1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 1999 - 2018 Intel Corporation. */
#include "ixgbe.h"
#include <linux/ptp_classify.h>
#include <linux/clocksource.h>
/*
* The 82599 and the X540 do not have true 64bit nanosecond scale
* counter registers. Instead, SYSTIME is defined by a fixed point
* system which allows the user to define the scale counter increment
* value at every level change of the oscillator driving the SYSTIME
* value. For both devices the TIMINCA:IV field defines this
* increment. On the X540 device, 31 bits are provided. However on the
* 82599 only provides 24 bits. The time unit is determined by the
* clock frequency of the oscillator in combination with the TIMINCA
* register. When these devices link at 10Gb the oscillator has a
* period of 6.4ns. In order to convert the scale counter into
* nanoseconds the cyclecounter and timecounter structures are
* used. The SYSTIME registers need to be converted to ns values by use
* of only a right shift (division by power of 2). The following math
* determines the largest incvalue that will fit into the available
* bits in the TIMINCA register.
*
* PeriodWidth: Number of bits to store the clock period
* MaxWidth: The maximum width value of the TIMINCA register
* Period: The clock period for the oscillator
* round(): discard the fractional portion of the calculation
*
* Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
*
* For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
* For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
*
* The period also changes based on the link speed:
* At 10Gb link or no link, the period remains the same.
* At 1Gb link, the period is multiplied by 10. (64ns)
* At 100Mb link, the period is multiplied by 100. (640ns)
*
* The calculated value allows us to right shift the SYSTIME register
* value in order to quickly convert it into a nanosecond clock,
* while allowing for the maximum possible adjustment value.
*
* These diagrams are only for the 10Gb link period
*
* SYSTIMEH SYSTIMEL
* +--------------+ +--------------+
* X540 | 32 | | 1 | 3 | 28 |
* *--------------+ +--------------+
* \________ 36 bits ______/ fract
*
* +--------------+ +--------------+
* 82599 | 32 | | 8 | 3 | 21 |
* *--------------+ +--------------+
* \________ 43 bits ______/ fract
*
* The 36 bit X540 SYSTIME overflows every
* 2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
*
* The 43 bit 82599 SYSTIME overflows every
* 2^43 * 10^-9 / 3600 = 2.4 hours
*/
#define IXGBE_INCVAL_10GB 0x66666666
#define IXGBE_INCVAL_1GB 0x40000000
#define IXGBE_INCVAL_100 0x50000000
#define IXGBE_INCVAL_SHIFT_10GB 28
#define IXGBE_INCVAL_SHIFT_1GB 24
#define IXGBE_INCVAL_SHIFT_100 21
#define IXGBE_INCVAL_SHIFT_82599 7
#define IXGBE_INCPER_SHIFT_82599 24
#define IXGBE_OVERFLOW_PERIOD (HZ * 30)
#define IXGBE_PTP_TX_TIMEOUT (HZ)
/* We use our own definitions instead of NSEC_PER_SEC because we want to mark
* the value as a ULL to force precision when bit shifting.
*/
#define NS_PER_SEC 1000000000ULL
#define NS_PER_HALF_SEC 500000000ULL
/* In contrast, the X550 controller has two registers, SYSTIMEH and SYSTIMEL
* which contain measurements of seconds and nanoseconds respectively. This
* matches the standard linux representation of time in the kernel. In addition,
* the X550 also has a SYSTIMER register which represents residue, or
* subnanosecond overflow adjustments. To control clock adjustment, the TIMINCA
* register is used, but it is unlike the X540 and 82599 devices. TIMINCA
* represents units of 2^-32 nanoseconds, and uses 31 bits for this, with the
* high bit representing whether the adjustent is positive or negative. Every
* clock cycle, the X550 will add 12.5 ns + TIMINCA which can result in a range
* of 12 to 13 nanoseconds adjustment. Unlike the 82599 and X540 devices, the
* X550's clock for purposes of SYSTIME generation is constant and not dependent
* on the link speed.
*
* SYSTIMEH SYSTIMEL SYSTIMER
* +--------------+ +--------------+ +-------------+
* X550 | 32 | | 32 | | 32 |
* *--------------+ +--------------+ +-------------+
* \____seconds___/ \_nanoseconds_/ \__2^-32 ns__/
*
* This results in a full 96 bits to represent the clock, with 32 bits for
* seconds, 32 bits for nanoseconds (largest value is 0d999999999 or just under
* 1 second) and an additional 32 bits to measure sub nanosecond adjustments for
* underflow of adjustments.
*
* The 32 bits of seconds for the X550 overflows every
* 2^32 / ( 365.25 * 24 * 60 * 60 ) = ~136 years.
*
* In order to adjust the clock frequency for the X550, the TIMINCA register is
* provided. This register represents a + or minus nearly 0.5 ns adjustment to
* the base frequency. It is measured in 2^-32 ns units, with the high bit being
* the sign bit. This register enables software to calculate frequency
* adjustments and apply them directly to the clock rate.
*
* The math for converting scaled_ppm into TIMINCA values is fairly
* straightforward.
*
* TIMINCA value = ( Base_Frequency * scaled_ppm ) / 1000000ULL << 16
*
* To avoid overflow, we simply use mul_u64_u64_div_u64.
*
* This assumes that scaled_ppm is never high enough to create a value bigger
* than TIMINCA's 31 bits can store. This is ensured by the stack, and is
* measured in parts per billion. Calculating this value is also simple.
* Max ppb = ( Max Adjustment / Base Frequency ) / 1000000000ULL
*
* For the X550, the Max adjustment is +/- 0.5 ns, and the base frequency is
* 12.5 nanoseconds. This means that the Max ppb is 39999999
* Note: We subtract one in order to ensure no overflow, because the TIMINCA
* register can only hold slightly under 0.5 nanoseconds.
