summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/ldt.c
blob: 525876e7b9f4a87de0b38806fbad235fbdde7964 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 1992 Krishna Balasubramanian and Linus Torvalds
 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
 * Copyright (C) 2002 Andi Kleen
 *
 * This handles calls from both 32bit and 64bit mode.
 *
 * Lock order:
 *	contex.ldt_usr_sem
 *	  mmap_lock
 *	    context.lock
 */

#include <linux/errno.h>
#include <linux/gfp.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/syscalls.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/uaccess.h>

#include <asm/ldt.h>
#include <asm/tlb.h>
#include <asm/desc.h>
#include <asm/mmu_context.h>
#include <asm/pgtable_areas.h>

#include <xen/xen.h>

/* This is a multiple of PAGE_SIZE. */
#define LDT_SLOT_STRIDE (LDT_ENTRIES * LDT_ENTRY_SIZE)

static inline void *ldt_slot_va(int slot)
{
	return (void *)(LDT_BASE_ADDR + LDT_SLOT_STRIDE * slot);
}

void load_mm_ldt(struct mm_struct *mm)
{
	struct ldt_struct *ldt;

	/* READ_ONCE synchronizes with smp_store_release */
	ldt = READ_ONCE(mm->context.ldt);

	/*
	 * Any change to mm->context.ldt is followed by an IPI to all
	 * CPUs with the mm active.  The LDT will not be freed until
	 * after the IPI is handled by all such CPUs.  This means that,
	 * if the ldt_struct changes before we return, the values we see
	 * will be safe, and the new values will be loaded before we run
	 * any user code.
	 *
	 * NB: don't try to convert this to use RCU without extreme care.
	 * We would still need IRQs off, because we don't want to change
	 * the local LDT after an IPI loaded a newer value than the one
	 * that we can see.
	 */

	if (unlikely(ldt)) {
		if (static_cpu_has(X86_FEATURE_PTI)) {
			if (WARN_ON_ONCE((unsigned long)ldt->slot > 1)) {
				/*
				 * Whoops -- either the new LDT isn't mapped
				 * (if slot == -1) or is mapped into a bogus
				 * slot (if slot > 1).
				 */
				clear_LDT();
				return;
			}

			/*
			 * If page table isolation is enabled, ldt->entries
			 * will not be mapped in the userspace pagetables.
			 * Tell the CPU to access the LDT through the alias
			 * at ldt_slot_va(ldt->slot).
			 */
			set_ldt(ldt_slot_va(ldt->slot), ldt->nr_entries);
		} else {
			set_ldt(ldt->entries, ldt->nr_entries);
		}
	} else {
		clear_LDT();
	}
}

void switch_ldt(struct mm_struct *prev, struct mm_struct *next)
{
	/*
	 * Load the LDT if either the old or new mm had an LDT.
	 *
	 * An mm will never go from having an LDT to not having an LDT.  Two
	 * mms never share an LDT, so we don't gain anything by checking to
	 * see whether the LDT changed.  There's also no guarantee that
	 * prev->context.ldt actually matches LDTR, but, if LDTR is non-NULL,
	 * then prev->context.ldt will also be non-NULL.
	 *
	 * If we really cared, we could optimize the case where prev == next
	 * and we're exiting lazy mode.  Most of the time, if this happens,
	 * we don't actually need to reload LDTR, but modify_ldt() is mostly
	 * used by legacy code and emulators where we don't need this level of
	 * performance.
	 *
	 * This uses | instead of || because it generates better code.
	 */
	if (unlikely((unsigned long)prev->context.ldt |
		     (unsigned long)next->context.ldt))
		load_mm_ldt(next);

	DEBUG_LOCKS_WARN_ON(preemptible());
}

static void refresh_ldt_segments(void)
{
#ifdef CONFIG_X86_64
	unsigned short sel;

	/*
	 * Make sure that the cached DS and ES descriptors match the updated
	 * LDT.
	 */
	savesegment(ds, sel);
	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
		loadsegment(ds, sel);

	savesegment(es, sel);
	if ((sel & SEGMENT_TI_MASK) == SEGMENT_LDT)
		loadsegment(es, sel);
#endif
}

