diff options
Diffstat (limited to 'drivers/misc/habanalabs/common/mmu/mmu.c')
-rw-r--r-- | drivers/misc/habanalabs/common/mmu/mmu.c | 1246 |
1 files changed, 1246 insertions, 0 deletions
diff --git a/drivers/misc/habanalabs/common/mmu/mmu.c b/drivers/misc/habanalabs/common/mmu/mmu.c new file mode 100644 index 000000000..cf8946266 --- /dev/null +++ b/drivers/misc/habanalabs/common/mmu/mmu.c @@ -0,0 +1,1246 @@ +// SPDX-License-Identifier: GPL-2.0 + +/* + * Copyright 2016-2022 HabanaLabs, Ltd. + * All Rights Reserved. + */ + +#include <linux/slab.h> + +#include "../habanalabs.h" + +#include <trace/events/habanalabs.h> + +/** + * hl_mmu_get_funcs() - get MMU functions structure + * @hdev: habanalabs device structure. + * @pgt_residency: page table residency. + * @is_dram_addr: true if we need HMMU functions + * + * @return appropriate MMU functions structure + */ +static struct hl_mmu_funcs *hl_mmu_get_funcs(struct hl_device *hdev, int pgt_residency, + bool is_dram_addr) +{ + return &hdev->mmu_func[pgt_residency]; +} + +bool hl_is_dram_va(struct hl_device *hdev, u64 virt_addr) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + + return hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, + prop->dmmu.start_addr, + prop->dmmu.end_addr); +} + +/** + * hl_mmu_init() - initialize the MMU module. + * @hdev: habanalabs device structure. + * + * Return: 0 for success, non-zero for failure. + */ +int hl_mmu_init(struct hl_device *hdev) +{ + int rc = -EOPNOTSUPP; + + if (!hdev->mmu_enable) + return 0; + + mutex_init(&hdev->mmu_lock); + + if (hdev->mmu_func[MMU_DR_PGT].init != NULL) { + rc = hdev->mmu_func[MMU_DR_PGT].init(hdev); + if (rc) + return rc; + } + + if (hdev->mmu_func[MMU_HR_PGT].init != NULL) { + rc = hdev->mmu_func[MMU_HR_PGT].init(hdev); + if (rc) + goto fini_dr_mmu; + } + + return 0; + +fini_dr_mmu: + if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) + hdev->mmu_func[MMU_DR_PGT].fini(hdev); + + return rc; +} + +/** + * hl_mmu_fini() - release the MMU module. + * @hdev: habanalabs device structure. + * + * This function does the following: + * - Disable MMU in H/W. + * - Free the pgt_infos pool. + * + * All contexts should be freed before calling this function. + */ +void hl_mmu_fini(struct hl_device *hdev) +{ + if (!hdev->mmu_enable) + return; + + if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) + hdev->mmu_func[MMU_DR_PGT].fini(hdev); + + if (hdev->mmu_func[MMU_HR_PGT].fini != NULL) + hdev->mmu_func[MMU_HR_PGT].fini(hdev); + + mutex_destroy(&hdev->mmu_lock); +} + +/** + * hl_mmu_ctx_init() - initialize a context for using the MMU module. + * @ctx: pointer to the context structure to initialize. + * + * Initialize a mutex to protect the concurrent mapping flow, a hash to hold all + * page tables hops related to this context. + * Return: 0 on success, non-zero otherwise. + */ +int hl_mmu_ctx_init(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + int rc = -EOPNOTSUPP; + + if (!hdev->mmu_enable) + return 0; + + if (hdev->mmu_func[MMU_DR_PGT].ctx_init != NULL) { + rc = hdev->mmu_func[MMU_DR_PGT].ctx_init(ctx); + if (rc) + return rc; + } + + if (hdev->mmu_func[MMU_HR_PGT].ctx_init != NULL) { + rc = hdev->mmu_func[MMU_HR_PGT].ctx_init(ctx); + if (rc) + goto fini_dr_ctx; + } + + return 0; + +fini_dr_ctx: + if (hdev->mmu_func[MMU_DR_PGT].fini != NULL) + hdev->mmu_func[MMU_DR_PGT].fini(hdev); + + return rc; +} + +/* + * hl_mmu_ctx_fini - disable a ctx from using the mmu module + * + * @ctx: pointer to the context structure + * + * This function does the following: + * - Free any pgts which were not freed yet + * - Free the mutex + * - Free DRAM default page mapping hops + */ +void hl_mmu_ctx_fini(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + + if (!hdev->mmu_enable) + return; + + if (hdev->mmu_func[MMU_DR_PGT].ctx_fini != NULL) + hdev->mmu_func[MMU_DR_PGT].ctx_fini(ctx); + + if (hdev->mmu_func[MMU_HR_PGT].ctx_fini != NULL) + hdev->mmu_func[MMU_HR_PGT].ctx_fini(ctx); +} + +/* + * hl_mmu_get_real_page_size - get real page size to use in map/unmap operation + * + * @hdev: pointer to device data. + * @mmu_prop: MMU properties. + * @page_size: page size + * @real_page_size: set here the actual page size to use for the operation + * @is_dram_addr: true if DRAM address, otherwise false. + * + * @return 0 on success, otherwise non 0 error code + * + * note that this is general implementation that can fit most MMU arch. but