*
* Because TIMINCA is measured in 2^-32 ns units, we have to convert 12.5 ns
* into 2^-32 units, which is
*
* 12.5 * 2^32 = C80000000
*
* Some revisions of hardware have a faster base frequency than the registers
* were defined for. To fix this, we use a timecounter structure with the
* proper mult and shift to convert the cycles into nanoseconds of time.
*/
#define IXGBE_X550_BASE_PERIOD 0xC80000000ULL
#define INCVALUE_MASK 0x7FFFFFFF
#define ISGN 0x80000000
/**
* ixgbe_ptp_setup_sdp_X540
* @adapter: private adapter structure
*
* this function enables or disables the clock out feature on SDP0 for
* the X540 device. It will create a 1 second periodic output that can
* be used as the PPS (via an interrupt).
*
* It calculates when the system time will be on an exact second, and then
* aligns the start of the PPS signal to that value.
*
* This works by using the cycle counter shift and mult values in reverse, and
* assumes that the values we're shifting will not overflow.
*/
static void ixgbe_ptp_setup_sdp_X540(struct ixgbe_adapter *adapter)
{
struct cyclecounter *cc = &adapter->hw_cc;
struct ixgbe_hw *hw = &adapter->hw;
u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
u64 ns = 0, clock_edge = 0, clock_period;
unsigned long flags;
/* disable the pin first */
IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
IXGBE_WRITE_FLUSH(hw);
if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
return;
esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
/* enable the SDP0 pin as output, and connected to the
* native function for Timesync (ClockOut)
*/
esdp |= IXGBE_ESDP_SDP0_DIR |
IXGBE_ESDP_SDP0_NATIVE;
/* enable the Clock Out feature on SDP0, and allow
* interrupts to occur when the pin changes
*/
tsauxc = (IXGBE_TSAUXC_EN_CLK |
IXGBE_TSAUXC_SYNCLK |
IXGBE_TSAUXC_SDP0_INT);
/* Determine the clock time period to use. This assumes that the
* cycle counter shift is small enough to avoid overflow.
*/
clock_period = div_u64((NS_PER_HALF_SEC << cc->shift), cc->mult);
clktiml = (u32)(clock_period);
clktimh = (u32)(clock_period >> 32);
/* Read the current clock time, and save the cycle counter value */
spin_lock_irqsave(&adapter->tmreg_lock, flags);
ns = timecounter_read(&adapter->hw_tc);
clock_edge = adapter->hw_tc.cycle_last;
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
/* Figure out how many seconds to add in order to round up */
div_u64_rem(ns, NS_PER_SEC, &rem);
/* Figure out how many nanoseconds to add to round the clock edge up
* to the next full second
*/
rem = (NS_PER_SEC - rem);
/* Adjust the clock edge to align with the next full second. */
clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
trgttiml = (u32)clock_edge;
trgttimh = (u32)(clock_edge >> 32);
IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
IXGBE_WRITE_FLUSH(hw);
}
/**
* ixgbe_ptp_setup_sdp_X550
* @adapter: private adapter structure
*
* Enable or disable a clock output signal on SDP 0 for X550 hardware.
*
* Use the target time feature to align the output signal on the next full
* second.
*
* This works by using the cycle counter shift and mult values in reverse, and
* assumes that the values we're shifting will not overflow.
*/
static void ixgbe_ptp_setup_sdp_X550(struct ixgbe_adapter *adapter)
{
u32 esdp, tsauxc, freqout, trgttiml, trgttimh, rem, tssdp;
struct cyclecounter *cc = &adapter->hw_cc;
struct ixgbe_hw *hw = &adapter->hw;
u64 ns = 0, clock_edge = 0;
struct timespec64 ts;
unsigned long flags;
/* disable the pin first */
IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
IXGBE_WRITE_FLUSH(hw);
if (!(adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED))
return;
esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
/* enable the SDP0 pin as output, and connected to the
* native function for Timesync (ClockOut)
*/
esdp |= IXGBE_ESDP_SDP0_DIR |
IXGBE_ESDP_SDP0_NATIVE;
/* enable the Clock Out feature on SDP0, and use Target Time 0 to
* enable generation of interrupts on the clock change.
*/
#define IXGBE_TSAUXC_DIS_TS_CLEAR 0x40000000
tsauxc = (IXGBE_TSAUXC_EN_CLK | IXGBE_TSAUXC_ST0 |
IXGBE_TSAUXC_EN_TT0 | IXGBE_TSAUXC_SDP0_INT |
IXGBE_TSAUXC_DIS_TS_CLEAR);
tssdp = (IXGBE_TSSDP_TS_SDP0_EN |
IXGBE_TSSDP_TS_SDP0_CLK0);
/* Determine the clock time period to use. This assumes that the
* cycle counter shift is small enough to avoid overflowing a 32bit
* value.
*/
freqout = div_u64(NS_PER_HALF_SEC << cc->shift, cc->mult);
/* Read the current clock time, and save the cycle counter value */
spin_lock_irqsave(&adapter->tmreg_lock, flags);
ns = timecounter_read(&adapter->hw_tc);
clock_edge = adapter->hw_tc.cycle_last;
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
/* Figure out how far past the next second we are */
div_u64_rem(ns, NS_PER_SEC, &rem);
/* Figure out how many nanoseconds to add to round the clock edge up
* to the next full second
*/
rem = (NS_PER_SEC - rem);
/* Adjust the clock edge to align with the next full second. */
clock_edge += div_u64(((u64)rem << cc->shift), cc->mult);
/* X550 hardware stores the time in 32bits of 'billions of cycles' and
* 32bits of 'cycles'. There's no guarantee that cycles represents
* nanoseconds. However, we can use the math from a timespec64 to
* convert into the hardware representation.
*
* See ixgbe_ptp_read_X550() for more details.