/* context.lock is held by the task which issued the smp function call */
static void flush_ldt(void *__mm)
{
	struct mm_struct *mm = __mm;

	if (this_cpu_read(cpu_tlbstate.loaded_mm) != mm)
		return;

	load_mm_ldt(mm);

	refresh_ldt_segments();
}

/* The caller must call finalize_ldt_struct on the result. LDT starts zeroed. */
static struct ldt_struct *alloc_ldt_struct(unsigned int num_entries)
{
	struct ldt_struct *new_ldt;
	unsigned int alloc_size;

	if (num_entries > LDT_ENTRIES)
		return NULL;

	new_ldt = kmalloc(sizeof(struct ldt_struct), GFP_KERNEL_ACCOUNT);
	if (!new_ldt)
		return NULL;

	BUILD_BUG_ON(LDT_ENTRY_SIZE != sizeof(struct desc_struct));
	alloc_size = num_entries * LDT_ENTRY_SIZE;

	/*
	 * Xen is very picky: it requires a page-aligned LDT that has no
	 * trailing nonzero bytes in any page that contains LDT descriptors.
	 * Keep it simple: zero the whole allocation and never allocate less
	 * than PAGE_SIZE.
	 */
	if (alloc_size > PAGE_SIZE)
		new_ldt->entries = __vmalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
	else
		new_ldt->entries = (void *)get_zeroed_page(GFP_KERNEL_ACCOUNT);

	if (!new_ldt->entries) {
		kfree(new_ldt);
		return NULL;
	}

	/* The new LDT isn't aliased for PTI yet. */
	new_ldt->slot = -1;

	new_ldt->nr_entries = num_entries;
	return new_ldt;
}

#ifdef CONFIG_PAGE_TABLE_ISOLATION

static void do_sanity_check(struct mm_struct *mm,
			    bool had_kernel_mapping,
			    bool had_user_mapping)
{
	if (mm->context.ldt) {
		/*
		 * We already had an LDT.  The top-level entry should already
		 * have been allocated and synchronized with the usermode
		 * tables.
		 */
		WARN_ON(!had_kernel_mapping);
		if (boot_cpu_has(X86_FEATURE_PTI))
			WARN_ON(!had_user_mapping);
	} else {
		/*
		 * This is the first time we're mapping an LDT for this process.
		 * Sync the pgd to the usermode tables.
		 */
		WARN_ON(had_kernel_mapping);
		if (boot_cpu_has(X86_FEATURE_PTI))
			WARN_ON(had_user_mapping);
	}
}

#ifdef CONFIG_X86_PAE

static pmd_t *pgd_to_pmd_walk(pgd_t *pgd, unsigned long va)
{
	p4d_t *p4d;
	pud_t *pud;

	if (pgd->pgd == 0)
		return NULL;

	p4d = p4d_offset(pgd, va);
	if (p4d_none(*p4d))
		return NULL;

	pud = pud_offset(p4d, va);
	if (pud_none(*pud))
		return NULL;

	return pmd_offset(pud, va);
}

static void map_ldt_struct_to_user(struct mm_struct *mm)
{
	pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
	pmd_t *k_pmd, *u_pmd;

	k_pmd = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
	u_pmd = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);

	if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
		set_pmd(u_pmd, *k_pmd);
}

static void sanity_check_ldt_mapping(struct mm_struct *mm)
{
	pgd_t *k_pgd = pgd_offset(mm, LDT_BASE_ADDR);
	pgd_t *u_pgd = kernel_to_user_pgdp(k_pgd);
	bool had_kernel, had_user;
	pmd_t *k_pmd, *u_pmd;

	k_pmd      = pgd_to_pmd_walk(k_pgd, LDT_BASE_ADDR);
	u_pmd      = pgd_to_pmd_walk(u_pgd, LDT_BASE_ADDR);
	had_kernel = (k_pmd->pmd != 0);
	had_user   = (u_pmd->pmd != 0);

	do_sanity_check(mm, had_kernel, had_user);
}

#else /* !CONFIG_X86_PAE */

static void map_ldt_struct_to_user(struct mm_struct *mm)
{
	pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);

	if (boot_cpu_has(X86_FEATURE_PTI) && !mm->context.ldt)
		set_pgd(kernel_to_user_pgdp(pgd), *pgd);
}

static void sanity_check_ldt_mapping(struct mm_struct *mm)
{
	pgd_t *pgd = pgd_offset(mm, LDT_BASE_ADDR);
	bool had_kernel = (pgd->pgd != 0);
	bool had_user   = (kernel_to_user_pgdp(pgd)->pgd != 0);

	do_sanity_check(mm, had_kernel, had_user);
}

#endif /* CONFIG_X86_PAE */

/*
 * If PTI is enabled, this maps the LDT into the kernelmode and
 * usermode tables for the given mm.
 */
static int
map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
{
	unsigned long va;
	bool is_vmalloc;
	spinlock_t *ptl;
	int i, nr_pages;

	if (!boot_cpu_has(X86_FEATURE_PTI))
		return 0;

