summaryrefslogtreecommitdiffstats
path: root/fs/btrfs/tree-defrag.c
blob: 0520d6d32a2db8db3c4d3482f7a3d3370ebdb6b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2007 Oracle.  All rights reserved.
 */

#include <linux/sched.h>
#include "ctree.h"
#include "disk-io.h"
#include "print-tree.h"
#include "transaction.h"
#include "locking.h"

static struct kmem_cache *btrfs_inode_defrag_cachep;

/*
 * When auto defrag is enabled we queue up these defrag structs to remember
 * which inodes need defragging passes.
 */
struct inode_defrag {
	struct rb_node rb_node;
	/* Inode number */
	u64 ino;
	/*
	 * Transid where the defrag was added, we search for extents newer than
	 * this.
	 */
	u64 transid;

	/* Root objectid */
	u64 root;

	/*
	 * The extent size threshold for autodefrag.
	 *
	 * This value is different for compressed/non-compressed extents, thus
	 * needs to be passed from higher layer.
	 * (aka, inode_should_defrag())
	 */
	u32 extent_thresh;
};

static int __compare_inode_defrag(struct inode_defrag *defrag1,
				  struct inode_defrag *defrag2)
{
	if (defrag1->root > defrag2->root)
		return 1;
	else if (defrag1->root < defrag2->root)
		return -1;
	else if (defrag1->ino > defrag2->ino)
		return 1;
	else if (defrag1->ino < defrag2->ino)
		return -1;
	else
		return 0;
}

/*
 * Pop a record for an inode into the defrag tree.  The lock must be held
 * already.
 *
 * If you're inserting a record for an older transid than an existing record,
 * the transid already in the tree is lowered.
 *
 * If an existing record is found the defrag item you pass in is freed.
 */
static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
				    struct inode_defrag *defrag)
{
	struct btrfs_fs_info *fs_info = inode->root->fs_info;
	struct inode_defrag *entry;
	struct rb_node **p;
	struct rb_node *parent = NULL;
	int ret;

	p = &fs_info->defrag_inodes.rb_node;
	while (*p) {
		parent = *p;
		entry = rb_entry(parent, struct inode_defrag, rb_node);

		ret = __compare_inode_defrag(defrag, entry);
		if (ret < 0)
			p = &parent->rb_left;
		else if (ret > 0)
			p = &parent->rb_right;
		else {
			/*
			 * If we're reinserting an entry for an old defrag run,
			 * make sure to lower the transid of our existing
			 * record.
			 */
			if (defrag->transid < entry->transid)
				entry->transid = defrag->transid;
			entry->extent_thresh = min(defrag->extent_thresh,
						   entry->extent_thresh);
			return -EEXIST;
		}
	}
	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
	rb_link_node(&defrag->rb_node, parent, p);
	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
	return 0;
}

static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
{
	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
		return 0;

	if (btrfs_fs_closing(fs_info))
		return 0;

	return 1;
}

/*
 * Insert a defrag record for this inode if auto defrag is enabled.
 */
int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
			   struct btrfs_inode *inode, u32 extent_thresh)
{
	struct btrfs_root *root = inode->root;
	struct btrfs_fs_info *fs_info = root->fs_info;
	struct inode_defrag *defrag;
	u64 transid;
	int ret;

	if (!__need_auto_defrag(fs_info))
		return 0;

	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
		return 0;

	if (trans)
		transid = trans->transid;
	else
		transid = inode->root->last_trans;

	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
	if (!defrag)
		return -ENOMEM;

	defrag->ino = btrfs_ino(inode);
	defrag->transid = transid;
	defrag->root = root->root_key.objectid;
	defrag->extent_thresh = extent_thresh;

	spin_lock(&fs_info->defrag_inodes_lock);
	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
		/*
		 * If we set IN_DEFRAG flag and evict the inode from memory,
		 * and then re-read this inode, this new inode doesn't have
		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
		 */
		ret = __btrfs_add_inode_defrag(inode, defrag);
		if (ret)
			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
	} else {
		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
	}
	spin_unlock(&fs_info->defrag_inodes_lock);
	return 0;
}

/*
 * Pick the defragable inode that we want, if it doesn't exist, we will get the
 * next one.
 */
static struct inode_defrag *btrfs_pick_defrag_inode(
			struct btrfs_fs_info *fs_info, u64 root, u64 ino)
{
	struct inode_defrag *entry = NULL;
	struct inode_defrag tmp;
	struct rb_node *p;
	struct rb_node *parent = NULL;
	int ret;

	tmp.ino = ino;
	tmp.root = root;

	spin_lock(&fs_info->defrag_inodes_lock);
	p = fs_info->defrag_inodes.rb_node;
	while (p) {
		parent = p;
		entry = rb_entry(parent, struct inode_defrag, rb_node);

		ret = __compare_inode_defrag(&tmp, entry);
		if (ret < 0)
			p = parent->rb_left;
		else if (ret > 0)
			p = parent->rb_right;
		else
			goto out;
	}

	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
		parent = rb_next(parent);
		if (parent)
			entry = rb_entry(parent, struct inode_defrag, rb_node);
		else
			entry = NULL;
	}
out:
	if (entry)
		rb_erase(parent, &fs_info->defrag_inodes);
	spin_unlock(&fs_info->defrag_inodes_lock);
	return entry;
}

void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
{
	struct inode_defrag *defrag;
	struct rb_node *node;

	spin_lock(&fs_info->defrag_inodes_lock);
	node = rb_first(&fs_info->defrag_inodes);
	while (node) {
		rb_erase(node, &fs_info->defrag_inodes);
		defrag = rb_entry(node, struct inode_defrag, rb_node);
		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);

		cond_resched_lock(&fs_info->defrag_inodes_lock);

		node = rb_first(&fs_info->defrag_inodes);
	}
	spin_unlock(&fs_info->defrag_inodes_lock);
}

