *val = readb(acc_addr);
+ break;
+ case DEBUGFS_WRITE8:
+ writeb(*val, acc_addr);
+ break;
+ case DEBUGFS_READ32:
+ *val = readl(acc_addr);
+ break;
+ case DEBUGFS_WRITE32:
+ writel(*val, acc_addr);
+ break;
+ case DEBUGFS_READ64:
+ *val = readq(acc_addr);
+ break;
+ case DEBUGFS_WRITE64:
+ writeq(*val, acc_addr);
+ break;
+ }
+
+ if (region_type == PCI_REGION_DRAM) {
+ rc = hl_set_dram_bar(hdev, old_base, region);
+ if (rc == U64_MAX)
+ return -EIO;
+ }
+
+ return 0;
+}
+
+static void *hl_dma_alloc_common(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
+ gfp_t flag, enum dma_alloc_type alloc_type,
+ const char *caller)
+{
+ void *ptr = NULL;
+
+ switch (alloc_type) {
+ case DMA_ALLOC_COHERENT:
+ ptr = hdev->asic_funcs->asic_dma_alloc_coherent(hdev, size, dma_handle, flag);
+ break;
+ case DMA_ALLOC_CPU_ACCESSIBLE:
+ ptr = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, size, dma_handle);
+ break;
+ case DMA_ALLOC_POOL:
+ ptr = hdev->asic_funcs->asic_dma_pool_zalloc(hdev, size, flag, dma_handle);
+ break;
+ }
+
+ if (trace_habanalabs_dma_alloc_enabled() && !ZERO_OR_NULL_PTR(ptr))
+ trace_habanalabs_dma_alloc(hdev->dev, (u64) (uintptr_t) ptr, *dma_handle, size,
+ caller);
+
+ return ptr;
+}
+
+static void hl_asic_dma_free_common(struct hl_device *hdev, size_t size, void *cpu_addr,
+ dma_addr_t dma_handle, enum dma_alloc_type alloc_type,
+ const char *caller)
+{
+ switch (alloc_type) {
+ case DMA_ALLOC_COHERENT:
+ hdev->asic_funcs->asic_dma_free_coherent(hdev, size, cpu_addr, dma_handle);
+ break;
+ case DMA_ALLOC_CPU_ACCESSIBLE:
+ hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, size, cpu_addr);
+ break;
+ case DMA_ALLOC_POOL:
+ hdev->asic_funcs->asic_dma_pool_free(hdev, cpu_addr, dma_handle);
+ break;
+ }
+
+ trace_habanalabs_dma_free(hdev->dev, (u64) (uintptr_t) cpu_addr, dma_handle, size, caller);
+}
+
+void *hl_asic_dma_alloc_coherent_caller(struct hl_device *hdev, size_t size, dma_addr_t *dma_handle,
+ gfp_t flag, const char *caller)
+{
+ return hl_dma_alloc_common(hdev, size, dma_handle, flag, DMA_ALLOC_COHERENT, caller);
+}
+
+void hl_asic_dma_free_coherent_caller(struct hl_device *hdev, size_t size, void *cpu_addr,
+ dma_addr_t dma_handle, const char *caller)
+{
+ hl_asic_dma_free_common(hdev, size, cpu_addr, dma_handle, DMA_ALLOC_COHERENT, caller);
+}
+
+void *hl_cpu_accessible_dma_pool_alloc_caller(struct hl_device *hdev, size_t size,
+ dma_addr_t *dma_handle, const char *caller)
+{
+ return hl_dma_alloc_common(hdev, size, dma_handle, 0, DMA_ALLOC_CPU_ACCESSIBLE, caller);
+}
+
+void hl_cpu_accessible_dma_pool_free_caller(struct hl_device *hdev, size_t size, void *vaddr,
+ const char *caller)
+{
+ hl_asic_dma_free_common(hdev, size, vaddr, 0, DMA_ALLOC_CPU_ACCESSIBLE, caller);
+}
+
+void *hl_asic_dma_pool_zalloc_caller(struct hl_device *hdev, size_t size, gfp_t mem_flags,
+ dma_addr_t *dma_handle, const char *caller)
+{
+ return hl_dma_alloc_common(hdev, size, dma_handle, mem_flags, DMA_ALLOC_POOL, caller);
+}
+
+void hl_asic_dma_pool_free_caller(struct hl_device *hdev, void *vaddr, dma_addr_t dma_addr,
+ const char *caller)
+{
+ hl_asic_dma_free_common(hdev, 0, vaddr, dma_addr, DMA_ALLOC_POOL, caller);
+}
+
+int hl_dma_map_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct scatterlist *sg;
+ int rc, i;
+
+ rc = dma_map_sgtable(&hdev->pdev->dev, sgt, dir, 0);
+ if (rc)
+ return rc;
+
+ /* Shift to the device's base physical address of host memory if necessary */
+ if (prop->device_dma_offset_for_host_access)
+ for_each_sgtable_dma_sg(sgt, sg, i)
+ sg->dma_address += prop->device_dma_offset_for_host_access;
+
+ return 0;
+}
+
+void hl_dma_unmap_sgtable(struct hl_device *hdev, struct sg_table *sgt, enum dma_data_direction dir)
+{
+ struct asic_fixed_properties *prop = &hdev->asic_prop;
+ struct scatterlist *sg;
+ int i;
+
+ /* Cancel the device's base physical address of host memory if necessary */
+ if (prop->device_dma_offset_for_host_access)
+ for_each_sgtable_dma_sg(sgt, sg, i)
+ sg->dma_address -= prop->device_dma_offset_for_host_access;
+
+ dma_unmap_sgtable(&hdev->pdev->dev, sgt, dir, 0);
+}
+
+/*
+ * hl_access_cfg_region - access the config region
+ *
+ * @hdev: pointer to habanalabs device structure
+ * @addr: the address to access
+ * @val: the value to write from or read to
+ * @acc_type: the type of access (read/write 64/32)
+ */
+int hl_access_cfg_region(struct hl_device *hdev, u64 addr, u64 *val,
+ enum debugfs_access_type acc_type)
+{
+ struct pci_mem_region *cfg_region = &hdev->pci_mem_region[PCI_REGION_CFG];
+ u32 val_h, val_l;
+
+ if (!IS_ALIGNED(addr, sizeof(u32))) {
+ dev_err(hdev->dev, "address %#llx not a multiple of %zu\n", addr, sizeof(u32));
+ return -EINVAL;
+ }
+
+ switch (acc_type) {
+ case DEBUGFS_READ32:
+ *val = RREG32(addr - cfg_region->region_base);
+ break;
+ case DEBUGFS_WRITE32:
+ WREG32(addr - cfg_region->region_base, *val);
+ break;
+ case DEBUGFS_READ64:
+ val_l = RREG32(addr - cfg_region->region_base);
+ val_h = RREG32(addr + sizeof(u32) - cfg_region->region_base);
+
+ *val = (((u64) val_h) << 32) | val_l;
+ break;
+ case DEBUGFS_WRITE64:
+ WREG32(addr - cfg_region->region_base, lower_32_bits(*val));
+ WREG32(addr + sizeof(u32) - cfg_region->region_base, upper_32_bits(*val));
+ break;
+ default:
+ dev_err(hdev->dev, "access type %d is not supported\n", acc_type);
+ return -EOPNOTSUPP;
+ }
+
+ return 0;
+}
+
+/*
+ * hl_access_dev_mem - access device memory
+ *
+ * @hdev: pointer to habanalabs device structure
+ * @region_type: the type of the region the address belongs to
+ * @addr: the address to access
+ * @val: the value to write from or read to
+ * @acc_type: the type of access (r/w, 32/64)
+ */
+int hl_access_dev_mem(struct hl_device *hdev, enum pci_region region_type,
+ u64 addr, u64 *val, enum debugfs_access_type acc_type)
+{
+ switch (region_type) {
+ case PCI_REGION_CFG:
+ return hl_access_cfg_region(hdev, addr, val, acc_type);
+ case PCI_REGION_SRAM:
+ case PCI_REGION_DRAM:
+ return hl_access_sram_dram_region(hdev, addr, val, acc_type,
+ region_type);
+ default:
+ return -EFAULT;
+ }
+
+ return 0;
+}
+
+void hl_engine_data_sprintf(struct engines_data *e, const char *fmt, ...)