as this is used as an + * MMU function: + * 1. it shall not be called directly- only from mmu_func structure instance + * 2. each MMU may modify the implementation internally + */ +int hl_mmu_get_real_page_size(struct hl_device *hdev, struct hl_mmu_properties *mmu_prop, + u32 page_size, u32 *real_page_size, bool is_dram_addr) +{ + /* + * The H/W handles mapping of specific page sizes. Hence if the page + * size is bigger, we break it to sub-pages and map them separately. + */ + if ((page_size % mmu_prop->page_size) == 0) { + *real_page_size = mmu_prop->page_size; + return 0; + } + + dev_err(hdev->dev, "page size of %u is not %uKB aligned, can't map\n", + page_size, mmu_prop->page_size >> 10); + + return -EFAULT; +} + +static struct hl_mmu_properties *hl_mmu_get_prop(struct hl_device *hdev, u32 page_size, + bool is_dram_addr) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + + if (is_dram_addr) + return &prop->dmmu; + else if ((page_size % prop->pmmu_huge.page_size) == 0) + return &prop->pmmu_huge; + + return &prop->pmmu; +} + +/* + * hl_mmu_unmap_page - unmaps a virtual addr + * + * @ctx: pointer to the context structure + * @virt_addr: virt addr to map from + * @page_size: size of the page to unmap + * @flush_pte: whether to do a PCI flush + * + * This function does the following: + * - Check that the virt addr is mapped + * - Unmap the virt addr and frees pgts if possible + * - Returns 0 on success, -EINVAL if the given addr is not mapped + * + * Because this function changes the page tables in the device and because it + * changes the MMU hash, it must be protected by a lock. + * However, because it maps only a single page, the lock should be implemented + * in a higher level in order to protect the entire mapping of the memory area + * + * For optimization reasons PCI flush may be requested once after unmapping of + * large area. + */ +int hl_mmu_unmap_page(struct hl_ctx *ctx, u64 virt_addr, u32 page_size, bool flush_pte) +{ + struct hl_device *hdev = ctx->hdev; + struct hl_mmu_properties *mmu_prop; + struct hl_mmu_funcs *mmu_funcs; + int i, pgt_residency, rc = 0; + u32 real_page_size, npages; + u64 real_virt_addr; + bool is_dram_addr; + + if (!hdev->mmu_enable) + return 0; + + is_dram_addr = hl_is_dram_va(hdev, virt_addr); + mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr); + + pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; + mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); + + rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size, + is_dram_addr); + if (rc) + return rc; + + npages = page_size / real_page_size; + real_virt_addr = virt_addr; + + for (i = 0 ; i < npages ; i++) { + rc = mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr); + if (rc) + break; + + real_virt_addr += real_page_size; + } + + if (flush_pte) + mmu_funcs->flush(ctx); + + if (trace_habanalabs_mmu_unmap_enabled() && !rc) + trace_habanalabs_mmu_unmap(hdev->dev, virt_addr, 0, page_size, flush_pte); + + return rc; +} + +/* + * hl_mmu_map_page - maps a virtual addr to physical addr + * + * @ctx: pointer to the context structure + * @virt_addr: virt addr to map from + * @phys_addr: phys addr to map to + * @page_size: physical page size + * @flush_pte: whether to do a PCI flush + * + * This function does the following: + * - Check that the virt addr is not mapped + * - Allocate pgts as necessary in order to map the virt addr to the phys + * - Returns 0 on success, -EINVAL if addr is already mapped, or -ENOMEM. + * + * Because this function changes the page tables in the device and because it + * changes the MMU hash, it must be protected by a lock. + * However, because it maps only a single page, the lock should be implemented + * in a higher level in order to protect the entire mapping of the memory area + * + * For optimization reasons PCI flush may be requested once after mapping of + * large area. + */ +int hl_mmu_map_page(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr, u32 page_size, + bool flush_pte) +{ + int i, rc, pgt_residency, mapped_cnt = 0; + struct hl_device *hdev = ctx->hdev; + struct hl_mmu_properties *mmu_prop; + u64 real_virt_addr, real_phys_addr; + struct hl_mmu_funcs *mmu_funcs; + u32 real_page_size, npages; + bool is_dram_addr; + + + if (!hdev->mmu_enable) + return 0; + + is_dram_addr = hl_is_dram_va(hdev, virt_addr); + mmu_prop = hl_mmu_get_prop(hdev, page_size, is_dram_addr); + + pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; + mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); + + rc = hdev->asic_funcs->mmu_get_real_page_size(hdev, mmu_prop, page_size, &real_page_size, + is_dram_addr); + if (rc) + return rc; + + /* + * Verify that the phys and virt addresses are aligned with the + * MMU page size (in dram this means checking the address and MMU + * after scrambling) + */ + if ((is_dram_addr && + ((hdev->asic_funcs->scramble_addr(hdev, phys_addr) & + (mmu_prop->page_size - 1)) || + (hdev->asic_funcs->scramble_addr(hdev, virt_addr) & + (mmu_prop->page_size - 1)))) || + (!is_dram_addr && ((phys_addr & (real_page_size - 1)) || + (virt_addr & (real_page_size - 1))))) + dev_crit(hdev->dev, + "Mapping address 0x%llx with virtual address 0x%llx and page size of 0x%x is erroneous! Addresses must be divisible by page size", + phys_addr, virt_addr, real_page_size); + + npages = page_size / real_page_size; + real_virt_addr = virt_addr; + real_phys_addr = phys_addr; + + for (i = 0 ; i < npages ; i++) { + rc = mmu_funcs->map(ctx, real_virt_addr, real_phys_addr, real_page_size, + is_dram_addr); + if (rc) + goto err; + + real_virt_addr += real_page_size; + real_phys_addr += real_page_size; + mapped_cnt++; + } + + if (flush_pte) + mmu_funcs->flush(ctx); + + trace_habanalabs_mmu_map(hdev->dev, virt_addr, phys_addr, page_size, flush_pte); + + return 0; + +err: + real_virt_addr = virt_addr; + for (i = 0 ; i < mapped_cnt ; i++) { + if (mmu_funcs->unmap(ctx, real_virt_addr, is_dram_addr)) + dev_warn_ratelimited(hdev->dev, + "failed to unmap va: 0x%llx\n", real_virt_addr); + + real_virt_addr += real_page_size; + } + + mmu_funcs->flush(ctx); + + return rc; +} + +/* + * hl_mmu_map_contiguous - implements a wrapper for hl_mmu_map_page + * for mapping contiguous physical memory + * + * @ctx: pointer to the context structure + * @virt_addr: virt addr to map from + * @phys_addr: phys addr to map to + * @size: size to map + * + */ +int hl_mmu_map_contiguous(struct hl_ctx *ctx, u64 virt_addr, + u64 phys_addr, u32 size) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + u64 curr_va, curr_pa; + u32 page_size; + bool flush_pte; + int rc = 0, off; + + if (hl_mem_area_inside_range(virt_addr, size, + prop->dmmu.start_addr, prop->dmmu.end_addr)) + page_size = prop->dmmu.page_size; + else if (hl_mem_area_inside_range(virt_addr, size, + prop->pmmu.start_addr, prop->pmmu.end_addr)) + page_size = prop->pmmu.page_size; + else if (hl_mem_area_inside_range(virt_addr, size, + prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) + page_size = prop->pmmu_huge.page_size; + else + return -EINVAL; + + for (off = 0 ; off < size ; off += page_size) { + curr_va = virt_addr + off; + curr_pa = phys_addr + off; + flush_pte = (off + page_size) >= size; + rc = hl_mmu_map_page(ctx, curr_va, curr_pa, page_size, + flush_pte); + if (rc) { + dev_err(hdev->dev, + "Map failed for va 0x%llx to pa 0x%llx\n", + curr_va, curr_pa); + /* last mapping failed so don't try to unmap it - reduce off by page_size */ + off -= page_size; + goto unmap; + } + } + + return rc; + +unmap: + for (; off >= 0 ; off -= page_size) { + curr_va = virt_addr + off; + flush_pte = (off - (s32) page_size) < 0; + if (hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte)) + dev_warn_ratelimited(hdev->dev, + "failed to unmap va 0x%llx\n", curr_va); + } + + return rc; +} + +/* + * hl_mmu_unmap_contiguous - implements a wrapper for hl_mmu_unmap_page + * for unmapping contiguous physical memory + * + * @ctx: pointer to the context structure + * @virt_addr: virt addr to unmap + * @size: size to unmap + * + */ +int hl_mmu_unmap_contiguous(struct hl_ctx *ctx, u64 virt_addr, u32 size) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop = &hdev->asic_prop; + u64 curr_va; + u32 page_size; + bool flush_pte; + int rc = 0, off; + + if (hl_mem_area_inside_range(virt_addr, size, + prop->dmmu.start_addr, prop->dmmu.end_addr)) + page_size = prop->dmmu.page_size; + else if (hl_mem_area_inside_range(virt_addr, size, + prop->pmmu.start_addr, prop->pmmu.end_addr)) + page_size = prop->pmmu.page_size; + else if (hl_mem_area_inside_range(virt_addr, size, + prop->pmmu_huge.start_addr, prop->pmmu_huge.end_addr)) + page_size = prop->pmmu_huge.page_size; + else + return -EINVAL; + + for (off = 0 ; off < size ; off += page_size) { + curr_va = virt_addr + off; + flush_pte = (off + page_size) >= size; + rc = hl_mmu_unmap_page(ctx, curr_va, page_size, flush_pte); + if (rc) + dev_warn_ratelimited(hdev->dev, + "Unmap failed for va 0x%llx\n", curr_va); + } + + return rc; +} + +/* + * hl_mmu_swap_out - marks all mapping of the given ctx as swapped out + * + * @ctx: pointer to the context structure + * + */ +void hl_mmu_swap_out(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + + if (!hdev->mmu_enable) + return; + + if (hdev->mmu_func[MMU_DR_PGT].swap_out != NULL) + hdev->mmu_func[MMU_DR_PGT].swap_out(ctx); + + if (hdev->mmu_func[MMU_HR_PGT].swap_out != NULL) + hdev->mmu_func[MMU_HR_PGT].swap_out(ctx); +} + +/* + * hl_mmu_swap_in - marks all mapping of the given ctx as swapped in + * + * @ctx: pointer to the context structure + * + */ +void hl_mmu_swap_in(struct hl_ctx *ctx) +{ + struct hl_device *hdev = ctx->hdev; + + if (!hdev->mmu_enable) + return; + + if (hdev->mmu_func[MMU_DR_PGT].swap_in != NULL) + hdev->mmu_func[MMU_DR_PGT].swap_in(ctx); + + if (hdev->mmu_func[MMU_HR_PGT].swap_in != NULL) + hdev->mmu_func[MMU_HR_PGT].swap_in(ctx); +} + +static void hl_mmu_pa_page_with_offset(struct hl_ctx *ctx, u64 virt_addr, + struct hl_mmu_hop_info *hops, + u64 *phys_addr) +{ + struct asic_fixed_properties *prop = &ctx->hdev->asic_prop; + u64 offset_mask, addr_mask, hop_shift, tmp_phys_addr; + struct hl_mmu_properties *mmu_prop; + + /* last hop holds the phys address and flags */ + if (hops->unscrambled_paddr) + tmp_phys_addr = hops->unscrambled_paddr; + else + tmp_phys_addr = hops->hop_info[hops->used_hops - 1].hop_pte_val; + + if (hops->range_type == HL_VA_RANGE_TYPE_HOST_HUGE) + mmu_prop = &prop->pmmu_huge; + else if (hops->range_type == HL_VA_RANGE_TYPE_HOST) + mmu_prop = &prop->pmmu; + else /* HL_VA_RANGE_TYPE_DRAM */ + mmu_prop = &prop->dmmu; + + if ((hops->range_type == HL_VA_RANGE_TYPE_DRAM) && + !is_power_of_2(prop->dram_page_size)) { + u64 dram_page_size, dram_base, abs_phys_addr, abs_virt_addr, + page_id, page_start; + u32 page_off; + + /* + * Bit arithmetics cannot be used for non power of two page + * sizes. In addition, since bit arithmetics is not used, + * we cannot ignore dram base. All that shall be considered. + */ + + dram_page_size = prop->dram_page_size; + dram_base = prop->dram_base_address; + abs_phys_addr = tmp_phys_addr - dram_base; + abs_virt_addr = virt_addr - dram_base; + page_id = DIV_ROUND_DOWN_ULL(abs_phys_addr, dram_page_size); + page_start = page_id * dram_page_size; + div_u64_rem(abs_virt_addr, dram_page_size, &page_off); + + *phys_addr = page_start + page_off + dram_base; + } else { + /* + * find the correct hop shift field in hl_mmu_properties + * structure in order to determine the right masks + * for the page offset. + */ + hop_shift = mmu_prop->hop_shifts[hops->used_hops - 1]; + offset_mask = (1ull << hop_shift) - 1; + addr_mask = ~(offset_mask); + *phys_addr = (tmp_phys_addr & addr_mask) | + (virt_addr & offset_mask); + } +} + +int hl_mmu_va_to_pa(struct hl_ctx *ctx, u64 virt_addr, u64 *phys_addr) +{ + struct hl_mmu_hop_info hops; + int rc; + + memset(&hops, 0, sizeof(hops)); + + rc = hl_mmu_get_tlb_info(ctx, virt_addr, &hops); + if (rc) + return rc; + + hl_mmu_pa_page_with_offset(ctx, virt_addr, &hops, phys_addr); + + return 0; +} + +int hl_mmu_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, + struct hl_mmu_hop_info *hops) +{ + struct hl_device *hdev = ctx->hdev; + struct asic_fixed_properties *prop; + struct hl_mmu_properties *mmu_prop; + struct hl_mmu_funcs *mmu_funcs; + int pgt_residency, rc; + bool is_dram_addr; + + if (!hdev->mmu_enable) + return -EOPNOTSUPP; + + prop = &hdev->asic_prop; + hops->scrambled_vaddr = virt_addr; /* assume no scrambling */ + + is_dram_addr = hl_mem_area_inside_range(virt_addr, prop->dmmu.page_size, + prop->dmmu.start_addr, + prop->dmmu.end_addr); + + /* host-residency is the same in PMMU and PMMU huge, no need to distinguish here */ + mmu_prop = is_dram_addr ? &prop->dmmu : &prop->pmmu; + pgt_residency = mmu_prop->host_resident ? MMU_HR_PGT : MMU_DR_PGT; + mmu_funcs = hl_mmu_get_funcs(hdev, pgt_residency, is_dram_addr); + + mutex_lock(&hdev->mmu_lock); + rc = mmu_funcs->get_tlb_info(ctx, virt_addr, hops); + mutex_unlock(&hdev->mmu_lock); + + if (rc) + return rc; + + /* add page offset to physical address */ + if (hops->unscrambled_paddr) + hl_mmu_pa_page_with_offset(ctx, virt_addr, hops, &hops->unscrambled_paddr); + + return 0; +} + +int hl_mmu_if_set_funcs(struct hl_device *hdev) +{ + if (!hdev->mmu_enable) + return 