*/
ts = ns_to_timespec64(clock_edge);
trgttiml = (u32)ts.tv_nsec;
trgttimh = (u32)ts.tv_sec;
IXGBE_WRITE_REG(hw, IXGBE_FREQOUT0, freqout);
IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
IXGBE_WRITE_REG(hw, IXGBE_TSSDP, tssdp);
IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
IXGBE_WRITE_FLUSH(hw);
}
/**
* ixgbe_ptp_read_X550 - read cycle counter value
* @cc: cyclecounter structure
*
* This function reads SYSTIME registers. It is called by the cyclecounter
* structure to convert from internal representation into nanoseconds. We need
* this for X550 since some skews do not have expected clock frequency and
* result of SYSTIME is 32bits of "billions of cycles" and 32 bits of
* "cycles", rather than seconds and nanoseconds.
*/
static u64 ixgbe_ptp_read_X550(const struct cyclecounter *cc)
{
struct ixgbe_adapter *adapter =
container_of(cc, struct ixgbe_adapter, hw_cc);
struct ixgbe_hw *hw = &adapter->hw;
struct timespec64 ts;
/* storage is 32 bits of 'billions of cycles' and 32 bits of 'cycles'.
* Some revisions of hardware run at a higher frequency and so the
* cycles are not guaranteed to be nanoseconds. The timespec64 created
* here is used for its math/conversions but does not necessarily
* represent nominal time.
*
* It should be noted that this cyclecounter will overflow at a
* non-bitmask field since we have to convert our billions of cycles
* into an actual cycles count. This results in some possible weird
* situations at high cycle counter stamps. However given that 32 bits
* of "seconds" is ~138 years this isn't a problem. Even at the
* increased frequency of some revisions, this is still ~103 years.
* Since the SYSTIME values start at 0 and we never write them, it is
* highly unlikely for the cyclecounter to overflow in practice.
*/
IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
ts.tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
ts.tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
return (u64)timespec64_to_ns(&ts);
}
/**
* ixgbe_ptp_read_82599 - read raw cycle counter (to be used by time counter)
* @cc: the cyclecounter structure
*
* this function reads the cyclecounter registers and is called by the
* cyclecounter structure used to construct a ns counter from the
* arbitrary fixed point registers
*/
static u64 ixgbe_ptp_read_82599(const struct cyclecounter *cc)
{
struct ixgbe_adapter *adapter =
container_of(cc, struct ixgbe_adapter, hw_cc);
struct ixgbe_hw *hw = &adapter->hw;
u64 stamp = 0;
stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
return stamp;
}
/**
* ixgbe_ptp_convert_to_hwtstamp - convert register value to hw timestamp
* @adapter: private adapter structure
* @hwtstamp: stack timestamp structure
* @timestamp: unsigned 64bit system time value
*
* We need to convert the adapter's RX/TXSTMP registers into a hwtstamp value
* which can be used by the stack's ptp functions.
*
* The lock is used to protect consistency of the cyclecounter and the SYSTIME
* registers. However, it does not need to protect against the Rx or Tx
* timestamp registers, as there can't be a new timestamp until the old one is
* unlatched by reading.
*
* In addition to the timestamp in hardware, some controllers need a software
* overflow cyclecounter, and this function takes this into account as well.
**/
static void ixgbe_ptp_convert_to_hwtstamp(struct ixgbe_adapter *adapter,
struct skb_shared_hwtstamps *hwtstamp,
u64 timestamp)
{
unsigned long flags;
struct timespec64 systime;
u64 ns;
memset(hwtstamp, 0, sizeof(*hwtstamp));
switch (adapter->hw.mac.type) {
/* X550 and later hardware supposedly represent time using a seconds
* and nanoseconds counter, instead of raw 64bits nanoseconds. We need
* to convert the timestamp into cycles before it can be fed to the
* cyclecounter. We need an actual cyclecounter because some revisions
* of hardware run at a higher frequency and thus the counter does
* not represent seconds/nanoseconds. Instead it can be thought of as
* cycles and billions of cycles.
*/
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
case ixgbe_mac_x550em_a:
/* Upper 32 bits represent billions of cycles, lower 32 bits
* represent cycles. However, we use timespec64_to_ns for the
* correct math even though the units haven't been corrected
* yet.
*/
systime.tv_sec = timestamp >> 32;
systime.tv_nsec = timestamp & 0xFFFFFFFF;
timestamp = timespec64_to_ns(&systime);
break;
default:
break;
}
spin_lock_irqsave(&adapter->tmreg_lock, flags);
ns = timecounter_cyc2time(&adapter->hw_tc, timestamp);
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
hwtstamp->hwtstamp = ns_to_ktime(ns);
}
/**
* ixgbe_ptp_adjfine_82599
* @ptp: the ptp clock structure
* @scaled_ppm: scaled parts per million adjustment from base
*
* Adjust the frequency of the ptp cycle counter by the
* indicated scaled_ppm from the base frequency.
*
* Scaled parts per million is ppm with a 16-bit binary fractional field.
*/
static int ixgbe_ptp_adjfine_82599(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct ixgbe_adapter *adapter =
container_of(ptp, struct ixgbe_adapter, ptp_caps);
struct ixgbe_hw *hw = &adapter->hw;
u64 incval, diff;
int neg_adj = 0;
if (scaled_ppm < 0) {
neg_adj = 1;
scaled_ppm = -scaled_ppm;
}
smp_mb();
incval = READ_ONCE(adapter->base_incval);
diff = mul_u64_u64_div_u64(incval, scaled_ppm,
1000000ULL << 16);
incval = neg_adj ? (incval - diff) : (incval + diff);
switch (hw->mac.type) {
case ixgbe_mac_X540:
if (incval > 0xFFFFFFFFULL)
e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, (u32)incval);
break;
case ixgbe_mac_82599EB:
if (incval > 0x00FFFFFFULL)
e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
BIT(IXGBE_INCPER_SHIFT_82599) |
((u32)incval & 0x00FFFFFFUL));
break;
default:
break;
}
return 0;
}
/**
* ixgbe_ptp_adjfine_X550
* @ptp: the ptp clock structure
* @scaled_ppm: scaled parts per million adjustment from base
*
* Adjust the frequency of the SYSTIME registers by the indicated scaled_ppm
* from base frequency.