+{
+ va_list args;
+ int str_size;
+
+ va_start(args, fmt);
+ /* Calculate formatted string length. Assuming each string is null terminated, hence
+ * increment result by 1
+ */
+ str_size = vsnprintf(NULL, 0, fmt, args) + 1;
+ va_end(args);
+
+ if ((e->actual_size + str_size) < e->allocated_buf_size) {
+ va_start(args, fmt);
+ vsnprintf(e->buf + e->actual_size, str_size, fmt, args);
+ va_end(args);
+ }
+
+ /* Need to update the size even when not updating destination buffer to get the exact size
+ * of all input strings
+ */
+ e->actual_size += str_size;
+}
+
+enum hl_device_status hl_device_status(struct hl_device *hdev)
+{
+ enum hl_device_status status;
+
+ if (hdev->reset_info.in_reset) {
+ if (hdev->reset_info.in_compute_reset)
+ status = HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE;
+ else
+ status = HL_DEVICE_STATUS_IN_RESET;
+ } else if (hdev->reset_info.needs_reset) {
+ status = HL_DEVICE_STATUS_NEEDS_RESET;
+ } else if (hdev->disabled) {
+ status = HL_DEVICE_STATUS_MALFUNCTION;
+ } else if (!hdev->init_done) {
+ status = HL_DEVICE_STATUS_IN_DEVICE_CREATION;
+ } else {
+ status = HL_DEVICE_STATUS_OPERATIONAL;
+ }
+
+ return status;
+}
+
+bool hl_device_operational(struct hl_device *hdev,
+ enum hl_device_status *status)
+{
+ enum hl_device_status current_status;
+
+ current_status = hl_device_status(hdev);
+ if (status)
+ *status = current_status;
+
+ switch (current_status) {
+ case HL_DEVICE_STATUS_IN_RESET:
+ case HL_DEVICE_STATUS_IN_RESET_AFTER_DEVICE_RELEASE:
+ case HL_DEVICE_STATUS_MALFUNCTION:
+ case HL_DEVICE_STATUS_NEEDS_RESET:
+ return false;
+ case HL_DEVICE_STATUS_OPERATIONAL:
+ case HL_DEVICE_STATUS_IN_DEVICE_CREATION:
+ default:
+ return true;
+ }
+}
+
+static void hpriv_release(struct kref *ref)
+{
+ u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
+ bool device_is_idle = true;
+ struct hl_fpriv *hpriv;
+ struct hl_device *hdev;
+
+ hpriv = container_of(ref, struct hl_fpriv, refcount);
+
+ hdev = hpriv->hdev;
+
+ hdev->asic_funcs->send_device_activity(hdev, false);
+
+ put_pid(hpriv->taskpid);
+
+ hl_debugfs_remove_file(hpriv);
+
+ mutex_destroy(&hpriv->ctx_lock);
+ mutex_destroy(&hpriv->restore_phase_mutex);
+
+ if ((!hdev->pldm) && (hdev->pdev) &&
+ (!hdev->asic_funcs->is_device_idle(hdev,
+ idle_mask,
+ HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL))) {
+ dev_err(hdev->dev,
+ "device not idle after user context is closed (0x%llx_%llx)\n",
+ idle_mask[1], idle_mask[0]);
+
+ device_is_idle = false;
+ }
+
+ /* We need to remove the user from the list to make sure the reset process won't
+ * try to kill the user process. Because, if we got here, it means there are no
+ * more driver/device resources that the user process is occupying so there is
+ * no need to kill it
+ *
+ * However, we can't set the compute_ctx to NULL at this stage. This is to prevent
+ * a race between the release and opening the device again. We don't want to let
+ * a user open the device while there a reset is about to happen.
+ */
+ mutex_lock(&hdev->fpriv_list_lock);
+ list_del(&hpriv->dev_node);
+ mutex_unlock(&hdev->fpriv_list_lock);
+
+ if (!device_is_idle || hdev->reset_upon_device_release) {
+ hl_device_reset(hdev, HL_DRV_RESET_DEV_RELEASE);
+ } else {
+ int rc = hdev->asic_funcs->scrub_device_mem(hdev);
+
+ if (rc)
+ dev_err(hdev->dev, "failed to scrub memory from hpriv release (%d)\n", rc);
+ }
+
+ /* Now we can mark the compute_ctx as not active. Even if a reset is running in a different
+ * thread, we don't care because the in_reset is marked so if a user will try to open
+ * the device it will fail on that, even if compute_ctx is false.
+ */
+ mutex_lock(&hdev->fpriv_list_lock);
+ hdev->is_compute_ctx_active = false;
+ mutex_unlock(&hdev->fpriv_list_lock);
+
+ hdev->compute_ctx_in_release = 0;
+
+ /* release the eventfd */
+ if (hpriv->notifier_event.eventfd)
+ eventfd_ctx_put(hpriv->notifier_event.eventfd);
+
+ mutex_destroy(&hpriv->notifier_event.lock);
+
+ kfree(hpriv);
+}
+
+void hl_hpriv_get(struct hl_fpriv *hpriv)
+{
+ kref_get(&hpriv->refcount);
+}
+
+int hl_hpriv_put(struct hl_fpriv *hpriv)
+{
+ return kref_put(&hpriv->refcount, hpriv_release);
+}
+
+/*
+ * hl_device_release - release function for habanalabs device
+ *
+ * @inode: pointer to inode structure
+ * @filp: pointer to file structure
+ *
+ * Called when process closes an habanalabs device
+ */
+static int hl_device_release(struct inode *inode, struct file *filp)
+{
+ struct hl_fpriv *hpriv = filp->private_data;
+ struct hl_device *hdev = hpriv->hdev;
+
+ filp->private_data = NULL;
+
+ if (!hdev) {
+ pr_crit("Closing FD after device was removed. Memory leak will occur and it is advised to reboot.\n");
+ put_pid(hpriv->taskpid);
+ return 0;
+ }
+
+ /* Each pending user interrupt holds the user's context, hence we
+ * must release them all before calling hl_ctx_mgr_fini().
+ */
+ hl_release_pending_user_interrupts(hpriv->hdev);
+
+ hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr);
+ hl_mem_mgr_fini(&hpriv->mem_mgr);
+
+ hdev->compute_ctx_in_release = 1;
+
+ if (!hl_hpriv_put(hpriv))
+ dev_notice(hdev->dev,
+ "User process closed FD but device still in use\n");
+
+ hdev->last_open_session_duration_jif =
+ jiffies - hdev->last_successful_open_jif;
+
+ return 0;
+}
+
+static int hl_device_release_ctrl(struct inode *inode, struct file *filp)
+{
+ struct hl_fpriv *hpriv = filp->private_data;
+ struct hl_device *hdev = hpriv->hdev;
+
+ filp->private_data = NULL;
+
+ if (!hdev) {
+ pr_err("Closing FD after device was removed\n");
+ goto out;
+ }
+
+ mutex_lock(&hdev->fpriv_ctrl_list_lock);
+ list_del(&hpriv->dev_node);
+ mutex_unlock(&hdev->fpriv_ctrl_list_lock);
+out:
+ /* release the eventfd */
+ if (hpriv->notifier_event.eventfd)
+ eventfd_ctx_put(hpriv->notifier_event.eventfd);
+
+ mutex_destroy(&hpriv->notifier_event.lock);
+ put_pid(hpriv->taskpid);
+
+ kfree(hpriv);
+
+ return 0;
+}
+
+/*
+ * hl_mmap - mmap function for habanalabs device
+ *
+ * @*filp: pointer to file structure
+ * @*vma: pointer to vm_area_struct of the process
+ *
+ * Called when process does an mmap on habanalabs device. Call the relevant mmap
+ * function at the end of the common code.
+ */
+static int hl_mmap(struct file *filp, struct vm_area_struct *vma)
+{
+ struct hl_fpriv *hpriv = filp->private_data;
+ struct hl_device *hdev = hpriv->hdev;
+ unsigned long vm_pgoff;
+
+ if (!hdev) {
+ pr_err_ratelimited("Trying to mmap after device was removed! Please close FD\n");
+ return -ENODEV;
+ }
+
+ vm_pgoff = vma->vm_pgoff;
+
+ switch (vm_pgoff & HL_MMAP_TYPE_MASK) {
+ case HL_MMAP_TYPE_BLOCK:
+ vma->vm_pgoff = HL_MMAP_OFFSET_VALUE_GET(vm_pgoff);
+ return hl_hw_block_mmap(hpriv, vma);
+
+ case HL_MMAP_TYPE_CB:
+ case HL_MMAP_TYPE_TS_BUFF:
+ return hl_mem_mgr_mmap(&hpriv->mem_mgr, vma, NULL);
+ }
+ return -EINVAL;
+}
+
+static const struct file_operations hl_ops = {
+ .owner = THIS_MODULE,
+ .open = hl_device_open,
+ .release = hl_device_release,
+ .mmap = hl_mmap,
+ .unlocked_ioctl = hl_ioctl,
+ .compat_ioctl = hl_ioctl
+};
+
+static const struct file_operations hl_ctrl_ops = {
+ .owner = THIS_MODULE,
+ .open = hl_device_open_ctrl,
+ .release = hl_device_release_ctrl,
+ .unlocked_ioctl = hl_ioctl_control,
+ .compat_ioctl = hl_ioctl_control
+};
+
+static void device_release_func(struct device *dev)
+{
+ kfree(dev);
+}
+
+/*
+ * device_init_cdev - Initialize cdev and device for habanalabs device
+ *
+ * @hdev: pointer to habanalabs device structure
+ * @hclass: pointer to the class object of the device
+ * @minor: minor number of the specific device
+ * @fpos: file operations to install for this device
+ * @name: name of the device as it will appear in the filesystem
+ * @cdev: pointer to the char device object that will be initialized
+ * @dev: pointer to the device object that will be initialized
+ *
+ * Initialize a cdev and a Linux device for habanalabs's device.