	/*
	 * Any given ldt_struct should have map_ldt_struct() called at most
	 * once.
	 */
	WARN_ON(ldt->slot != -1);

	/* Check if the current mappings are sane */
	sanity_check_ldt_mapping(mm);

	is_vmalloc = is_vmalloc_addr(ldt->entries);

	nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);

	for (i = 0; i < nr_pages; i++) {
		unsigned long offset = i << PAGE_SHIFT;
		const void *src = (char *)ldt->entries + offset;
		unsigned long pfn;
		pgprot_t pte_prot;
		pte_t pte, *ptep;

		va = (unsigned long)ldt_slot_va(slot) + offset;
		pfn = is_vmalloc ? vmalloc_to_pfn(src) :
			page_to_pfn(virt_to_page(src));
		/*
		 * Treat the PTI LDT range as a *userspace* range.
		 * get_locked_pte() will allocate all needed pagetables
		 * and account for them in this mm.
		 */
		ptep = get_locked_pte(mm, va, &ptl);
		if (!ptep)
			return -ENOMEM;
		/*
		 * Map it RO so the easy to find address is not a primary
		 * target via some kernel interface which misses a
		 * permission check.
		 */
		pte_prot = __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL);
		/* Filter out unsuppored __PAGE_KERNEL* bits: */
		pgprot_val(pte_prot) &= __supported_pte_mask;
		pte = pfn_pte(pfn, pte_prot);
		set_pte_at(mm, va, ptep, pte);
		pte_unmap_unlock(ptep, ptl);
	}

	/* Propagate LDT mapping to the user page-table */
	map_ldt_struct_to_user(mm);

	ldt->slot = slot;
	return 0;
}

static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
{
	unsigned long va;
	int i, nr_pages;

	if (!ldt)
		return;

	/* LDT map/unmap is only required for PTI */
	if (!boot_cpu_has(X86_FEATURE_PTI))
		return;

	nr_pages = DIV_ROUND_UP(ldt->nr_entries * LDT_ENTRY_SIZE, PAGE_SIZE);

	for (i = 0; i < nr_pages; i++) {
		unsigned long offset = i << PAGE_SHIFT;
		spinlock_t *ptl;
		pte_t *ptep;

		va = (unsigned long)ldt_slot_va(ldt->slot) + offset;
		ptep = get_locked_pte(mm, va, &ptl);
		pte_clear(mm, va, ptep);
		pte_unmap_unlock(ptep, ptl);
	}

	va = (unsigned long)ldt_slot_va(ldt->slot);
	flush_tlb_mm_range(mm, va, va + nr_pages * PAGE_SIZE, PAGE_SHIFT, false);
}

#else /* !CONFIG_PAGE_TABLE_ISOLATION */

static int
map_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt, int slot)
{
	return 0;
}

static void unmap_ldt_struct(struct mm_struct *mm, struct ldt_struct *ldt)
{
}
#endif /* CONFIG_PAGE_TABLE_ISOLATION */

static void free_ldt_pgtables(struct mm_struct *mm)
{
#ifdef CONFIG_PAGE_TABLE_ISOLATION
	struct mmu_gather tlb;
	unsigned long start = LDT_BASE_ADDR;
	unsigned long end = LDT_END_ADDR;

	if (!boot_cpu_has(X86_FEATURE_PTI))
		return;

	/*
	 * Although free_pgd_range() is intended for freeing user
	 * page-tables, it also works out for kernel mappings on x86.
	 * We use tlb_gather_mmu_fullmm() to avoid confusing the
	 * range-tracking logic in __tlb_adjust_range().
	 */
	tlb_gather_mmu_fullmm(&tlb, mm);
	free_pgd_range(&tlb, start, end, start, end);
	tlb_finish_mmu(&tlb);
#endif
}