*
* Scaled parts per million is ppm with a 16-bit binary fractional field.
*/
static int ixgbe_ptp_adjfine_X550(struct ptp_clock_info *ptp, long scaled_ppm)
{
struct ixgbe_adapter *adapter =
container_of(ptp, struct ixgbe_adapter, ptp_caps);
struct ixgbe_hw *hw = &adapter->hw;
int neg_adj = 0;
u64 rate;
u32 inca;
if (scaled_ppm < 0) {
neg_adj = 1;
scaled_ppm = -scaled_ppm;
}
rate = mul_u64_u64_div_u64(IXGBE_X550_BASE_PERIOD, scaled_ppm,
1000000ULL << 16);
/* warn if rate is too large */
if (rate >= INCVALUE_MASK)
e_dev_warn("PTP scaled_ppm adjusted SYSTIME rate overflowed!\n");
inca = rate & INCVALUE_MASK;
if (neg_adj)
inca |= ISGN;
IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, inca);
return 0;
}
/**
* ixgbe_ptp_adjtime
* @ptp: the ptp clock structure
* @delta: offset to adjust the cycle counter by
*
* adjust the timer by resetting the timecounter structure.
*/
static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
{
struct ixgbe_adapter *adapter =
container_of(ptp, struct ixgbe_adapter, ptp_caps);
unsigned long flags;
spin_lock_irqsave(&adapter->tmreg_lock, flags);
timecounter_adjtime(&adapter->hw_tc, delta);
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
if (adapter->ptp_setup_sdp)
adapter->ptp_setup_sdp(adapter);
return 0;
}
/**
* ixgbe_ptp_gettimex
* @ptp: the ptp clock structure
* @ts: timespec to hold the PHC timestamp
* @sts: structure to hold the system time before and after reading the PHC
*
* read the timecounter and return the correct value on ns,
* after converting it into a struct timespec.
*/
static int ixgbe_ptp_gettimex(struct ptp_clock_info *ptp,
struct timespec64 *ts,
struct ptp_system_timestamp *sts)
{
struct ixgbe_adapter *adapter =
container_of(ptp, struct ixgbe_adapter, ptp_caps);
struct ixgbe_hw *hw = &adapter->hw;
unsigned long flags;
u64 ns, stamp;
spin_lock_irqsave(&adapter->tmreg_lock, flags);
switch (adapter->hw.mac.type) {
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
case ixgbe_mac_x550em_a:
/* Upper 32 bits represent billions of cycles, lower 32 bits
* represent cycles. However, we use timespec64_to_ns for the
* correct math even though the units haven't been corrected
* yet.
*/
ptp_read_system_prets(sts);
IXGBE_READ_REG(hw, IXGBE_SYSTIMR);
ptp_read_system_postts(sts);
ts->tv_nsec = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
ts->tv_sec = IXGBE_READ_REG(hw, IXGBE_SYSTIMH);
stamp = timespec64_to_ns(ts);
break;
default:
ptp_read_system_prets(sts);
stamp = IXGBE_READ_REG(hw, IXGBE_SYSTIML);
ptp_read_system_postts(sts);
stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
break;
}
ns = timecounter_cyc2time(&adapter->hw_tc, stamp);
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
*ts = ns_to_timespec64(ns);
return 0;
}
/**
* ixgbe_ptp_settime
* @ptp: the ptp clock structure
* @ts: the timespec containing the new time for the cycle counter
*
* reset the timecounter to use a new base value instead of the kernel
* wall timer value.
*/
static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
const struct timespec64 *ts)
{
struct ixgbe_adapter *adapter =
container_of(ptp, struct ixgbe_adapter, ptp_caps);
unsigned long flags;
u64 ns = timespec64_to_ns(ts);
/* reset the timecounter */
spin_lock_irqsave(&adapter->tmreg_lock, flags);
timecounter_init(&adapter->hw_tc, &adapter->hw_cc, ns);
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
if (adapter->ptp_setup_sdp)
adapter->ptp_setup_sdp(adapter);
return 0;
}
/**
* ixgbe_ptp_feature_enable
* @ptp: the ptp clock structure
* @rq: the requested feature to change
* @on: whether to enable or disable the feature
*
* enable (or disable) ancillary features of the phc subsystem.
* our driver only supports the PPS feature on the X540
*/
static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
struct ptp_clock_request *rq, int on)
{
struct ixgbe_adapter *adapter =
container_of(ptp, struct ixgbe_adapter, ptp_caps);
/**
* When PPS is enabled, unmask the interrupt for the ClockOut
* feature, so that the interrupt handler can send the PPS
* event when the clock SDP triggers. Clear mask when PPS is
* disabled
*/
if (rq->type != PTP_CLK_REQ_PPS || !adapter->ptp_setup_sdp)
return -ENOTSUPP;
if (on)
adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
else
adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
adapter->ptp_setup_sdp(adapter);
return 0;
}
/**
* ixgbe_ptp_check_pps_event
* @adapter: the private adapter structure
*
* This function is called by the interrupt routine when checking for
* interrupts. It will check and handle a pps event.
*/
void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
struct ptp_clock_event event;
event.type = PTP_CLOCK_PPS;
/* this check is necessary in case the interrupt was enabled via some
* alternative means (ex. debug_fs). Better to check here than
* everywhere that calls this function.
*/
if (!adapter->ptp_clock)
return;
switch (hw->mac.type) {
case ixgbe_mac_X540:
ptp_clock_event(adapter->ptp_clock, &event);
break;
default:
break;
}
}
/**
* ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
* @adapter: private adapter struct
*
* this watchdog task periodically reads the timecounter
* in order to prevent missing when the system time registers wrap
* around. This needs to be run approximately twice a minute.