+ */
+static int device_init_cdev(struct hl_device *hdev, struct class *hclass,
+ int minor, const struct file_operations *fops,
+ char *name, struct cdev *cdev,
+ struct device **dev)
+{
+ cdev_init(cdev, fops);
+ cdev->owner = THIS_MODULE;
+
+ *dev = kzalloc(sizeof(**dev), GFP_KERNEL);
+ if (!*dev)
+ return -ENOMEM;
+
+ device_initialize(*dev);
+ (*dev)->devt = MKDEV(hdev->major, minor);
+ (*dev)->class = hclass;
+ (*dev)->release = device_release_func;
+ dev_set_drvdata(*dev, hdev);
+ dev_set_name(*dev, "%s", name);
+
+ return 0;
+}
+
+static int device_cdev_sysfs_add(struct hl_device *hdev)
+{
+ int rc;
+
+ rc = cdev_device_add(&hdev->cdev, hdev->dev);
+ if (rc) {
+ dev_err(hdev->dev,
+ "failed to add a char device to the system\n");
+ return rc;
+ }
+
+ rc = cdev_device_add(&hdev->cdev_ctrl, hdev->dev_ctrl);
+ if (rc) {
+ dev_err(hdev->dev,
+ "failed to add a control char device to the system\n");
+ goto delete_cdev_device;
+ }
+
+ /* hl_sysfs_init() must be done after adding the device to the system */
+ rc = hl_sysfs_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "failed to initialize sysfs\n");
+ goto delete_ctrl_cdev_device;
+ }
+
+ hdev->cdev_sysfs_created = true;
+
+ return 0;
+
+delete_ctrl_cdev_device:
+ cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
+delete_cdev_device:
+ cdev_device_del(&hdev->cdev, hdev->dev);
+ return rc;
+}
+
+static void device_cdev_sysfs_del(struct hl_device *hdev)
+{
+ if (!hdev->cdev_sysfs_created)
+ goto put_devices;
+
+ hl_sysfs_fini(hdev);
+ cdev_device_del(&hdev->cdev_ctrl, hdev->dev_ctrl);
+ cdev_device_del(&hdev->cdev, hdev->dev);
+
+put_devices:
+ put_device(hdev->dev);
+ put_device(hdev->dev_ctrl);
+}
+
+static void device_hard_reset_pending(struct work_struct *work)
+{
+ struct hl_device_reset_work *device_reset_work =
+ container_of(work, struct hl_device_reset_work, reset_work.work);
+ struct hl_device *hdev = device_reset_work->hdev;
+ u32 flags;
+ int rc;
+
+ flags = device_reset_work->flags | HL_DRV_RESET_FROM_RESET_THR;
+
+ rc = hl_device_reset(hdev, flags);
+ if ((rc == -EBUSY) && !hdev->device_fini_pending) {
+ dev_info(hdev->dev,
+ "Could not reset device. will try again in %u seconds",
+ HL_PENDING_RESET_PER_SEC);
+
+ queue_delayed_work(device_reset_work->wq,
+ &device_reset_work->reset_work,
+ msecs_to_jiffies(HL_PENDING_RESET_PER_SEC * 1000));
+ }
+}
+
+/*
+ * device_early_init - do some early initialization for the habanalabs device
+ *
+ * @hdev: pointer to habanalabs device structure
+ *
+ * Install the relevant function pointers and call the early_init function,
+ * if such a function exists
+ */
+static int device_early_init(struct hl_device *hdev)
+{
+ int i, rc;
+ char workq_name[32];
+
+ switch (hdev->asic_type) {
+ case ASIC_GOYA:
+ goya_set_asic_funcs(hdev);
+ strscpy(hdev->asic_name, "GOYA", sizeof(hdev->asic_name));
+ break;
+ case ASIC_GAUDI:
+ gaudi_set_asic_funcs(hdev);
+ strscpy(hdev->asic_name, "GAUDI", sizeof(hdev->asic_name));
+ break;
+ case ASIC_GAUDI_SEC:
+ gaudi_set_asic_funcs(hdev);
+ strscpy(hdev->asic_name, "GAUDI SEC", sizeof(hdev->asic_name));
+ break;
+ case ASIC_GAUDI2:
+ gaudi2_set_asic_funcs(hdev);
+ strscpy(hdev->asic_name, "GAUDI2", sizeof(hdev->asic_name));
+ break;
+ case ASIC_GAUDI2_SEC:
+ gaudi2_set_asic_funcs(hdev);
+ strscpy(hdev->asic_name, "GAUDI2 SEC", sizeof(hdev->asic_name));
+ break;
+ default:
+ dev_err(hdev->dev, "Unrecognized ASIC type %d\n",
+ hdev->asic_type);
+ return -EINVAL;
+ }
+
+ rc = hdev->asic_funcs->early_init(hdev);
+ if (rc)
+ return rc;
+
+ rc = hl_asid_init(hdev);
+ if (rc)
+ goto early_fini;
+
+ if (hdev->asic_prop.completion_queues_count) {
+ hdev->cq_wq = kcalloc(hdev->asic_prop.completion_queues_count,
+ sizeof(struct workqueue_struct *),
+ GFP_KERNEL);
+ if (!hdev->cq_wq) {
+ rc = -ENOMEM;
+ goto asid_fini;
+ }
+ }
+
+ for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++) {
+ snprintf(workq_name, 32, "hl-free-jobs-%u", (u32) i);
+ hdev->cq_wq[i] = create_singlethread_workqueue(workq_name);
+ if (hdev->cq_wq[i] == NULL) {
+ dev_err(hdev->dev, "Failed to allocate CQ workqueue\n");
+ rc = -ENOMEM;
+ goto free_cq_wq;
+ }
+ }
+
+ hdev->eq_wq = alloc_workqueue("hl-events", WQ_UNBOUND, 0);
+ if (hdev->eq_wq == NULL) {
+ dev_err(hdev->dev, "Failed to allocate EQ workqueue\n");
+ rc = -ENOMEM;
+ goto free_cq_wq;
+ }
+
+ hdev->cs_cmplt_wq = alloc_workqueue("hl-cs-completions", WQ_UNBOUND, 0);
+ if (!hdev->cs_cmplt_wq) {
+ dev_err(hdev->dev,
+ "Failed to allocate CS completions workqueue\n");
+ rc = -ENOMEM;
+ goto free_eq_wq;
+ }
+
+ hdev->ts_free_obj_wq = alloc_workqueue("hl-ts-free-obj", WQ_UNBOUND, 0);
+ if (!hdev->ts_free_obj_wq) {
+ dev_err(hdev->dev,
+ "Failed to allocate Timestamp registration free workqueue\n");
+ rc = -ENOMEM;
+ goto free_cs_cmplt_wq;
+ }
+
+ hdev->pf_wq = alloc_workqueue("hl-prefetch", WQ_UNBOUND, 0);
+ if (!hdev->pf_wq) {
+ dev_err(hdev->dev, "Failed to allocate MMU prefetch workqueue\n");
+ rc = -ENOMEM;
+ goto free_ts_free_wq;
+ }
+
+ hdev->hl_chip_info = kzalloc(sizeof(struct hwmon_chip_info),
+ GFP_KERNEL);
+ if (!hdev->hl_chip_info) {
+ rc = -ENOMEM;
+ goto free_pf_wq;
+ }
+
+ rc = hl_mmu_if_set_funcs(hdev);
+ if (rc)
+ goto free_chip_info;
+
+ hl_mem_mgr_init(hdev->dev, &hdev->kernel_mem_mgr);
+
+ hdev->device_reset_work.wq =
+ create_singlethread_workqueue("hl_device_reset");
+ if (!hdev->device_reset_work.wq) {
+ rc = -ENOMEM;
+ dev_err(hdev->dev, "Failed to create device reset WQ\n");
+ goto free_cb_mgr;
+ }
+
+ INIT_DELAYED_WORK(&hdev->device_reset_work.reset_work,
+ device_hard_reset_pending);
+ hdev->device_reset_work.hdev = hdev;
+ hdev->device_fini_pending = 0;
+
+ mutex_init(&hdev->send_cpu_message_lock);
+ mutex_init(&hdev->debug_lock);
+ INIT_LIST_HEAD(&hdev->cs_mirror_list);
+ spin_lock_init(&hdev->cs_mirror_lock);
+ spin_lock_init(&hdev->reset_info.lock);
+ INIT_LIST_HEAD(&hdev->fpriv_list);
+ INIT_LIST_HEAD(&hdev->fpriv_ctrl_list);
+ mutex_init(&hdev->fpriv_list_lock);
+ mutex_init(&hdev->fpriv_ctrl_list_lock);
+ mutex_init(&hdev->clk_throttling.lock);
+
+ return 0;
+
+free_cb_mgr:
+ hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
+free_chip_info:
+ kfree(hdev->hl_chip_info);
+free_pf_wq:
+ destroy_workqueue(hdev->pf_wq);
+free_ts_free_wq:
+ destroy_workqueue(hdev->ts_free_obj_wq);
+free_cs_cmplt_wq:
+ destroy_workqueue(hdev->cs_cmplt_wq);
+free_eq_wq:
+ destroy_workqueue(hdev->eq_wq);
+free_cq_wq:
+ for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
+ if (hdev->cq_wq[i])
+ destroy_workqueue(hdev->cq_wq[i]);
+ kfree(hdev->cq_wq);
+asid_fini:
+ hl_asid_fini(hdev);
+early_fini:
+ if (hdev->asic_funcs->early_fini)
+ hdev->asic_funcs->early_fini(hdev);
+
+ return rc;
+}
+
+/*
+ * device_early_fini - finalize all that was done in device_early_init
+ *
+ * @hdev: pointer to habanalabs device structure
+ *
+ */
+static void device_early_fini(struct hl_device *hdev)
+{
+ int i;
+
+ mutex_destroy(&hdev->debug_lock);
+ mutex_destroy(&hdev->send_cpu_message_lock);
+
+ mutex_destroy(&hdev->fpriv_list_lock);
+ mutex_destroy(&hdev->fpriv_ctrl_list_lock);
+
+ mutex_destroy(&hdev->clk_throttling.lock);
+
+ hl_mem_mgr_fini(&hdev->kernel_mem_mgr);
+
+ kfree(hdev->hl_chip_info);
+
+ destroy_workqueue(hdev->pf_wq);
+ destroy_workqueue(hdev->ts_free_obj_wq);
+ destroy_workqueue(hdev->cs_cmplt_wq);
+ destroy_workqueue(hdev->eq_wq);
+ destroy_workqueue(hdev->device_reset_work.wq);
+
+ for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
+ destroy_workqueue(hdev->cq_wq[i]);
+ kfree(hdev->cq_wq);
+
+ hl_asid_fini(hdev);
+
+ if (hdev->asic_funcs->early_fini)
+ hdev->asic_funcs->early_fini(hdev);
+}
+
+static bool is_pci_link_healthy(struct hl_device *hdev)
+{
+ u16 vendor_id;
+
+ if (!hdev->pdev)
+ return false;
+
+ pci_read_config_word(hdev->pdev, PCI_VENDOR_ID, &vendor_id);
+
+ return (vendor_id == PCI_VENDOR_ID_HABANALABS);
+}
+
+static void hl_device_heartbeat(struct work_struct *work)
+{
+ struct hl_device *hdev = container_of(work, struct hl_device,
+ work_heartbeat.work);
+
+ if (!hl_device_operational(hdev, NULL))
+ goto reschedule;
+
+ if (!hdev->asic_funcs->send_heartbeat(hdev))
+ goto reschedule;
+
+ if (hl_device_operational(hdev, NULL))
+ dev_err(hdev->dev, "Device heartbeat failed! PCI link is %s\n",
+ is_pci_link_healthy(hdev) ? "healthy" : "broken");
+
+ hl_device_reset(hdev, HL_DRV_RESET_HARD | HL_DRV_RESET_HEARTBEAT);
+
+ return;
+
+reschedule:
+ /*
+ * prev_reset_trigger tracks consecutive fatal h/w errors until first
+ * heartbeat immediately post reset.