0; + + switch (hdev->asic_type) { + case ASIC_GOYA: + case ASIC_GAUDI: + case ASIC_GAUDI_SEC: + hl_mmu_v1_set_funcs(hdev, &hdev->mmu_func[MMU_DR_PGT]); + break; + case ASIC_GAUDI2: + case ASIC_GAUDI2_SEC: + /* MMUs in Gaudi2 are always host resident */ + hl_mmu_v2_hr_set_funcs(hdev, &hdev->mmu_func[MMU_HR_PGT]); + break; + default: + dev_err(hdev->dev, "Unrecognized ASIC type %d\n", + hdev->asic_type); + return -EOPNOTSUPP; + } + + return 0; +} + +/** + * hl_mmu_scramble_addr() - The generic mmu address scrambling routine. + * @hdev: pointer to device data. + * @addr: The address to scramble. + * + * Return: The scrambled address. + */ +u64 hl_mmu_scramble_addr(struct hl_device *hdev, u64 addr) +{ + return addr; +} + +/** + * hl_mmu_descramble_addr() - The generic mmu address descrambling + * routine. + * @hdev: pointer to device data. + * @addr: The address to descramble. + * + * Return: The un-scrambled address. + */ +u64 hl_mmu_descramble_addr(struct hl_device *hdev, u64 addr) +{ + return addr; +} + +int hl_mmu_invalidate_cache(struct hl_device *hdev, bool is_hard, u32 flags) +{ + int rc; + + rc = hdev->asic_funcs->mmu_invalidate_cache(hdev, is_hard, flags); + if (rc) + dev_err_ratelimited(hdev->dev, "MMU cache invalidation failed\n"); + + return rc; +} + +int hl_mmu_invalidate_cache_range(struct hl_device *hdev, bool is_hard, + u32 flags, u32 asid, u64 va, u64 size) +{ + int rc; + + rc = hdev->asic_funcs->mmu_invalidate_cache_range(hdev, is_hard, flags, + asid, va, size); + if (rc) + dev_err_ratelimited(hdev->dev, "MMU cache range invalidation failed\n"); + + return rc; +} + +static void hl_mmu_prefetch_work_function(struct work_struct *work) +{ + struct hl_prefetch_work *pfw = container_of(work, struct hl_prefetch_work, pf_work); + struct hl_ctx *ctx = pfw->ctx; + struct hl_device *hdev = ctx->hdev; + + if (!hl_device_operational(hdev, NULL)) + goto put_ctx; + + mutex_lock(&hdev->mmu_lock); + + hdev->asic_funcs->mmu_prefetch_cache_range(ctx, pfw->flags, pfw->asid, pfw->va, pfw->size); + + mutex_unlock(&hdev->mmu_lock); + +put_ctx: + /* + * context was taken in the common mmu prefetch function- see comment there about + * context handling. + */ + hl_ctx_put(ctx); + kfree(pfw); +} + +int hl_mmu_prefetch_cache_range(struct hl_ctx *ctx, u32 flags, u32 asid, u64 va, u64 size) +{ + struct hl_prefetch_work *handle_pf_work; + + handle_pf_work = kmalloc(sizeof(*handle_pf_work), GFP_KERNEL); + if (!handle_pf_work) + return -ENOMEM; + + INIT_WORK(&handle_pf_work->pf_work, hl_mmu_prefetch_work_function); + handle_pf_work->ctx = ctx; + handle_pf_work->va = va; + handle_pf_work->size = size; + handle_pf_work->flags = flags; + handle_pf_work->asid = asid; + + /* + * as actual prefetch is done in a WQ we must get the context (and put it + * at the end of the work function) + */ + hl_ctx_get(ctx); + queue_work(ctx->hdev->pf_wq, &handle_pf_work->pf_work); + + return 0; +} + +u64 hl_mmu_get_next_hop_addr(struct hl_ctx *ctx, u64 curr_pte) +{ + return (curr_pte & PAGE_PRESENT_MASK) ? (curr_pte & HOP_PHYS_ADDR_MASK) : ULLONG_MAX; +} + +/** + * hl_mmu_get_hop_pte_phys_addr() - extract PTE address from HOP + * @ctx: pointer to the context structure to initialize. + * @mmu_prop: MMU properties. + * @hop_idx: HOP index. + * @hop_addr: HOP address. + * @virt_addr: virtual address fro the translation. + * + * @return the matching PTE value on success, otherwise U64_MAX. + */ +u64 hl_mmu_get_hop_pte_phys_addr(struct hl_ctx *ctx, struct hl_mmu_properties *mmu_prop, + u8 hop_idx, u64 hop_addr, u64 virt_addr) +{ + u64 mask, shift; + + if (hop_idx >= mmu_prop->num_hops) { + dev_err_ratelimited(ctx->hdev->dev, "Invalid hop index %d\n", hop_idx); + return U64_MAX; + } + + shift = mmu_prop->hop_shifts[hop_idx]; + mask = mmu_prop->hop_masks[hop_idx]; + + return hop_addr + ctx->hdev->asic_prop.mmu_pte_size * ((virt_addr & mask) >> shift); +} + +static void mmu_dma_mem_free_from_chunk(struct gen_pool *pool, + struct gen_pool_chunk *chunk, + void *data) +{ + struct hl_device *hdev = (struct hl_device *)data; + + hl_asic_dma_free_coherent(hdev, (chunk->end_addr - chunk->start_addr) + 1, + (void *)chunk->start_addr, chunk->phys_addr); +} + +void hl_mmu_hr_flush(struct hl_ctx *ctx) +{ + /* a flush operation requires memory barrier */ + mb(); +} + +/** + * hl_mmu_hr_pool_destroy() - destroy genpool + * @hdev: habanalabs device structure. + * @hr_priv: MMU HR private