*/
void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
{
bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
IXGBE_OVERFLOW_PERIOD);
unsigned long flags;
if (timeout) {
/* Update the timecounter */
spin_lock_irqsave(&adapter->tmreg_lock, flags);
timecounter_read(&adapter->hw_tc);
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
adapter->last_overflow_check = jiffies;
}
}
/**
* ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
* @adapter: private network adapter structure
*
* this watchdog task is scheduled to detect error case where hardware has
* dropped an Rx packet that was timestamped when the ring is full. The
* particular error is rare but leaves the device in a state unable to timestamp
* any future packets.
*/
void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
struct ixgbe_ring *rx_ring;
unsigned long rx_event;
int n;
/* if we don't have a valid timestamp in the registers, just update the
* timeout counter and exit
*/
if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
adapter->last_rx_ptp_check = jiffies;
return;
}
/* determine the most recent watchdog or rx_timestamp event */
rx_event = adapter->last_rx_ptp_check;
for (n = 0; n < adapter->num_rx_queues; n++) {
rx_ring = adapter->rx_ring[n];
if (time_after(rx_ring->last_rx_timestamp, rx_event))
rx_event = rx_ring->last_rx_timestamp;
}
/* only need to read the high RXSTMP register to clear the lock */
if (time_is_before_jiffies(rx_event + 5 * HZ)) {
IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
adapter->last_rx_ptp_check = jiffies;
adapter->rx_hwtstamp_cleared++;
e_warn(drv, "clearing RX Timestamp hang\n");
}
}
/**
* ixgbe_ptp_clear_tx_timestamp - utility function to clear Tx timestamp state
* @adapter: the private adapter structure
*
* This function should be called whenever the state related to a Tx timestamp
* needs to be cleared. This helps ensure that all related bits are reset for
* the next Tx timestamp event.
*/
static void ixgbe_ptp_clear_tx_timestamp(struct ixgbe_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
if (adapter->ptp_tx_skb) {
dev_kfree_skb_any(adapter->ptp_tx_skb);
adapter->ptp_tx_skb = NULL;
}
clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
}
/**
* ixgbe_ptp_tx_hang - detect error case where Tx timestamp never finishes
* @adapter: private network adapter structure
*/
void ixgbe_ptp_tx_hang(struct ixgbe_adapter *adapter)
{
bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
IXGBE_PTP_TX_TIMEOUT);
if (!adapter->ptp_tx_skb)
return;
if (!test_bit(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state))
return;
/* If we haven't received a timestamp within the timeout, it is
* reasonable to assume that it will never occur, so we can unlock the
* timestamp bit when this occurs.
*/
if (timeout) {
cancel_work_sync(&adapter->ptp_tx_work);
ixgbe_ptp_clear_tx_timestamp(adapter);
adapter->tx_hwtstamp_timeouts++;
e_warn(drv, "clearing Tx timestamp hang\n");
}
}
/**
* ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
* @adapter: the private adapter struct
*
* if the timestamp is valid, we convert it into the timecounter ns
* value, then store that result into the shhwtstamps structure which
* is passed up the network stack
*/
static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
{
struct sk_buff *skb = adapter->ptp_tx_skb;
struct ixgbe_hw *hw = &adapter->hw;
struct skb_shared_hwtstamps shhwtstamps;
u64 regval = 0;
regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
ixgbe_ptp_convert_to_hwtstamp(adapter, &shhwtstamps, regval);
/* Handle cleanup of the ptp_tx_skb ourselves, and unlock the state
* bit prior to notifying the stack via skb_tstamp_tx(). This prevents
* well behaved applications from attempting to timestamp again prior
* to the lock bit being clear.
*/
adapter->ptp_tx_skb = NULL;
clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
/* Notify the stack and then free the skb after we've unlocked */
skb_tstamp_tx(skb, &shhwtstamps);
dev_kfree_skb_any(skb);
}
/**
* ixgbe_ptp_tx_hwtstamp_work
* @work: pointer to the work struct
*
* This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
* timestamp has been taken for the current skb. It is necessary, because the
* descriptor's "done" bit does not correlate with the timestamp event.
*/
static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
{
struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
ptp_tx_work);
struct ixgbe_hw *hw = &adapter->hw;
bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
IXGBE_PTP_TX_TIMEOUT);
u32 tsynctxctl;
/* we have to have a valid skb to poll for a timestamp */
if (!adapter->ptp_tx_skb) {
ixgbe_ptp_clear_tx_timestamp(adapter);
return;
}
/* stop polling once we have a valid timestamp */
tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID) {
ixgbe_ptp_tx_hwtstamp(adapter);
return;
}
if (timeout) {
ixgbe_ptp_clear_tx_timestamp(adapter);
adapter->tx_hwtstamp_timeouts++;
e_warn(drv, "clearing Tx Timestamp hang\n");
} else {
/* reschedule to keep checking if it's not available yet */
schedule_work(&adapter->ptp_tx_work);
}
}
/**
* ixgbe_ptp_rx_pktstamp - utility function to get RX time stamp from buffer
* @q_vector: structure containing interrupt and ring information
* @skb: the packet
*
* This function will be called by the Rx routine of the timestamp for this
* packet is stored in the buffer. The value is stored in little endian format
* starting at the end of the packet data.
*/
void ixgbe_ptp_rx_pktstamp(struct ixgbe_q_vector *q_vector,
struct sk_buff *skb)
{
__le64 regval;
/* copy the bits out of the skb, and then trim the skb length */
skb_copy_bits(skb, skb->len - IXGBE_TS_HDR_LEN, ®val,
IXGBE_TS_HDR_LEN);
__pskb_trim(skb, skb->len - IXGBE_TS_HDR_LEN);
/* The timestamp is recorded in little endian format, and is stored at
* the end of the packet.