+ * If control reached here, then at least one heartbeat work has been
+ * scheduled since last reset/init cycle.
+ * So if the device is not already in reset cycle, reset the flag
+ * prev_reset_trigger as no reset occurred with HL_DRV_RESET_FW_FATAL_ERR
+ * status for at least one heartbeat. From this point driver restarts
+ * tracking future consecutive fatal errors.
+ */
+ if (!hdev->reset_info.in_reset)
+ hdev->reset_info.prev_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
+
+ schedule_delayed_work(&hdev->work_heartbeat,
+ usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
+}
+
+/*
+ * device_late_init - do late stuff initialization for the habanalabs device
+ *
+ * @hdev: pointer to habanalabs device structure
+ *
+ * Do stuff that either needs the device H/W queues to be active or needs
+ * to happen after all the rest of the initialization is finished
+ */
+static int device_late_init(struct hl_device *hdev)
+{
+ int rc;
+
+ if (hdev->asic_funcs->late_init) {
+ rc = hdev->asic_funcs->late_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev,
+ "failed late initialization for the H/W\n");
+ return rc;
+ }
+ }
+
+ hdev->high_pll = hdev->asic_prop.high_pll;
+
+ if (hdev->heartbeat) {
+ INIT_DELAYED_WORK(&hdev->work_heartbeat, hl_device_heartbeat);
+ schedule_delayed_work(&hdev->work_heartbeat,
+ usecs_to_jiffies(HL_HEARTBEAT_PER_USEC));
+ }
+
+ hdev->late_init_done = true;
+
+ return 0;
+}
+
+/*
+ * device_late_fini - finalize all that was done in device_late_init
+ *
+ * @hdev: pointer to habanalabs device structure
+ *
+ */
+static void device_late_fini(struct hl_device *hdev)
+{
+ if (!hdev->late_init_done)
+ return;
+
+ if (hdev->heartbeat)
+ cancel_delayed_work_sync(&hdev->work_heartbeat);
+
+ if (hdev->asic_funcs->late_fini)
+ hdev->asic_funcs->late_fini(hdev);
+
+ hdev->late_init_done = false;
+}
+
+int hl_device_utilization(struct hl_device *hdev, u32 *utilization)
+{
+ u64 max_power, curr_power, dc_power, dividend;
+ int rc;
+
+ max_power = hdev->max_power;
+ dc_power = hdev->asic_prop.dc_power_default;
+ rc = hl_fw_cpucp_power_get(hdev, &curr_power);
+
+ if (rc)
+ return rc;
+
+ curr_power = clamp(curr_power, dc_power, max_power);
+
+ dividend = (curr_power - dc_power) * 100;
+ *utilization = (u32) div_u64(dividend, (max_power - dc_power));
+
+ return 0;
+}
+
+int hl_device_set_debug_mode(struct hl_device *hdev, struct hl_ctx *ctx, bool enable)
+{
+ int rc = 0;
+
+ mutex_lock(&hdev->debug_lock);
+
+ if (!enable) {
+ if (!hdev->in_debug) {
+ dev_err(hdev->dev,
+ "Failed to disable debug mode because device was not in debug mode\n");
+ rc = -EFAULT;
+ goto out;
+ }
+
+ if (!hdev->reset_info.hard_reset_pending)
+ hdev->asic_funcs->halt_coresight(hdev, ctx);
+
+ hdev->in_debug = 0;
+
+ goto out;
+ }
+
+ if (hdev->in_debug) {
+ dev_err(hdev->dev,
+ "Failed to enable debug mode because device is already in debug mode\n");
+ rc = -EFAULT;
+ goto out;
+ }
+
+ hdev->in_debug = 1;
+
+out:
+ mutex_unlock(&hdev->debug_lock);
+
+ return rc;
+}
+
+static void take_release_locks(struct hl_device *hdev)
+{
+ /* Flush anyone that is inside the critical section of enqueue
+ * jobs to the H/W
+ */
+ hdev->asic_funcs->hw_queues_lock(hdev);
+ hdev->asic_funcs->hw_queues_unlock(hdev);
+
+ /* Flush processes that are sending message to CPU */
+ mutex_lock(&hdev->send_cpu_message_lock);
+ mutex_unlock(&hdev->send_cpu_message_lock);
+
+ /* Flush anyone that is inside device open */
+ mutex_lock(&hdev->fpriv_list_lock);
+ mutex_unlock(&hdev->fpriv_list_lock);
+ mutex_lock(&hdev->fpriv_ctrl_list_lock);
+ mutex_unlock(&hdev->fpriv_ctrl_list_lock);
+}
+
+static void cleanup_resources(struct hl_device *hdev, bool hard_reset, bool fw_reset,
+ bool skip_wq_flush)
+{
+ if (hard_reset)
+ device_late_fini(hdev);
+
+ /*
+ * Halt the engines and disable interrupts so we won't get any more
+ * completions from H/W and we won't have any accesses from the
+ * H/W to the host machine
+ */
+ hdev->asic_funcs->halt_engines(hdev, hard_reset, fw_reset);
+
+ /* Go over all the queues, release all CS and their jobs */
+ hl_cs_rollback_all(hdev, skip_wq_flush);
+
+ /* flush the MMU prefetch workqueue */
+ flush_workqueue(hdev->pf_wq);
+
+ /* Release all pending user interrupts, each pending user interrupt
+ * holds a reference to user context
+ */
+ hl_release_pending_user_interrupts(hdev);
+}
+
+/*
+ * hl_device_suspend - initiate device suspend
+ *
+ * @hdev: pointer to habanalabs device structure
+ *
+ * Puts the hw in the suspend state (all asics).
+ * Returns 0 for success or an error on failure.
+ * Called at driver suspend.
+ */
+int hl_device_suspend(struct hl_device *hdev)
+{
+ int rc;
+
+ pci_save_state(hdev->pdev);
+
+ /* Block future CS/VM/JOB completion operations */
+ spin_lock(&hdev->reset_info.lock);
+ if (hdev->reset_info.in_reset) {
+ spin_unlock(&hdev->reset_info.lock);
+ dev_err(hdev->dev, "Can't suspend while in reset\n");
+ return -EIO;
+ }
+ hdev->reset_info.in_reset = 1;
+ spin_unlock(&hdev->reset_info.lock);
+
+ /* This blocks all other stuff that is not blocked by in_reset */
+ hdev->disabled = true;
+
+ take_release_locks(hdev);
+
+ rc = hdev->asic_funcs->suspend(hdev);
+ if (rc)
+ dev_err(hdev->dev,
+ "Failed to disable PCI access of device CPU\n");
+
+ /* Shut down the device */
+ pci_disable_device(hdev->pdev);
+ pci_set_power_state(hdev->pdev, PCI_D3hot);
+
+ return 0;
+}
+
+/*
+ * hl_device_resume - initiate device resume
+ *
+ * @hdev: pointer to habanalabs device structure
+ *
+ * Bring the hw back to operating state (all asics).
+ * Returns 0 for success or an error on failure.
+ * Called at driver resume.