data. + * @hop_table_size: HOP table size. + * + * This function does the following: + * - free entries allocated for shadow HOP0 + * - free pool chunks + * - free pool + */ +static void hl_mmu_hr_pool_destroy(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, + u32 hop_table_size) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + struct gen_pool **pool = &hr_priv->mmu_pgt_pool; + struct pgt_info *hop0_pgt; + int asid; + + if (ZERO_OR_NULL_PTR(*pool)) + return; + + /* Free the Fixed allocation of HOPs0 */ + if (hr_priv->mmu_asid_hop0) { + for (asid = 0 ; asid < prop->max_asid ; asid++) { + hop0_pgt = &hr_priv->mmu_asid_hop0[asid]; + if (ZERO_OR_NULL_PTR(hop0_pgt->virt_addr)) + continue; + + gen_pool_free(*pool, (uintptr_t) hop0_pgt->virt_addr, hop_table_size); + } + } + + gen_pool_for_each_chunk(*pool, mmu_dma_mem_free_from_chunk, hdev); + gen_pool_destroy(*pool); + + /* Make sure that if we arrive here again without init was called we + * won't cause kernel panic. This can happen for example if we fail + * during hard reset code at certain points + */ + *pool = NULL; +} + +/** + * hl_mmu_hr_init() - initialize the MMU module. + * @hdev: habanalabs device structure. + * @hr_priv: MMU HR private data. + * @hop_table_size: HOP table size. + * @pgt_size: memory size allocated for the page table + * + * @return 0 on success otherwise non-zero error code + * + * This function does the following: + * - Create a pool of pages for pgt_infos. + * - Create a shadow table for pgt + */ +int hl_mmu_hr_init(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size, + u64 pgt_size) +{ + struct asic_fixed_properties *prop = &hdev->asic_prop; + size_t pool_chunk_size = SZ_4M; + struct pgt_info *hop0_pgt; + dma_addr_t dma_addr; + u64 virt_addr; + int i, rc; + + /* + * we set alloc size as PAGE_SIZE (sine dma_alloc_coherent allocation order/size is + * PAGE_SHIFT/PAGE_SIZE) in order to be able to control the allocations alignment. + * This way we can call "DMA alloc align" according to dma_alloc granularity and supply + * allocations with higher-order alignment restrictions + */ + hr_priv->mmu_pgt_pool = gen_pool_create(PAGE_SHIFT, -1); + if (ZERO_OR_NULL_PTR(hr_priv->mmu_pgt_pool)) { + dev_err(hdev->dev, "Failed to create hr page pool\n"); + return -ENOMEM; + } + + hr_priv->mmu_asid_hop0 = kvcalloc(prop->max_asid, sizeof(struct pgt_info), GFP_KERNEL); + if (ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) { + dev_err(hdev->dev, "Failed to allocate hr-mmu hop0 table\n"); + rc = -ENOMEM; + goto destroy_mmu_pgt_pool; + } + + for (i = 0 ; i < pgt_size ; i += pool_chunk_size) { + virt_addr = (uintptr_t) hl_asic_dma_alloc_coherent(hdev, pool_chunk_size, + &dma_addr, + GFP_KERNEL | __GFP_ZERO); + if (ZERO_OR_NULL_PTR(virt_addr)) { + dev_err(hdev->dev, + "Failed to allocate memory for host-resident page pool\n"); + rc = -ENOMEM; + goto destroy_mmu_pgt_pool; + } + + rc = gen_pool_add_virt(hr_priv->mmu_pgt_pool, virt_addr, (phys_addr_t) dma_addr, + pool_chunk_size, -1); + if (rc) { + dev_err(hdev->dev, "Failed to fill host-resident page pool\n"); + goto destroy_mmu_pgt_pool; + } + } + + for (i = 0 ; i < prop->max_asid ; i++) { + hop0_pgt = &hr_priv->mmu_asid_hop0[i]; + hop0_pgt->virt_addr = (uintptr_t) + gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool, + hop_table_size, + (dma_addr_t *) &hop0_pgt->phys_addr, + hop_table_size); + if (!hop0_pgt->virt_addr) { + dev_err(hdev->dev, "Failed to allocate HOP from pgt pool\n"); + rc = -ENOMEM; + goto destroy_mmu_pgt_pool; + } + } + + /* MMU H/W init will be done in device hw_init() */ + + return 0; + +destroy_mmu_pgt_pool: + hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size); + if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) + kvfree(hr_priv->mmu_asid_hop0); + + return rc; +} + +/** + * hl_mmu_hr_fini() - release the MMU module. + * @hdev: habanalabs device structure. + * @hr_priv: MMU host resident private info. + * @hop_table_size: HOP table size + * + * This function does the following: + * - Disable MMU in H/W. + * - Free the pgt_infos pool. + * + * All contexts should be freed before calling this function. + */ +void hl_mmu_hr_fini(struct hl_device *hdev, struct hl_mmu_hr_priv *hr_priv, u32 hop_table_size) +{ + /* MMU H/W fini was already done in device hw_fini() */ + + hl_mmu_hr_pool_destroy(hdev, hr_priv, hop_table_size); + + if (!ZERO_OR_NULL_PTR(hr_priv->mmu_asid_hop0)) { + kvfree(hr_priv->mmu_asid_hop0); + + /* Make