*
* DWORD: N N + 1 N + 2
* Field: End of Packet SYSTIMH SYSTIML
*/
ixgbe_ptp_convert_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
le64_to_cpu(regval));
}
/**
* ixgbe_ptp_rx_rgtstamp - utility function which checks for RX time stamp
* @q_vector: structure containing interrupt and ring information
* @skb: particular skb to send timestamp with
*
* if the timestamp is valid, we convert it into the timecounter ns
* value, then store that result into the shhwtstamps structure which
* is passed up the network stack
*/
void ixgbe_ptp_rx_rgtstamp(struct ixgbe_q_vector *q_vector,
struct sk_buff *skb)
{
struct ixgbe_adapter *adapter;
struct ixgbe_hw *hw;
u64 regval = 0;
u32 tsyncrxctl;
/* we cannot process timestamps on a ring without a q_vector */
if (!q_vector || !q_vector->adapter)
return;
adapter = q_vector->adapter;
hw = &adapter->hw;
/* Read the tsyncrxctl register afterwards in order to prevent taking an
* I/O hit on every packet.
*/
tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
return;
regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
ixgbe_ptp_convert_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
}
/**
* ixgbe_ptp_get_ts_config - get current hardware timestamping configuration
* @adapter: pointer to adapter structure
* @ifr: ioctl data
*
* This function returns the current timestamping settings. Rather than
* attempt to deconstruct registers to fill in the values, simply keep a copy
* of the old settings around, and return a copy when requested.
*/
int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
{
struct hwtstamp_config *config = &adapter->tstamp_config;
return copy_to_user(ifr->ifr_data, config,
sizeof(*config)) ? -EFAULT : 0;
}
/**
* ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
* @adapter: the private ixgbe adapter structure
* @config: the hwtstamp configuration requested
*
* Outgoing time stamping can be enabled and disabled. Play nice and
* disable it when requested, although it shouldn't cause any overhead
* when no packet needs it. At most one packet in the queue may be
* marked for time stamping, otherwise it would be impossible to tell
* for sure to which packet the hardware time stamp belongs.
*
* Incoming time stamping has to be configured via the hardware
* filters. Not all combinations are supported, in particular event
* type has to be specified. Matching the kind of event packet is
* not supported, with the exception of "all V2 events regardless of
* level 2 or 4".
*
* Since hardware always timestamps Path delay packets when timestamping V2
* packets, regardless of the type specified in the register, only use V2
* Event mode. This more accurately tells the user what the hardware is going
* to do anyways.
*
* Note: this may modify the hwtstamp configuration towards a more general
* mode, if required to support the specifically requested mode.
*/
static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
struct hwtstamp_config *config)
{
struct ixgbe_hw *hw = &adapter->hw;
u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
u32 aflags = adapter->flags;
bool is_l2 = false;
u32 regval;
switch (config->tx_type) {
case HWTSTAMP_TX_OFF:
tsync_tx_ctl = 0;
break;
case HWTSTAMP_TX_ON:
break;
default:
return -ERANGE;
}
switch (config->rx_filter) {
case HWTSTAMP_FILTER_NONE:
tsync_rx_ctl = 0;
tsync_rx_mtrl = 0;
aflags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
break;
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
case HWTSTAMP_FILTER_PTP_V2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
is_l2 = true;
config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
aflags |= (IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
case HWTSTAMP_FILTER_NTP_ALL:
case HWTSTAMP_FILTER_ALL:
/* The X550 controller is capable of timestamping all packets,
* which allows it to accept any filter.
*/
if (hw->mac.type >= ixgbe_mac_X550) {
tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_ALL;
config->rx_filter = HWTSTAMP_FILTER_ALL;
aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
break;
}
fallthrough;
default:
/*
* register RXMTRL must be set in order to do V1 packets,
* therefore it is not possible to time stamp both V1 Sync and
* Delay_Req messages and hardware does not support
* timestamping all packets => return error
*/
config->rx_filter = HWTSTAMP_FILTER_NONE;
return -ERANGE;
}
if (hw->mac.type == ixgbe_mac_82598EB) {
adapter->flags &= ~(IXGBE_FLAG_RX_HWTSTAMP_ENABLED |
IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER);
if (tsync_rx_ctl | tsync_tx_ctl)
return -ERANGE;
return 0;
}
/* Per-packet timestamping only works if the filter is set to all
* packets. Since this is desired, always timestamp all packets as long
* as any Rx filter was configured.
*/
switch (hw->mac.type) {
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
case ixgbe_mac_x550em_a:
/* enable timestamping all packets only if at least some
* packets were requested. Otherwise, play nice and disable
* timestamping
*/
if (config->rx_filter == HWTSTAMP_FILTER_NONE)
break;
tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED |
IXGBE_TSYNCRXCTL_TYPE_ALL |
IXGBE_TSYNCRXCTL_TSIP_UT_EN;
config->rx_filter = HWTSTAMP_FILTER_ALL;
aflags |= IXGBE_FLAG_RX_HWTSTAMP_ENABLED;
aflags &= ~IXGBE_FLAG_RX_HWTSTAMP_IN_REGISTER;
is_l2 = true;
break;
default:
break;
}
/* define ethertype filter for timestamping L2 packets */
if (is_l2)
IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
(IXGBE_ETQF_FILTER_EN | /* enable filter */
IXGBE_ETQF_1588 | /* enable timestamping */
ETH_P_1588)); /* 1588 eth protocol type */
else
IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
/* enable/disable TX */
regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
regval |= tsync_tx_ctl;
IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
/* enable/disable RX */
regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
regval |= tsync_rx_ctl;
IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
/* define which PTP packets are time stamped */
IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
IXGBE_WRITE_FLUSH(hw);
/* configure adapter flags only when HW is actually configured */
adapter->flags = aflags;
/* clear TX/RX time stamp registers, just to be sure */
ixgbe_ptp_clear_tx_timestamp(adapter);
IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
return 0;
}
/**
* ixgbe_ptp_set_ts_config - user entry point for timestamp mode
* @adapter: pointer to adapter struct
* @ifr: ioctl data
*
* Set hardware to requested mode. If unsupported, return an error with no
* changes. Otherwise, store the mode for future reference.