+ */
+int hl_device_resume(struct hl_device *hdev)
+{
+ int rc;
+
+ pci_set_power_state(hdev->pdev, PCI_D0);
+ pci_restore_state(hdev->pdev);
+ rc = pci_enable_device_mem(hdev->pdev);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to enable PCI device in resume\n");
+ return rc;
+ }
+
+ pci_set_master(hdev->pdev);
+
+ rc = hdev->asic_funcs->resume(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to resume device after suspend\n");
+ goto disable_device;
+ }
+
+
+ /* 'in_reset' was set to true during suspend, now we must clear it in order
+ * for hard reset to be performed
+ */
+ spin_lock(&hdev->reset_info.lock);
+ hdev->reset_info.in_reset = 0;
+ spin_unlock(&hdev->reset_info.lock);
+
+ rc = hl_device_reset(hdev, HL_DRV_RESET_HARD);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to reset device during resume\n");
+ goto disable_device;
+ }
+
+ return 0;
+
+disable_device:
+ pci_clear_master(hdev->pdev);
+ pci_disable_device(hdev->pdev);
+
+ return rc;
+}
+
+static int device_kill_open_processes(struct hl_device *hdev, u32 timeout, bool control_dev)
+{
+ struct task_struct *task = NULL;
+ struct list_head *fd_list;
+ struct hl_fpriv *hpriv;
+ struct mutex *fd_lock;
+ u32 pending_cnt;
+
+ fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
+ fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
+
+ /* Giving time for user to close FD, and for processes that are inside
+ * hl_device_open to finish
+ */
+ if (!list_empty(fd_list))
+ ssleep(1);
+
+ if (timeout) {
+ pending_cnt = timeout;
+ } else {
+ if (hdev->process_kill_trial_cnt) {
+ /* Processes have been already killed */
+ pending_cnt = 1;
+ goto wait_for_processes;
+ } else {
+ /* Wait a small period after process kill */
+ pending_cnt = HL_PENDING_RESET_PER_SEC;
+ }
+ }
+
+ mutex_lock(fd_lock);
+
+ /* This section must be protected because we are dereferencing
+ * pointers that are freed if the process exits
+ */
+ list_for_each_entry(hpriv, fd_list, dev_node) {
+ task = get_pid_task(hpriv->taskpid, PIDTYPE_PID);
+ if (task) {
+ dev_info(hdev->dev, "Killing user process pid=%d\n",
+ task_pid_nr(task));
+ send_sig(SIGKILL, task, 1);
+ usleep_range(1000, 10000);
+
+ put_task_struct(task);
+ } else {
+ /*
+ * If we got here, it means that process was killed from outside the driver
+ * right after it started looping on fd_list and before get_pid_task, thus
+ * we don't need to kill it.
+ */
+ dev_dbg(hdev->dev,
+ "Can't get task struct for user process, assuming process was killed from outside the driver\n");
+ }
+ }
+
+ mutex_unlock(fd_lock);
+
+ /*
+ * We killed the open users, but that doesn't mean they are closed.
+ * It could be that they are running a long cleanup phase in the driver
+ * e.g. MMU unmappings, or running other long teardown flow even before
+ * our cleanup.
+ * Therefore we need to wait again to make sure they are closed before
+ * continuing with the reset.
+ */
+
+wait_for_processes:
+ while ((!list_empty(fd_list)) && (pending_cnt)) {
+ dev_dbg(hdev->dev,
+ "Waiting for all unmap operations to finish before hard reset\n");
+
+ pending_cnt--;
+
+ ssleep(1);
+ }
+
+ /* All processes exited successfully */
+ if (list_empty(fd_list))
+ return 0;
+
+ /* Give up waiting for processes to exit */
+ if (hdev->process_kill_trial_cnt == HL_PENDING_RESET_MAX_TRIALS)
+ return -ETIME;
+
+ hdev->process_kill_trial_cnt++;
+
+ return -EBUSY;
+}
+
+static void device_disable_open_processes(struct hl_device *hdev, bool control_dev)
+{
+ struct list_head *fd_list;
+ struct hl_fpriv *hpriv;
+ struct mutex *fd_lock;
+
+ fd_lock = control_dev ? &hdev->fpriv_ctrl_list_lock : &hdev->fpriv_list_lock;
+ fd_list = control_dev ? &hdev->fpriv_ctrl_list : &hdev->fpriv_list;
+
+ mutex_lock(fd_lock);
+ list_for_each_entry(hpriv, fd_list, dev_node)
+ hpriv->hdev = NULL;
+ mutex_unlock(fd_lock);
+}
+
+static void handle_reset_trigger(struct hl_device *hdev, u32 flags)
+{
+ u32 cur_reset_trigger = HL_RESET_TRIGGER_DEFAULT;
+
+ /*
+ * 'reset cause' is being updated here, because getting here
+ * means that it's the 1st time and the last time we're here
+ * ('in_reset' makes sure of it). This makes sure that
+ * 'reset_cause' will continue holding its 1st recorded reason!
+ */
+ if (flags & HL_DRV_RESET_HEARTBEAT) {
+ hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_HEARTBEAT;
+ cur_reset_trigger = HL_DRV_RESET_HEARTBEAT;
+ } else if (flags & HL_DRV_RESET_TDR) {
+ hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_TDR;
+ cur_reset_trigger = HL_DRV_RESET_TDR;
+ } else if (flags & HL_DRV_RESET_FW_FATAL_ERR) {
+ hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
+ cur_reset_trigger = HL_DRV_RESET_FW_FATAL_ERR;
+ } else {
+ hdev->reset_info.curr_reset_cause = HL_RESET_CAUSE_UNKNOWN;
+ }
+
+ /*
+ * If reset cause is same twice, then reset_trigger_repeated
+ * is set and if this reset is due to a fatal FW error
+ * device is set to an unstable state.
+ */
+ if (hdev->reset_info.prev_reset_trigger != cur_reset_trigger) {
+ hdev->reset_info.prev_reset_trigger = cur_reset_trigger;
+ hdev->reset_info.reset_trigger_repeated = 0;
+ } else {
+ hdev->reset_info.reset_trigger_repeated = 1;
+ }
+
+ /* If reset is due to heartbeat, device CPU is no responsive in
+ * which case no point sending PCI disable message to it.
+ *
+ * If F/W is performing the reset, no need to send it a message to disable
+ * PCI access
+ */
+ if ((flags & HL_DRV_RESET_HARD) &&
+ !(flags & (HL_DRV_RESET_HEARTBEAT | HL_DRV_RESET_BYPASS_REQ_TO_FW))) {
+ /* Disable PCI access from device F/W so he won't send
+ * us additional interrupts. We disable MSI/MSI-X at
+ * the halt_engines function and we can't have the F/W
+ * sending us interrupts after that. We need to disable
+ * the access here because if the device is marked
+ * disable, the message won't be send. Also, in case
+ * of heartbeat, the device CPU is marked as disable
+ * so this message won't be sent
+ */
+ if (hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0))
+ dev_warn(hdev->dev,
+ "Failed to disable PCI access by F/W\n");
+ }
+}
+
+/*
+ * hl_device_reset - reset the device
+ *
+ * @hdev: pointer to habanalabs device structure
+ * @flags: reset flags.
+ *
+ * Block future CS and wait for pending CS to be enqueued
+ * Call ASIC H/W fini
+ * Flush all completions
+ * Re-initialize all internal data structures
+ * Call ASIC H/W init, late_init
+ * Test queues
+ * Enable device
+ *
+ * Returns 0 for success or an error on failure.
+ */
+int hl_device_reset(struct hl_device *hdev, u32 flags)
+{
+ bool hard_reset, from_hard_reset_thread, fw_reset, hard_instead_soft = false,
+ reset_upon_device_release = false, schedule_hard_reset = false,
+ skip_wq_flush, delay_reset;
+ u64 idle_mask[HL_BUSY_ENGINES_MASK_EXT_SIZE] = {0};
+ struct hl_ctx *ctx;
+ int i, rc;
+
+ if (!hdev->init_done) {
+ dev_err(hdev->dev, "Can't reset before initialization is done\n");
+ return 0;
+ }
+
+ hard_reset = !!(flags & HL_DRV_RESET_HARD);
+ from_hard_reset_thread = !!(flags & HL_DRV_RESET_FROM_RESET_THR);
+ fw_reset = !!(flags & HL_DRV_RESET_BYPASS_REQ_TO_FW);
+ skip_wq_flush = !!(flags & HL_DRV_RESET_DEV_RELEASE);
+ delay_reset = !!(flags & HL_DRV_RESET_DELAY);
+
+ if (!hard_reset && !hdev->asic_prop.supports_compute_reset) {
+ hard_instead_soft = true;
+ hard_reset = true;
+ }
+
+ if (hdev->reset_upon_device_release && (flags & HL_DRV_RESET_DEV_RELEASE)) {
+ if (hard_reset) {
+ dev_crit(hdev->dev,
+ "Aborting reset because hard-reset is mutually exclusive with reset-on-device-release\n");
+ return -EINVAL;
+ }
+
+ reset_upon_device_release = true;
+
+ goto do_reset;
+ }
+
+ if (!hard_reset && !hdev->asic_prop.allow_inference_soft_reset) {
+ hard_instead_soft = true;
+ hard_reset = true;
+ }
+
+ if (hard_instead_soft)
+ dev_dbg(hdev->dev, "Doing hard-reset instead of compute reset\n");
+
+do_reset:
+ /* Re-entry of reset thread */
+ if (from_hard_reset_thread && hdev->process_kill_trial_cnt)
+ goto kill_processes;
+
+ /*
+ * Prevent concurrency in this function - only one reset should be
+ * done at any given time. Only need to perform this if we didn't
+ * get from the dedicated hard reset thread
+ */
+ if (!from_hard_reset_thread) {
+ /* Block future CS/VM/JOB completion operations */
+ spin_lock(&hdev->reset_info.lock);
+ if (hdev->reset_info.in_reset) {
+ /* We only allow scheduling of a hard reset during compute reset */
+ if (hard_reset && hdev->reset_info.in_compute_reset)
+ hdev->reset_info.hard_reset_schedule_flags = flags;
+ spin_unlock(&hdev->reset_info.lock);
+ return 0;
+ }
+
+ /* This still allows the completion of some KDMA ops
+ * Update this before in_reset because in_compute_reset implies we are in reset
+ */
+ hdev->reset_info.in_compute_reset = !hard_reset;
+
+ hdev->reset_info.in_reset = 1;
+
+ spin_unlock(&hdev->reset_info.lock);
+
+ if (delay_reset)
+ usleep_range(HL_RESET_DELAY_USEC, HL_RESET_DELAY_USEC << 1);
+
+ handle_reset_trigger(hdev, flags);
+
+ /* This also blocks future CS/VM/JOB completion operations */
+ hdev->disabled = true;
+
+ take_release_locks(hdev);
+
+ if (hard_reset)
+ dev_info(hdev->dev, "Going to reset device\n");
+ else if (reset_upon_device_release)
+ dev_dbg(hdev->dev, "Going to reset device after release by user\n");
+ else
+ dev_dbg(hdev->dev, "Going to reset engines of inference device\n");
+ }
+
+again:
+ if ((hard_reset) && (!from_hard_reset_thread)) {
+ hdev->reset_info.hard_reset_pending = true;
+
+ hdev->process_kill_trial_cnt = 0;
+
+ hdev->device_reset_work.flags = flags;
+
+ /*
+ * Because the reset function can't run from heartbeat work,
+ * we need to call the reset function from a dedicated work.