/* After calling this, the LDT is immutable. */
static void finalize_ldt_struct(struct ldt_struct *ldt)
{
	paravirt_alloc_ldt(ldt->entries, ldt->nr_entries);
}

static void install_ldt(struct mm_struct *mm, struct ldt_struct *ldt)
{
	mutex_lock(&mm->context.lock);

	/* Synchronizes with READ_ONCE in load_mm_ldt. */
	smp_store_release(&mm->context.ldt, ldt);

	/* Activate the LDT for all CPUs using currents mm. */
	on_each_cpu_mask(mm_cpumask(mm), flush_ldt, mm, true);

	mutex_unlock(&mm->context.lock);
}

static void free_ldt_struct(struct ldt_struct *ldt)
{
	if (likely(!ldt))
		return;

	paravirt_free_ldt(ldt->entries, ldt->nr_entries);
	if (ldt->nr_entries * LDT_ENTRY_SIZE > PAGE_SIZE)
		vfree_atomic(ldt->entries);
	else
		free_page((unsigned long)ldt->entries);
	kfree(ldt);
}

/*
 * Called on fork from arch_dup_mmap(). Just copy the current LDT state,
 * the new task is not running, so nothing can be installed.
 */
int ldt_dup_context(struct mm_struct *old_mm, struct mm_struct *mm)
{
	struct ldt_struct *new_ldt;
	int retval = 0;

	if (!old_mm)
		return 0;

	mutex_lock(&old_mm->context.lock);
	if (!old_mm->context.ldt)
		goto out_unlock;

	new_ldt = alloc_ldt_struct(old_mm->context.ldt->nr_entries);
	if (!new_ldt) {
		retval = -ENOMEM;
		goto out_unlock;
	}

	memcpy(new_ldt->entries, old_mm->context.ldt->entries,
	       new_ldt->nr_entries * LDT_ENTRY_SIZE);
	finalize_ldt_struct(new_ldt);

	retval = map_ldt_struct(mm, new_ldt, 0);
	if (retval) {
		free_ldt_pgtables(mm);
		free_ldt_struct(new_ldt);
		goto out_unlock;
	}
	mm->context.ldt = new_ldt;

out_unlock:
	mutex_unlock(&old_mm->context.lock);
	return retval;
}

/*
 * No need to lock the MM as we are the last user
 *
 * 64bit: Don't touch the LDT register - we're already in the next thread.
 */
void destroy_context_ldt(struct mm_struct *mm)
{
	free_ldt_struct(mm->context.ldt);
	mm->context.ldt = NULL;
}

void ldt_arch_exit_mmap(struct mm_struct *mm)
{
	free_ldt_pgtables(mm);
}

static int read_ldt(void __user *ptr, unsigned long bytecount)
{
	struct mm_struct *mm = current->mm;
	unsigned long entries_size;
	int retval;

	down_read(&mm->context.ldt_usr_sem);

	if (!mm->context.ldt) {
		retval = 0;
		goto out_unlock;
	}

	if (bytecount > LDT_ENTRY_SIZE * LDT_ENTRIES)
		bytecount = LDT_ENTRY_SIZE * LDT_ENTRIES;

	entries_size = mm->context.ldt->nr_entries * LDT_ENTRY_SIZE;
	if (entries_size > bytecount)
		entries_size = bytecount;

	if (copy_to_user(ptr, mm->context.ldt->entries, entries_size)) {
		retval = -EFAULT;
		goto out_unlock;
	}

	if (entries_size != bytecount) {
		/* Zero-fill the rest and pretend we read bytecount bytes. */
		if (clear_user(ptr + entries_size, bytecount - entries_size)) {
			retval = -EFAULT;
			goto out_unlock;
		}
	}
	retval = bytecount;

out_unlock:
	up_read(&mm->context.ldt_usr_sem);
	return retval;
}

static int read_default_ldt(void __user *ptr, unsigned long bytecount)
{
	/* CHECKME: Can we use _one_ random number ? */
#ifdef CONFIG_X86_32
	unsigned long size = 5 * sizeof(struct desc_struct);
#else
	unsigned long size = 128;
#endif
	if (bytecount > size)
		bytecount = size;
	if (clear_user(ptr, bytecount))
		return -EFAULT;
	return bytecount;
}

static bool allow_16bit_segments(void)
{
	if (!IS_ENABLED(CONFIG_X86_16BIT))
		return false;