*/
int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
{
struct hwtstamp_config config;
int err;
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
return -EFAULT;
err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
if (err)
return err;
/* save these settings for future reference */
memcpy(&adapter->tstamp_config, &config,
sizeof(adapter->tstamp_config));
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
-EFAULT : 0;
}
static void ixgbe_ptp_link_speed_adjust(struct ixgbe_adapter *adapter,
u32 *shift, u32 *incval)
{
/**
* Scale the NIC cycle counter by a large factor so that
* relatively small corrections to the frequency can be added
* or subtracted. The drawbacks of a large factor include
* (a) the clock register overflows more quickly, (b) the cycle
* counter structure must be able to convert the systime value
* to nanoseconds using only a multiplier and a right-shift,
* and (c) the value must fit within the timinca register space
* => math based on internal DMA clock rate and available bits
*
* Note that when there is no link, internal DMA clock is same as when
* link speed is 10Gb. Set the registers correctly even when link is
* down to preserve the clock setting
*/
switch (adapter->link_speed) {
case IXGBE_LINK_SPEED_100_FULL:
*shift = IXGBE_INCVAL_SHIFT_100;
*incval = IXGBE_INCVAL_100;
break;
case IXGBE_LINK_SPEED_1GB_FULL:
*shift = IXGBE_INCVAL_SHIFT_1GB;
*incval = IXGBE_INCVAL_1GB;
break;
case IXGBE_LINK_SPEED_10GB_FULL:
default:
*shift = IXGBE_INCVAL_SHIFT_10GB;
*incval = IXGBE_INCVAL_10GB;
break;
}
}
/**
* ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
* @adapter: pointer to the adapter structure
*
* This function should be called to set the proper values for the TIMINCA
* register and tell the cyclecounter structure what the tick rate of SYSTIME
* is. It does not directly modify SYSTIME registers or the timecounter
* structure. It should be called whenever a new TIMINCA value is necessary,
* such as during initialization or when the link speed changes.
*/
void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
struct cyclecounter cc;
unsigned long flags;
u32 incval = 0;
u32 fuse0 = 0;
/* For some of the boards below this mask is technically incorrect.
* The timestamp mask overflows at approximately 61bits. However the
* particular hardware does not overflow on an even bitmask value.
* Instead, it overflows due to conversion of upper 32bits billions of
* cycles. Timecounters are not really intended for this purpose so
* they do not properly function if the overflow point isn't 2^N-1.
* However, the actual SYSTIME values in question take ~138 years to
* overflow. In practice this means they won't actually overflow. A
* proper fix to this problem would require modification of the
* timecounter delta calculations.
*/
cc.mask = CLOCKSOURCE_MASK(64);
cc.mult = 1;
cc.shift = 0;
switch (hw->mac.type) {
case ixgbe_mac_X550EM_x:
/* SYSTIME assumes X550EM_x board frequency is 300Mhz, and is
* designed to represent seconds and nanoseconds when this is
* the case. However, some revisions of hardware have a 400Mhz
* clock and we have to compensate for this frequency
* variation using corrected mult and shift values.
*/
fuse0 = IXGBE_READ_REG(hw, IXGBE_FUSES0_GROUP(0));
if (!(fuse0 & IXGBE_FUSES0_300MHZ)) {
cc.mult = 3;
cc.shift = 2;
}
fallthrough;
case ixgbe_mac_x550em_a:
case ixgbe_mac_X550:
cc.read = ixgbe_ptp_read_X550;
break;
case ixgbe_mac_X540:
cc.read = ixgbe_ptp_read_82599;
ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
break;
case ixgbe_mac_82599EB:
cc.read = ixgbe_ptp_read_82599;
ixgbe_ptp_link_speed_adjust(adapter, &cc.shift, &incval);
incval >>= IXGBE_INCVAL_SHIFT_82599;
cc.shift -= IXGBE_INCVAL_SHIFT_82599;
IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
BIT(IXGBE_INCPER_SHIFT_82599) | incval);
break;
default:
/* other devices aren't supported */
return;
}
/* update the base incval used to calculate frequency adjustment */
WRITE_ONCE(adapter->base_incval, incval);
smp_mb();
/* need lock to prevent incorrect read while modifying cyclecounter */
spin_lock_irqsave(&adapter->tmreg_lock, flags);
memcpy(&adapter->hw_cc, &cc, sizeof(adapter->hw_cc));
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
}
/**
* ixgbe_ptp_init_systime - Initialize SYSTIME registers
* @adapter: the ixgbe private board structure
*
* Initialize and start the SYSTIME registers.
*/
static void ixgbe_ptp_init_systime(struct ixgbe_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
u32 tsauxc;
switch (hw->mac.type) {
case ixgbe_mac_X550EM_x:
case ixgbe_mac_x550em_a:
case ixgbe_mac_X550:
tsauxc = IXGBE_READ_REG(hw, IXGBE_TSAUXC);
/* Reset SYSTIME registers to 0 */
IXGBE_WRITE_REG(hw, IXGBE_SYSTIMR, 0);
IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
/* Reset interrupt settings */
IXGBE_WRITE_REG(hw, IXGBE_TSIM, IXGBE_TSIM_TXTS);
IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EIMS_TIMESYNC);
/* Activate the SYSTIME counter */
IXGBE_WRITE_REG(hw, IXGBE_TSAUXC,
tsauxc & ~IXGBE_TSAUXC_DISABLE_SYSTIME);
break;
case ixgbe_mac_X540:
case ixgbe_mac_82599EB:
/* Reset SYSTIME registers to 0 */
IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0);
IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0);
break;
default:
/* Other devices aren't supported */
return;
};
IXGBE_WRITE_FLUSH(hw);
}
/**
* ixgbe_ptp_reset
* @adapter: the ixgbe private board structure
*
* When the MAC resets, all the hardware bits for timesync are reset. This
* function is used to re-enable the device for PTP based on current settings.