+ */
+ queue_delayed_work(hdev->device_reset_work.wq,
+ &hdev->device_reset_work.reset_work, 0);
+
+ return 0;
+ }
+
+ cleanup_resources(hdev, hard_reset, fw_reset, skip_wq_flush);
+
+kill_processes:
+ if (hard_reset) {
+ /* Kill processes here after CS rollback. This is because the
+ * process can't really exit until all its CSs are done, which
+ * is what we do in cs rollback
+ */
+ rc = device_kill_open_processes(hdev, 0, false);
+
+ if (rc == -EBUSY) {
+ if (hdev->device_fini_pending) {
+ dev_crit(hdev->dev,
+ "%s Failed to kill all open processes, stopping hard reset\n",
+ dev_name(&(hdev)->pdev->dev));
+ goto out_err;
+ }
+
+ /* signal reset thread to reschedule */
+ return rc;
+ }
+
+ if (rc) {
+ dev_crit(hdev->dev,
+ "%s Failed to kill all open processes, stopping hard reset\n",
+ dev_name(&(hdev)->pdev->dev));
+ goto out_err;
+ }
+
+ /* Flush the Event queue workers to make sure no other thread is
+ * reading or writing to registers during the reset
+ */
+ flush_workqueue(hdev->eq_wq);
+ }
+
+ /* Reset the H/W. It will be in idle state after this returns */
+ hdev->asic_funcs->hw_fini(hdev, hard_reset, fw_reset);
+
+ if (hard_reset) {
+ hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
+
+ /* Release kernel context */
+ if (hdev->kernel_ctx && hl_ctx_put(hdev->kernel_ctx) == 1)
+ hdev->kernel_ctx = NULL;
+
+ hl_vm_fini(hdev);
+ hl_mmu_fini(hdev);
+ hl_eq_reset(hdev, &hdev->event_queue);
+ }
+
+ /* Re-initialize PI,CI to 0 in all queues (hw queue, cq) */
+ hl_hw_queue_reset(hdev, hard_reset);
+ for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
+ hl_cq_reset(hdev, &hdev->completion_queue[i]);
+
+ /* Make sure the context switch phase will run again */
+ ctx = hl_get_compute_ctx(hdev);
+ if (ctx) {
+ atomic_set(&ctx->thread_ctx_switch_token, 1);
+ ctx->thread_ctx_switch_wait_token = 0;
+ hl_ctx_put(ctx);
+ }
+
+ /* Finished tear-down, starting to re-initialize */
+
+ if (hard_reset) {
+ hdev->device_cpu_disabled = false;
+ hdev->reset_info.hard_reset_pending = false;
+
+ if (hdev->reset_info.reset_trigger_repeated &&
+ (hdev->reset_info.prev_reset_trigger ==
+ HL_DRV_RESET_FW_FATAL_ERR)) {
+ /* if there 2 back to back resets from FW,
+ * ensure driver puts the driver in a unusable state
+ */
+ dev_crit(hdev->dev,
+ "%s Consecutive FW fatal errors received, stopping hard reset\n",
+ dev_name(&(hdev)->pdev->dev));
+ rc = -EIO;
+ goto out_err;
+ }
+
+ if (hdev->kernel_ctx) {
+ dev_crit(hdev->dev,
+ "%s kernel ctx was alive during hard reset, something is terribly wrong\n",
+ dev_name(&(hdev)->pdev->dev));
+ rc = -EBUSY;
+ goto out_err;
+ }
+
+ rc = hl_mmu_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to initialize MMU S/W after hard reset\n");
+ goto out_err;
+ }
+
+ /* Allocate the kernel context */
+ hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx),
+ GFP_KERNEL);
+ if (!hdev->kernel_ctx) {
+ rc = -ENOMEM;
+ hl_mmu_fini(hdev);
+ goto out_err;
+ }
+
+ hdev->is_compute_ctx_active = false;
+
+ rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
+ if (rc) {
+ dev_err(hdev->dev,
+ "failed to init kernel ctx in hard reset\n");
+ kfree(hdev->kernel_ctx);
+ hdev->kernel_ctx = NULL;
+ hl_mmu_fini(hdev);
+ goto out_err;
+ }
+ }
+
+ /* Device is now enabled as part of the initialization requires
+ * communication with the device firmware to get information that
+ * is required for the initialization itself
+ */
+ hdev->disabled = false;
+
+ /* F/W security enabled indication might be updated after hard-reset */
+ if (hard_reset) {
+ rc = hl_fw_read_preboot_status(hdev);
+ if (rc)
+ goto out_err;
+ }
+
+ rc = hdev->asic_funcs->hw_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "failed to initialize the H/W after reset\n");
+ goto out_err;
+ }
+
+ /* If device is not idle fail the reset process */
+ if (!hdev->asic_funcs->is_device_idle(hdev, idle_mask,
+ HL_BUSY_ENGINES_MASK_EXT_SIZE, NULL)) {
+ dev_err(hdev->dev, "device is not idle (mask 0x%llx_%llx) after reset\n",
+ idle_mask[1], idle_mask[0]);
+ rc = -EIO;
+ goto out_err;
+ }
+
+ /* Check that the communication with the device is working */
+ rc = hdev->asic_funcs->test_queues(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to detect if device is alive after reset\n");
+ goto out_err;
+ }
+
+ if (hard_reset) {
+ rc = device_late_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed late init after hard reset\n");
+ goto out_err;
+ }
+
+ rc = hl_vm_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to init memory module after hard reset\n");
+ goto out_err;
+ }
+
+ if (!hdev->asic_prop.fw_security_enabled)
+ hl_fw_set_max_power(hdev);
+ } else {
+ rc = hdev->asic_funcs->compute_reset_late_init(hdev);
+ if (rc) {
+ if (reset_upon_device_release)
+ dev_err(hdev->dev,
+ "Failed late init in reset after device release\n");
+ else
+ dev_err(hdev->dev, "Failed late init after compute reset\n");
+ goto out_err;
+ }
+ }
+
+ rc = hdev->asic_funcs->scrub_device_mem(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "scrub mem failed from device reset (%d)\n", rc);
+ return rc;
+ }
+
+ spin_lock(&hdev->reset_info.lock);
+ hdev->reset_info.in_compute_reset = 0;
+
+ /* Schedule hard reset only if requested and if not already in hard reset.
+ * We keep 'in_reset' enabled, so no other reset can go in during the hard
+ * reset schedule
+ */
+ if (!hard_reset && hdev->reset_info.hard_reset_schedule_flags)
+ schedule_hard_reset = true;
+ else
+ hdev->reset_info.in_reset = 0;
+
+ spin_unlock(&hdev->reset_info.lock);
+
+ hdev->reset_info.needs_reset = false;
+
+ if (hard_reset)
+ dev_info(hdev->dev,
+ "Successfully finished resetting the %s device\n",
+ dev_name(&(hdev)->pdev->dev));
+ else
+ dev_dbg(hdev->dev,
+ "Successfully finished resetting the %s device\n",
+ dev_name(&(hdev)->pdev->dev));
+
+ if (hard_reset) {
+ hdev->reset_info.hard_reset_cnt++;
+
+ /* After reset is done, we are ready to receive events from
+ * the F/W. We can't do it before because we will ignore events
+ * and if those events are fatal, we won't know about it and
+ * the device will be operational although it shouldn't be
+ */
+ hdev->asic_funcs->enable_events_from_fw(hdev);
+ } else if (!reset_upon_device_release) {
+ hdev->reset_info.compute_reset_cnt++;
+ }
+
+ if (schedule_hard_reset) {
+ dev_info(hdev->dev, "Performing hard reset scheduled during compute reset\n");
+ flags = hdev->reset_info.hard_reset_schedule_flags;
+ hdev->reset_info.hard_reset_schedule_flags = 0;
+ hdev->disabled = true;
+ hard_reset = true;
+ handle_reset_trigger(hdev, flags);
+ goto again;
+ }
+
+ return 0;
+
+out_err:
+ hdev->disabled = true;
+
+ spin_lock(&hdev->reset_info.lock);
+ hdev->reset_info.in_compute_reset = 0;
+
+ if (hard_reset) {
+ dev_err(hdev->dev,
+ "%s Failed to reset! Device is NOT usable\n",
+ dev_name(&(hdev)->pdev->dev));
+ hdev->reset_info.hard_reset_cnt++;
+ } else if (reset_upon_device_release) {
+ spin_unlock(&hdev->reset_info.lock);
+ dev_err(hdev->dev, "Failed to reset device after user release\n");
+ flags |= HL_DRV_RESET_HARD;
+ flags &= ~HL_DRV_RESET_DEV_RELEASE;
+ hard_reset = true;
+ goto again;
+ } else {
+ spin_unlock(&hdev->reset_info.lock);
+ dev_err(hdev->dev, "Failed to do compute reset\n");
+ hdev->reset_info.compute_reset_cnt++;
+ flags |= HL_DRV_RESET_HARD;
+ hard_reset = true;
+ goto again;
+ }
+
+ hdev->reset_info.in_reset = 0;
+
+ spin_unlock(&hdev->reset_info.lock);
+
+ return rc;
+}
+
+static void hl_notifier_event_send(struct hl_notifier_event *notifier_event, u64 event_mask)
+{
+ mutex_lock(&notifier_event->lock);
+ notifier_event->events_mask |= event_mask;
+
+ if (notifier_event->eventfd)
+ eventfd_signal(notifier_event->eventfd, 1);
+
+ mutex_unlock(&notifier_event->lock);
+}
+
+/*
+ * hl_notifier_event_send_all - notify all user processes via eventfd
+ *
+ * @hdev: pointer to habanalabs device structure
+ * @event_mask: the occurred event/s
+ * Returns 0 for success or an error on failure.