sure that if we arrive here again without init was + * called we won't cause kernel panic. This can happen for + * example if we fail during hard reset code at certain points + */ + hr_priv->mmu_asid_hop0 = NULL; + } +} + +/** + * hl_mmu_hr_free_hop_remove_pgt() - free HOP and remove PGT from hash + * @pgt_info: page table info structure. + * @hr_priv: MMU HR private data. + * @hop_table_size: HOP table size. + */ +void hl_mmu_hr_free_hop_remove_pgt(struct pgt_info *pgt_info, struct hl_mmu_hr_priv *hr_priv, + u32 hop_table_size) +{ + gen_pool_free(hr_priv->mmu_pgt_pool, pgt_info->virt_addr, hop_table_size); + hash_del(&pgt_info->node); + kfree(pgt_info); +} + +/** + * hl_mmu_hr_pte_phys_to_virt() - translate PTE phys addr to virt addr + * @ctx: pointer to the context structure + * @pgt: pgt_info for the HOP hosting the PTE + * @phys_pte_addr: phys address of the PTE + * @hop_table_size: HOP table size + * + * @return PTE virtual address + * + * The function use the pgt_info to get HOP base virt addr and obtain the PTE's virt addr + * by adding the PTE offset. + */ +u64 hl_mmu_hr_pte_phys_to_virt(struct hl_ctx *ctx, struct pgt_info *pgt, + u64 phys_pte_addr, u32 hop_table_size) +{ + u64 page_mask = (hop_table_size - 1); + u64 pte_offset = phys_pte_addr & page_mask; + + return pgt->virt_addr + pte_offset; +} + +/** + * hl_mmu_hr_write_pte() - write HR PTE + * @ctx: pointer to the context structure + * @pgt_info: HOP's page table info structure + * @phys_pte_addr: phys PTE address + * @val: raw PTE data + * @hop_table_size: HOP table size + */ +void hl_mmu_hr_write_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, + u64 val, u32 hop_table_size) +{ + /* + * The value to write is the phys address of the next hop + + * flags at the 12 LSBs. + */ + u64 virt_addr = hl_mmu_hr_pte_phys_to_virt(ctx, pgt_info, phys_pte_addr, hop_table_size); + + *((u64 *) (uintptr_t) virt_addr) = val; +} + +/** + * hl_mmu_hr_clear_pte() - clear HR PTE + * @ctx: pointer to the context structure + * @pgt_info: HOP's page table info structure + * @phys_pte_addr: phys PTE address + * @hop_table_size: HOP table size + */ +void hl_mmu_hr_clear_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, u64 phys_pte_addr, + u32 hop_table_size) +{ + /* no need to transform the value to physical address */ + hl_mmu_hr_write_pte(ctx, pgt_info, phys_pte_addr, 0, hop_table_size); +} + +/** + * hl_mmu_hr_put_pte() - put HR PTE and remove it if necessary (no more PTEs) + * @ctx: pointer to the context structure + * @pgt_info: HOP's page table info structure + * @hr_priv: HR MMU private info + * @hop_table_size: HOP table size + * + * @return number of PTEs still in the HOP + */ +int hl_mmu_hr_put_pte(struct hl_ctx *ctx, struct pgt_info *pgt_info, + struct hl_mmu_hr_priv *hr_priv, + u32 hop_table_size) +{ + int num_of_ptes_left; + + pgt_info->num_of_ptes--; + + /* + * Need to save the number of ptes left because free_hop might free + * the pgt_info + */ + num_of_ptes_left = pgt_info->num_of_ptes; + if (!num_of_ptes_left) + hl_mmu_hr_free_hop_remove_pgt(pgt_info, hr_priv, hop_table_size); + + return num_of_ptes_left; +} + +/** + * hl_mmu_hr_get_pte() - increase PGT PTE count + * @ctx: pointer to the context structure + * @hr_func: host resident functions + * @phys_hop_addr: HOP phys address + */ +void hl_mmu_hr_get_pte(struct hl_ctx *ctx, struct hl_hr_mmu_funcs *hr_func, u64 phys_hop_addr) +{ + hr_func->get_pgt_info(ctx, phys_hop_addr)->num_of_ptes++; +} + +/** + * hl_mmu_hr_get_next_hop_pgt_info() - get pgt_info structure for the next HOP + * @ctx: pointer to the context structure. + * @hr_func: host resident functions. + * @curr_pte: current PTE value. + * + * @return pgt_info structure on success, otherwise NULL. + */ +struct pgt_info *hl_mmu_hr_get_next_hop_pgt_info(struct hl_ctx *ctx, + struct hl_hr_mmu_funcs *hr_func, + u64 curr_pte) +{ + u64 next_hop_phys_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); + + if (next_hop_phys_addr == ULLONG_MAX) + return NULL; + + return hr_func->get_pgt_info(ctx, next_hop_phys_addr); +} + +/** + * hl_mmu_hr_alloc_hop() - allocate HOP + * @ctx: pointer to the context structure. + * @hr_priv: host resident private info structure. + * @hr_func: host resident functions. + * @mmu_prop: MMU properties. + * + * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL. + */ +struct pgt_info *hl_mmu_hr_alloc_hop(struct