* We do lose the current clock time, so just reset the cyclecounter to the
* system real clock time.
*
* This function will maintain hwtstamp_config settings, and resets the SDP
* output if it was enabled.
*/
void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
unsigned long flags;
/* reset the hardware timestamping mode */
ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
/* 82598 does not support PTP */
if (hw->mac.type == ixgbe_mac_82598EB)
return;
ixgbe_ptp_start_cyclecounter(adapter);
ixgbe_ptp_init_systime(adapter);
spin_lock_irqsave(&adapter->tmreg_lock, flags);
timecounter_init(&adapter->hw_tc, &adapter->hw_cc,
ktime_to_ns(ktime_get_real()));
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
adapter->last_overflow_check = jiffies;
/* Now that the shift has been calculated and the systime
* registers reset, (re-)enable the Clock out feature
*/
if (adapter->ptp_setup_sdp)
adapter->ptp_setup_sdp(adapter);
}
/**
* ixgbe_ptp_create_clock
* @adapter: the ixgbe private adapter structure
*
* This function performs setup of the user entry point function table and
* initializes the PTP clock device, which is used to access the clock-like
* features of the PTP core. It will be called by ixgbe_ptp_init, and may
* reuse a previously initialized clock (such as during a suspend/resume
* cycle).
*/
static long ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
long err;
/* do nothing if we already have a clock device */
if (!IS_ERR_OR_NULL(adapter->ptp_clock))
return 0;
switch (adapter->hw.mac.type) {
case ixgbe_mac_X540:
snprintf(adapter->ptp_caps.name,
sizeof(adapter->ptp_caps.name),
"%s", netdev->name);
adapter->ptp_caps.owner = THIS_MODULE;
adapter->ptp_caps.max_adj = 250000000;
adapter->ptp_caps.n_alarm = 0;
adapter->ptp_caps.n_ext_ts = 0;
adapter->ptp_caps.n_per_out = 0;
adapter->ptp_caps.pps = 1;
adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X540;
break;
case ixgbe_mac_82599EB:
snprintf(adapter->ptp_caps.name,
sizeof(adapter->ptp_caps.name),
"%s", netdev->name);
adapter->ptp_caps.owner = THIS_MODULE;
adapter->ptp_caps.max_adj = 250000000;
adapter->ptp_caps.n_alarm = 0;
adapter->ptp_caps.n_ext_ts = 0;
adapter->ptp_caps.n_per_out = 0;
adapter->ptp_caps.pps = 0;
adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_82599;
adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
break;
case ixgbe_mac_X550:
case ixgbe_mac_X550EM_x:
case ixgbe_mac_x550em_a:
snprintf(adapter->ptp_caps.name, 16, "%s", netdev->name);
adapter->ptp_caps.owner = THIS_MODULE;
adapter->ptp_caps.max_adj = 30000000;
adapter->ptp_caps.n_alarm = 0;
adapter->ptp_caps.n_ext_ts = 0;
adapter->ptp_caps.n_per_out = 0;
adapter->ptp_caps.pps = 1;
adapter->ptp_caps.adjfine = ixgbe_ptp_adjfine_X550;
adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
adapter->ptp_caps.gettimex64 = ixgbe_ptp_gettimex;
adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
adapter->ptp_setup_sdp = ixgbe_ptp_setup_sdp_X550;
break;
default:
adapter->ptp_clock = NULL;
adapter->ptp_setup_sdp = NULL;
return -EOPNOTSUPP;
}
adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
&adapter->pdev->dev);
if (IS_ERR(adapter->ptp_clock)) {
err = PTR_ERR(adapter->ptp_clock);
adapter->ptp_clock = NULL;
e_dev_err("ptp_clock_register failed\n");
return err;
} else if (adapter->ptp_clock)
e_dev_info("registered PHC device on %s\n", netdev->name);
/* set default timestamp mode to disabled here. We do this in
* create_clock instead of init, because we don't want to override the
* previous settings during a resume cycle.
*/
adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
return 0;
}
/**
* ixgbe_ptp_init
* @adapter: the ixgbe private adapter structure
*
* This function performs the required steps for enabling PTP
* support. If PTP support has already been loaded it simply calls the
* cyclecounter init routine and exits.
*/
void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
{
/* initialize the spin lock first since we can't control when a user
* will call the entry functions once we have initialized the clock
* device
*/
spin_lock_init(&adapter->tmreg_lock);
/* obtain a PTP device, or re-use an existing device */
if (ixgbe_ptp_create_clock(adapter))
return;
/* we have a clock so we can initialize work now */
INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
/* reset the PTP related hardware bits */
ixgbe_ptp_reset(adapter);
/* enter the IXGBE_PTP_RUNNING state */
set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
return;
}
/**
* ixgbe_ptp_suspend - stop PTP work items
* @adapter: pointer to adapter struct
*
* this function suspends PTP activity, and prevents more PTP work from being
* generated, but does not destroy the PTP clock device.
*/
void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
{
/* Leave the IXGBE_PTP_RUNNING state. */
if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
return;
adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
if (adapter->ptp_setup_sdp)
adapter->ptp_setup_sdp(adapter);
/* ensure that we cancel any pending PTP Tx work item in progress */
cancel_work_sync(&adapter->ptp_tx_work);
ixgbe_ptp_clear_tx_timestamp(adapter);
}
/**
* ixgbe_ptp_stop - close the PTP device
* @adapter: pointer to adapter struct
*
* completely destroy the PTP device, should only be called when the device is
* being fully closed.
*/
void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
{
/* first, suspend PTP activity */
ixgbe_ptp_suspend(adapter);
/* disable the PTP clock device */
if (adapter->ptp_clock) {
ptp_clock_unregister(adapter->ptp_clock);
adapter->ptp_clock = NULL;
e_dev_info("removed PHC on %s\n",
adapter->netdev->name);
}
}
|