+ */
+void hl_notifier_event_send_all(struct hl_device *hdev, u64 event_mask)
+{
+ struct hl_fpriv *hpriv;
+
+ mutex_lock(&hdev->fpriv_list_lock);
+
+ list_for_each_entry(hpriv, &hdev->fpriv_list, dev_node)
+ hl_notifier_event_send(&hpriv->notifier_event, event_mask);
+
+ mutex_unlock(&hdev->fpriv_list_lock);
+
+ /* control device */
+ mutex_lock(&hdev->fpriv_ctrl_list_lock);
+
+ list_for_each_entry(hpriv, &hdev->fpriv_ctrl_list, dev_node)
+ hl_notifier_event_send(&hpriv->notifier_event, event_mask);
+
+ mutex_unlock(&hdev->fpriv_ctrl_list_lock);
+}
+
+/*
+ * hl_device_init - main initialization function for habanalabs device
+ *
+ * @hdev: pointer to habanalabs device structure
+ *
+ * Allocate an id for the device, do early initialization and then call the
+ * ASIC specific initialization functions. Finally, create the cdev and the
+ * Linux device to expose it to the user
+ */
+int hl_device_init(struct hl_device *hdev, struct class *hclass)
+{
+ int i, rc, cq_cnt, user_interrupt_cnt, cq_ready_cnt;
+ char *name;
+ bool add_cdev_sysfs_on_err = false;
+
+ hdev->cdev_idx = hdev->id / 2;
+
+ name = kasprintf(GFP_KERNEL, "hl%d", hdev->cdev_idx);
+ if (!name) {
+ rc = -ENOMEM;
+ goto out_disabled;
+ }
+
+ /* Initialize cdev and device structures */
+ rc = device_init_cdev(hdev, hclass, hdev->id, &hl_ops, name,
+ &hdev->cdev, &hdev->dev);
+
+ kfree(name);
+
+ if (rc)
+ goto out_disabled;
+
+ name = kasprintf(GFP_KERNEL, "hl_controlD%d", hdev->cdev_idx);
+ if (!name) {
+ rc = -ENOMEM;
+ goto free_dev;
+ }
+
+ /* Initialize cdev and device structures for control device */
+ rc = device_init_cdev(hdev, hclass, hdev->id_control, &hl_ctrl_ops,
+ name, &hdev->cdev_ctrl, &hdev->dev_ctrl);
+
+ kfree(name);
+
+ if (rc)
+ goto free_dev;
+
+ /* Initialize ASIC function pointers and perform early init */
+ rc = device_early_init(hdev);
+ if (rc)
+ goto free_dev_ctrl;
+
+ user_interrupt_cnt = hdev->asic_prop.user_dec_intr_count +
+ hdev->asic_prop.user_interrupt_count;
+
+ if (user_interrupt_cnt) {
+ hdev->user_interrupt = kcalloc(user_interrupt_cnt, sizeof(*hdev->user_interrupt),
+ GFP_KERNEL);
+ if (!hdev->user_interrupt) {
+ rc = -ENOMEM;
+ goto early_fini;
+ }
+ }
+
+ /*
+ * Start calling ASIC initialization. First S/W then H/W and finally
+ * late init
+ */
+ rc = hdev->asic_funcs->sw_init(hdev);
+ if (rc)
+ goto free_usr_intr_mem;
+
+
+ /* initialize completion structure for multi CS wait */
+ hl_multi_cs_completion_init(hdev);
+
+ /*
+ * Initialize the H/W queues. Must be done before hw_init, because
+ * there the addresses of the kernel queue are being written to the
+ * registers of the device
+ */
+ rc = hl_hw_queues_create(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "failed to initialize kernel queues\n");
+ goto sw_fini;
+ }
+
+ cq_cnt = hdev->asic_prop.completion_queues_count;
+
+ /*
+ * Initialize the completion queues. Must be done before hw_init,
+ * because there the addresses of the completion queues are being
+ * passed as arguments to request_irq
+ */
+ if (cq_cnt) {
+ hdev->completion_queue = kcalloc(cq_cnt,
+ sizeof(*hdev->completion_queue),
+ GFP_KERNEL);
+
+ if (!hdev->completion_queue) {
+ dev_err(hdev->dev,
+ "failed to allocate completion queues\n");
+ rc = -ENOMEM;
+ goto hw_queues_destroy;
+ }
+ }
+
+ for (i = 0, cq_ready_cnt = 0 ; i < cq_cnt ; i++, cq_ready_cnt++) {
+ rc = hl_cq_init(hdev, &hdev->completion_queue[i],
+ hdev->asic_funcs->get_queue_id_for_cq(hdev, i));
+ if (rc) {
+ dev_err(hdev->dev,
+ "failed to initialize completion queue\n");
+ goto cq_fini;
+ }
+ hdev->completion_queue[i].cq_idx = i;
+ }
+
+ hdev->shadow_cs_queue = kcalloc(hdev->asic_prop.max_pending_cs,
+ sizeof(struct hl_cs *), GFP_KERNEL);
+ if (!hdev->shadow_cs_queue) {
+ rc = -ENOMEM;
+ goto cq_fini;
+ }
+
+ /*
+ * Initialize the event queue. Must be done before hw_init,
+ * because there the address of the event queue is being
+ * passed as argument to request_irq
+ */
+ rc = hl_eq_init(hdev, &hdev->event_queue);
+ if (rc) {
+ dev_err(hdev->dev, "failed to initialize event queue\n");
+ goto free_shadow_cs_queue;
+ }
+
+ /* MMU S/W must be initialized before kernel context is created */
+ rc = hl_mmu_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to initialize MMU S/W structures\n");
+ goto eq_fini;
+ }
+
+ /* Allocate the kernel context */
+ hdev->kernel_ctx = kzalloc(sizeof(*hdev->kernel_ctx), GFP_KERNEL);
+ if (!hdev->kernel_ctx) {
+ rc = -ENOMEM;
+ goto mmu_fini;
+ }
+
+ hdev->is_compute_ctx_active = false;
+
+ hdev->asic_funcs->state_dump_init(hdev);
+
+ hdev->memory_scrub_val = MEM_SCRUB_DEFAULT_VAL;
+ hl_debugfs_add_device(hdev);
+
+ /* debugfs nodes are created in hl_ctx_init so it must be called after
+ * hl_debugfs_add_device.
+ */
+ rc = hl_ctx_init(hdev, hdev->kernel_ctx, true);
+ if (rc) {
+ dev_err(hdev->dev, "failed to initialize kernel context\n");
+ kfree(hdev->kernel_ctx);
+ goto remove_device_from_debugfs;
+ }
+
+ rc = hl_cb_pool_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "failed to initialize CB pool\n");
+ goto release_ctx;
+ }
+
+ rc = hl_dec_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to initialize the decoder module\n");
+ goto cb_pool_fini;
+ }
+
+ /*
+ * From this point, override rc (=0) in case of an error to allow
+ * debugging (by adding char devices and create sysfs nodes as part of
+ * the error flow).
+ */
+ add_cdev_sysfs_on_err = true;
+
+ /* Device is now enabled as part of the initialization requires
+ * communication with the device firmware to get information that
+ * is required for the initialization itself
+ */
+ hdev->disabled = false;
+
+ rc = hdev->asic_funcs->hw_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "failed to initialize the H/W\n");
+ rc = 0;
+ goto out_disabled;
+ }
+
+ /* Check that the communication with the device is working */
+ rc = hdev->asic_funcs->test_queues(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to detect if device is alive\n");
+ rc = 0;
+ goto out_disabled;
+ }
+
+ rc = device_late_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed late initialization\n");
+ rc = 0;
+ goto out_disabled;
+ }
+
+ dev_info(hdev->dev, "Found %s device with %lluGB DRAM\n",
+ hdev->asic_name,
+ hdev->asic_prop.dram_size / SZ_1G);
+
+ rc = hl_vm_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to initialize memory module\n");
+ rc = 0;
+ goto out_disabled;
+ }
+
+ /*
+ * Expose devices and sysfs nodes to user.