hl_ctx *ctx, struct hl_mmu_hr_priv *hr_priv, + struct hl_hr_mmu_funcs *hr_func, + struct hl_mmu_properties *mmu_prop) +{ + struct hl_device *hdev = ctx->hdev; + struct pgt_info *pgt_info; + dma_addr_t phys_addr; + void *virt_addr; + int i, retry = 1; + + pgt_info = kmalloc(sizeof(*pgt_info), GFP_KERNEL); + if (!pgt_info) + return NULL; + + for (i = 0; i <= retry; i++) { + virt_addr = gen_pool_dma_zalloc_align(hr_priv->mmu_pgt_pool, + mmu_prop->hop_table_size, + &phys_addr, + mmu_prop->hop_table_size); + if (virt_addr) + break; + + /* No memory in pool - get some and try again */ + virt_addr = hl_asic_dma_alloc_coherent(hdev, SZ_2M, &phys_addr, + GFP_KERNEL | __GFP_ZERO); + if (ZERO_OR_NULL_PTR(virt_addr)) + break; + + if (gen_pool_add_virt(hr_priv->mmu_pgt_pool, (unsigned long)virt_addr, + phys_addr, SZ_2M, -1)) { + hl_asic_dma_free_coherent(hdev, SZ_2M, virt_addr, phys_addr); + virt_addr = NULL; + break; + } + } + + if (ZERO_OR_NULL_PTR(virt_addr)) { + dev_err(hdev->dev, "failed to allocate page\n"); + goto pool_alloc_err; + } + + pgt_info->phys_addr = phys_addr; + pgt_info->shadow_addr = (unsigned long) NULL; + pgt_info->virt_addr = (unsigned long)virt_addr; + pgt_info->ctx = ctx; + pgt_info->num_of_ptes = 0; + hr_func->add_pgt_info(ctx, pgt_info, phys_addr); + + return pgt_info; + +pool_alloc_err: + kfree(pgt_info); + + return NULL; +} + +/** + * hl_mmu_hr_get_alloc_next_hop() - get the next HOP, allocate it if it does not exist + * @ctx: pointer to the context structure. + * @hr_priv: host resident private info structure. + * @hr_func: host resident functions. + * @mmu_prop: MMU properties. + * @curr_pte: current PTE value. + * @is_new_hop: set to true if HOP is new (caller responsibility to set it to false). + * + * @return pgt_info structure associated with the allocated HOP on success, otherwise NULL. + */ +struct pgt_info *hl_mmu_hr_get_alloc_next_hop(struct hl_ctx *ctx, + struct hl_mmu_hr_priv *hr_priv, + struct hl_hr_mmu_funcs *hr_func, + struct hl_mmu_properties *mmu_prop, + u64 curr_pte, bool *is_new_hop) +{ + u64 hop_addr = hl_mmu_get_next_hop_addr(ctx, curr_pte); + + if (hop_addr != ULLONG_MAX) + return hr_func->get_pgt_info(ctx, hop_addr); + + *is_new_hop = true; + return hl_mmu_hr_alloc_hop(ctx, hr_priv, hr_func, mmu_prop); +} + +/** + * hl_mmu_hr_get_tlb_info() - get the TLB info (info for a specific mapping) + * @ctx: pointer to the context structure. + * @virt_addr: the virt address for which to get info. + * @hops: HOPs info structure. + * @hr_func: host resident functions. + * + * @return 0 on success, otherwise non 0 error code.. + */ +int hl_mmu_hr_get_tlb_info(struct hl_ctx *ctx, u64 virt_addr, struct hl_mmu_hop_info *hops, + struct hl_hr_mmu_funcs *hr_func) +{ + /* using 6 HOPs as this is the maximum number of HOPs */ + struct pgt_info *hops_pgt_info[MMU_ARCH_6_HOPS] = { NULL }; + struct hl_device *hdev = ctx->hdev; + struct hl_mmu_properties *mmu_prop; + int rc, i, used_hops; + bool is_huge; + + rc = hr_func->get_tlb_mapping_params(hdev, &mmu_prop, hops, virt_addr, &is_huge); + if (rc) + return rc; + + used_hops = mmu_prop->num_hops; + + /* huge pages use one less hop */ + if (is_huge) + used_hops--; + + hops->scrambled_vaddr = hdev->asic_funcs->scramble_addr(hdev, virt_addr); + + for (i = 0 ; i < used_hops ; i++) { + if (i == 0) + hops_pgt_info[i] = hr_func->get_hop0_pgt_info(ctx); + else + hops_pgt_info[i] = hl_mmu_hr_get_next_hop_pgt_info(ctx, hr_func, + hops->hop_info[i - 1].hop_pte_val); + + if (!hops_pgt_info[i]) + return -EFAULT; + + hops->hop_info[i].hop_addr = hops_pgt_info[i]->phys_addr; + hops->hop_info[i].hop_pte_addr = + hl_mmu_get_hop_pte_phys_addr(ctx, mmu_prop, i, + hops->hop_info[i].hop_addr, + hops->scrambled_vaddr); + hops->hop_info[i].hop_pte_val = *(u64 *) (uintptr_t) + hl_mmu_hr_pte_phys_to_virt(ctx, hops_pgt_info[i], + hops->hop_info[i].hop_pte_addr, + mmu_prop->hop_table_size); + + if (!(hops->hop_info[i].hop_pte_val & PAGE_PRESENT_MASK)) + return -EFAULT; + + if (hops->hop_info[i].hop_pte_val & mmu_prop->last_mask) + break; + } + + /* if passed over all hops then no last hop was found */ + if (i == mmu_prop->num_hops) + return -EFAULT; + + if (hops->scrambled_vaddr != virt_addr) + hops->unscrambled_paddr = hdev->asic_funcs->descramble_addr + (hdev, hops->hop_info[i].hop_pte_val); + else + hops->unscrambled_paddr = hops->hop_info[i].hop_pte_val; + + hops->used_hops = i + 1; + + return 0; +} + |