#ifdef CONFIG_XEN_PV
	/*
	 * Xen PV does not implement ESPFIX64, which means that 16-bit
	 * segments will not work correctly.  Until either Xen PV implements
	 * ESPFIX64 and can signal this fact to the guest or unless someone
	 * provides compelling evidence that allowing broken 16-bit segments
	 * is worthwhile, disallow 16-bit segments under Xen PV.
	 */
	if (xen_pv_domain()) {
		pr_info_once("Warning: 16-bit segments do not work correctly in a Xen PV guest\n");
		return false;
	}
#endif

	return true;
}

static int write_ldt(void __user *ptr, unsigned long bytecount, int oldmode)
{
	struct mm_struct *mm = current->mm;
	struct ldt_struct *new_ldt, *old_ldt;
	unsigned int old_nr_entries, new_nr_entries;
	struct user_desc ldt_info;
	struct desc_struct ldt;
	int error;

	error = -EINVAL;
	if (bytecount != sizeof(ldt_info))
		goto out;
	error = -EFAULT;
	if (copy_from_user(&ldt_info, ptr, sizeof(ldt_info)))
		goto out;

	error = -EINVAL;
	if (ldt_info.entry_number >= LDT_ENTRIES)
		goto out;
	if (ldt_info.contents == 3) {
		if (oldmode)
			goto out;
		if (ldt_info.seg_not_present == 0)
			goto out;
	}

	if ((oldmode && !ldt_info.base_addr && !ldt_info.limit) ||
	    LDT_empty(&ldt_info)) {
		/* The user wants to clear the entry. */
		memset(&ldt, 0, sizeof(ldt));
	} else {
		if (!ldt_info.seg_32bit && !allow_16bit_segments()) {
			error = -EINVAL;
			goto out;
		}

		fill_ldt(&ldt, &ldt_info);
		if (oldmode)
			ldt.avl = 0;
	}

	if (down_write_killable(&mm->context.ldt_usr_sem))
		return -EINTR;

	old_ldt       = mm->context.ldt;
	old_nr_entries = old_ldt ? old_ldt->nr_entries : 0;
	new_nr_entries = max(ldt_info.entry_number + 1, old_nr_entries);

	error = -ENOMEM;
	new_ldt = alloc_ldt_struct(new_nr_entries);
	if (!new_ldt)
		goto out_unlock;

	if (old_ldt)
		memcpy(new_ldt->entries, old_ldt->entries, old_nr_entries * LDT_ENTRY_SIZE);

	new_ldt->entries[ldt_info.entry_number] = ldt;
	finalize_ldt_struct(new_ldt);

	/*
	 * If we are using PTI, map the new LDT into the userspace pagetables.
	 * If there is already an LDT, use the other slot so that other CPUs
	 * will continue to use the old LDT until install_ldt() switches
	 * them over to the new LDT.
	 */
	error = map_ldt_struct(mm, new_ldt, old_ldt ? !old_ldt->slot : 0);
	if (error) {
		/*
		 * This only can fail for the first LDT setup. If an LDT is
		 * already installed then the PTE page is already
		 * populated. Mop up a half populated page table.
		 */
		if (!WARN_ON_ONCE(old_ldt))
			free_ldt_pgtables(mm);
		free_ldt_struct(new_ldt);
		goto out_unlock;
	}

	install_ldt(mm, new_ldt);
	unmap_ldt_struct(mm, old_ldt);
	free_ldt_struct(old_ldt);
	error = 0;

out_unlock:
	up_write(&mm->context.ldt_usr_sem);
out:
	return error;
}

SYSCALL_DEFINE3(modify_ldt, int , func , void __user * , ptr ,
		unsigned long , bytecount)
{
	int ret = -ENOSYS;

	switch (func) {
	case 0:
		ret = read_ldt(ptr, bytecount);
		break;
	case 1:
		ret = write_ldt(ptr, bytecount, 1);
		break;
	case 2:
		ret = read_default_ldt(ptr, bytecount);
		break;
	case 0x11:
		ret = write_ldt(ptr, bytecount, 0);
		break;
	}
	/*
	 * The SYSCALL_DEFINE() macros give us an 'unsigned long'
	 * return type, but tht ABI for sys_modify_ldt() expects
	 * 'int'.  This cast gives us an int-sized value in %rax
	 * for the return code.  The 'unsigned' is necessary so
	 * the compiler does not try to sign-extend the negative
	 * return codes into the high half of the register when
	 * taking the value from int->long.
	 */
	return (unsigned int)ret;
}