+ * From here there is no need to add char devices and create sysfs nodes
+ * in case of an error.
+ */
+ add_cdev_sysfs_on_err = false;
+ rc = device_cdev_sysfs_add(hdev);
+ if (rc) {
+ dev_err(hdev->dev,
+ "Failed to add char devices and sysfs nodes\n");
+ rc = 0;
+ goto out_disabled;
+ }
+
+ /* Need to call this again because the max power might change,
+ * depending on card type for certain ASICs
+ */
+ if (hdev->asic_prop.set_max_power_on_device_init &&
+ !hdev->asic_prop.fw_security_enabled)
+ hl_fw_set_max_power(hdev);
+
+ /*
+ * hl_hwmon_init() must be called after device_late_init(), because only
+ * there we get the information from the device about which
+ * hwmon-related sensors the device supports.
+ * Furthermore, it must be done after adding the device to the system.
+ */
+ rc = hl_hwmon_init(hdev);
+ if (rc) {
+ dev_err(hdev->dev, "Failed to initialize hwmon\n");
+ rc = 0;
+ goto out_disabled;
+ }
+
+ dev_notice(hdev->dev,
+ "Successfully added device %s to habanalabs driver\n",
+ dev_name(&(hdev)->pdev->dev));
+
+ hdev->init_done = true;
+
+ /* After initialization is done, we are ready to receive events from
+ * the F/W. We can't do it before because we will ignore events and if
+ * those events are fatal, we won't know about it and the device will
+ * be operational although it shouldn't be
+ */
+ hdev->asic_funcs->enable_events_from_fw(hdev);
+
+ return 0;
+
+cb_pool_fini:
+ hl_cb_pool_fini(hdev);
+release_ctx:
+ if (hl_ctx_put(hdev->kernel_ctx) != 1)
+ dev_err(hdev->dev,
+ "kernel ctx is still alive on initialization failure\n");
+remove_device_from_debugfs:
+ hl_debugfs_remove_device(hdev);
+mmu_fini:
+ hl_mmu_fini(hdev);
+eq_fini:
+ hl_eq_fini(hdev, &hdev->event_queue);
+free_shadow_cs_queue:
+ kfree(hdev->shadow_cs_queue);
+cq_fini:
+ for (i = 0 ; i < cq_ready_cnt ; i++)
+ hl_cq_fini(hdev, &hdev->completion_queue[i]);
+ kfree(hdev->completion_queue);
+hw_queues_destroy:
+ hl_hw_queues_destroy(hdev);
+sw_fini:
+ hdev->asic_funcs->sw_fini(hdev);
+free_usr_intr_mem:
+ kfree(hdev->user_interrupt);
+early_fini:
+ device_early_fini(hdev);
+free_dev_ctrl:
+ put_device(hdev->dev_ctrl);
+free_dev:
+ put_device(hdev->dev);
+out_disabled:
+ hdev->disabled = true;
+ if (add_cdev_sysfs_on_err)
+ device_cdev_sysfs_add(hdev);
+ if (hdev->pdev)
+ dev_err(&hdev->pdev->dev,
+ "Failed to initialize hl%d. Device %s is NOT usable !\n",
+ hdev->cdev_idx, dev_name(&(hdev)->pdev->dev));
+ else
+ pr_err("Failed to initialize hl%d. Device %s is NOT usable !\n",
+ hdev->cdev_idx, dev_name(&(hdev)->pdev->dev));
+
+ return rc;
+}
+
+/*
+ * hl_device_fini - main tear-down function for habanalabs device
+ *
+ * @hdev: pointer to habanalabs device structure
+ *
+ * Destroy the device, call ASIC fini functions and release the id
+ */
+void hl_device_fini(struct hl_device *hdev)
+{
+ bool device_in_reset;
+ ktime_t timeout;
+ u64 reset_sec;
+ int i, rc;
+
+ dev_info(hdev->dev, "Removing device\n");
+
+ hdev->device_fini_pending = 1;
+ flush_delayed_work(&hdev->device_reset_work.reset_work);
+
+ if (hdev->pldm)
+ reset_sec = HL_PLDM_HARD_RESET_MAX_TIMEOUT;
+ else
+ reset_sec = HL_HARD_RESET_MAX_TIMEOUT;
+
+ /*
+ * This function is competing with the reset function, so try to
+ * take the reset atomic and if we are already in middle of reset,
+ * wait until reset function is finished. Reset function is designed
+ * to always finish. However, in Gaudi, because of all the network
+ * ports, the hard reset could take between 10-30 seconds
+ */
+
+ timeout = ktime_add_us(ktime_get(), reset_sec * 1000 * 1000);
+
+ spin_lock(&hdev->reset_info.lock);
+ device_in_reset = !!hdev->reset_info.in_reset;
+ if (!device_in_reset)
+ hdev->reset_info.in_reset = 1;
+ spin_unlock(&hdev->reset_info.lock);
+
+ while (device_in_reset) {
+ usleep_range(50, 200);
+
+ spin_lock(&hdev->reset_info.lock);
+ device_in_reset = !!hdev->reset_info.in_reset;
+ if (!device_in_reset)
+ hdev->reset_info.in_reset = 1;
+ spin_unlock(&hdev->reset_info.lock);
+
+ if (ktime_compare(ktime_get(), timeout) > 0) {
+ dev_crit(hdev->dev,
+ "%s Failed to remove device because reset function did not finish\n",
+ dev_name(&(hdev)->pdev->dev));
+ return;
+ }
+ }
+
+ /* Disable PCI access from device F/W so it won't send us additional
+ * interrupts. We disable MSI/MSI-X at the halt_engines function and we
+ * can't have the F/W sending us interrupts after that. We need to
+ * disable the access here because if the device is marked disable, the
+ * message won't be send. Also, in case of heartbeat, the device CPU is
+ * marked as disable so this message won't be sent
+ */
+ hl_fw_send_pci_access_msg(hdev, CPUCP_PACKET_DISABLE_PCI_ACCESS, 0x0);
+
+ /* Mark device as disabled */
+ hdev->disabled = true;
+
+ take_release_locks(hdev);
+
+ hdev->reset_info.hard_reset_pending = true;
+
+ hl_hwmon_fini(hdev);
+
+ cleanup_resources(hdev, true, false, false);
+
+ /* Kill processes here after CS rollback. This is because the process
+ * can't really exit until all its CSs are done, which is what we
+ * do in cs rollback
+ */
+ dev_info(hdev->dev,
+ "Waiting for all processes to exit (timeout of %u seconds)",
+ HL_PENDING_RESET_LONG_SEC);
+
+ rc = device_kill_open_processes(hdev, HL_PENDING_RESET_LONG_SEC, false);
+ if (rc) {
+ dev_crit(hdev->dev, "Failed to kill all open processes\n");
+ device_disable_open_processes(hdev, false);
+ }
+
+ rc = device_kill_open_processes(hdev, 0, true);
+ if (rc) {
+ dev_crit(hdev->dev, "Failed to kill all control device open processes\n");
+ device_disable_open_processes(hdev, true);
+ }
+
+ hl_cb_pool_fini(hdev);
+
+ /* Reset the H/W. It will be in idle state after this returns */
+ hdev->asic_funcs->hw_fini(hdev, true, false);
+
+ hdev->fw_loader.fw_comp_loaded = FW_TYPE_NONE;
+
+ /* Release kernel context */
+ if ((hdev->kernel_ctx) && (hl_ctx_put(hdev->kernel_ctx) != 1))
+ dev_err(hdev->dev, "kernel ctx is still alive\n");
+
+ hl_debugfs_remove_device(hdev);
+
+ hl_dec_fini(hdev);
+
+ hl_vm_fini(hdev);
+
+ hl_mmu_fini(hdev);
+
+ hl_eq_fini(hdev, &hdev->event_queue);
+
+ kfree(hdev->shadow_cs_queue);
+
+ for (i = 0 ; i < hdev->asic_prop.completion_queues_count ; i++)
+ hl_cq_fini(hdev, &hdev->completion_queue[i]);
+ kfree(hdev->completion_queue);
+ kfree(hdev->user_interrupt);
+
+ hl_hw_queues_destroy(hdev);
+
+ /* Call ASIC S/W finalize function */
+ hdev->asic_funcs->sw_fini(hdev);
+
+ device_early_fini(hdev);
+
+ /* Hide devices and sysfs nodes from user */
+ device_cdev_sysfs_del(hdev);
+
+ pr_info("removed device successfully\n");
+}
+
+/*
+ * MMIO register access helper functions.
+ */
+
+/*
+ * hl_rreg - Read an MMIO register
+ *
+ * @hdev: pointer to habanalabs device structure
+ * @reg: MMIO register offset (in bytes)
+ *
+ * Returns the value of the MMIO register we are asked to read
+ *
+ */
+inline u32 hl_rreg(struct hl_device *hdev, u32 reg)
+{
+ return readl(hdev->rmmio + reg);
+}
+
+/*
+ * hl_wreg - Write to an MMIO register
+ *
+ * @hdev: pointer to habanalabs device structure
+ * @reg: MMIO register offset (in bytes)
+ * @val: 32-bit value
+ *
+ * Writes the 32-bit value into the MMIO register
+ *
+ */
+inline void hl_wreg(struct hl_device *hdev, u32 reg, u32 val)
+{
+ writel(val, hdev->rmmio + reg);
+}