#define BTRFS_DEFRAG_BATCH	1024

static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
				    struct inode_defrag *defrag)
{
	struct btrfs_root *inode_root;
	struct inode *inode;
	struct btrfs_ioctl_defrag_range_args range;
	int ret = 0;
	u64 cur = 0;

again:
	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
		goto cleanup;
	if (!__need_auto_defrag(fs_info))
		goto cleanup;

	/* Get the inode */
	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
	if (IS_ERR(inode_root)) {
		ret = PTR_ERR(inode_root);
		goto cleanup;
	}

	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
	btrfs_put_root(inode_root);
	if (IS_ERR(inode)) {
		ret = PTR_ERR(inode);
		goto cleanup;
	}

	if (cur >= i_size_read(inode)) {
		iput(inode);
		goto cleanup;
	}

	/* Do a chunk of defrag */
	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
	memset(&range, 0, sizeof(range));
	range.len = (u64)-1;
	range.start = cur;
	range.extent_thresh = defrag->extent_thresh;

	sb_start_write(fs_info->sb);
	ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
				       BTRFS_DEFRAG_BATCH);
	sb_end_write(fs_info->sb);
	iput(inode);

	if (ret < 0)
		goto cleanup;

	cur = max(cur + fs_info->sectorsize, range.start);
	goto again;

cleanup:
	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
	return ret;
}

/*
 * Run through the list of inodes in the FS that need defragging.
 */
int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
{
	struct inode_defrag *defrag;
	u64 first_ino = 0;
	u64 root_objectid = 0;

	atomic_inc(&fs_info->defrag_running);
	while (1) {
		/* Pause the auto defragger. */
		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
			break;

		if (!__need_auto_defrag(fs_info))
			break;

		/* find an inode to defrag */
		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
		if (!defrag) {
			if (root_objectid || first_ino) {
				root_objectid = 0;
				first_ino = 0;
				continue;
			} else {
				break;
			}
		}

		first_ino = defrag->ino + 1;
		root_objectid = defrag->root;

		__btrfs_run_defrag_inode(fs_info, defrag);
	}
	atomic_dec(&fs_info->defrag_running);

	/*
	 * During unmount, we use the transaction_wait queue to wait for the
	 * defragger to stop.
	 */
	wake_up(&fs_info->transaction_wait);
	return 0;
}

/*
 * Defrag all the leaves in a given btree.
 * Read all the leaves and try to get key order to
 * better reflect disk order
 */

int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
			struct btrfs_root *root)
{
	struct btrfs_path *path = NULL;
	struct btrfs_key key;
	int ret = 0;
	int wret;
	int level;
	int next_key_ret = 0;
	u64 last_ret = 0;

	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
		goto out;

	path = btrfs_alloc_path();
	if (!path) {
		ret = -ENOMEM;
		goto out;
	}

	level = btrfs_header_level(root->node);

	if (level == 0)
		goto out;

	if (root->defrag_progress.objectid == 0) {
		struct extent_buffer *root_node;
		u32 nritems;

		root_node = btrfs_lock_root_node(root);
		nritems = btrfs_header_nritems(root_node);
		root->defrag_max.objectid = 0;
		/* from above we know this is not a leaf */
		btrfs_node_key_to_cpu(root_node, &root->defrag_max,
				      nritems - 1);
		btrfs_tree_unlock(root_node);
		free_extent_buffer(root_node);
		memset(&key, 0, sizeof(key));
	} else {
		memcpy(&key, &root->defrag_progress, sizeof(key));
	}

	path->keep_locks = 1;

	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
	if (ret < 0)
		goto out;
	if (ret > 0) {
		ret = 0;
		goto out;
	}
	btrfs_release_path(path);
	/*
	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
	 * a deadlock (attempting to write lock an already write locked leaf).
	 */
	path->lowest_level = 1;
	wret = btrfs_search_slot(trans, root, &key, path, 0, 1);

	if (wret < 0) {
		ret = wret;
		goto out;
	}
	if (!path->nodes[1]) {
		ret = 0;
		goto out;
	}
	/*
	 * The node at level 1 must always be locked when our path has
	 * keep_locks set and lowest_level is 1, regardless of the value of
	 * path->slots[1].
	 */
	BUG_ON(path->locks[1] == 0);
	ret = btrfs_realloc_node(trans, root,
				 path->nodes[1], 0,
				 &last_ret,
				 &root->defrag_progress);
	if (ret) {
		WARN_ON(ret == -EAGAIN);
		goto out;
	}
	/*
	 * Now that we reallocated the node we can find the next key. Note that
	 * btrfs_find_next_key() can release our path and do another search
	 * without COWing, this is because even with path->keep_locks = 1,
	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
	 * node when path->slots[node_level - 1] does not point to the last
	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
	 * we search for the next key after reallocating our node.
	 */
	path->slots[1] = btrfs_header_nritems(path->nodes[1]);
	next_key_ret = btrfs_find_next_key(root, path, &key, 1,
					   BTRFS_OLDEST_GENERATION);
	if (next_key_ret == 0) {
		memcpy(&root->defrag_progress, &key, sizeof(key));
		ret = -EAGAIN;
	}
out:
	btrfs_free_path(path);
	if (ret == -EAGAIN) {
		if (root->defrag_max.objectid > root->defrag_progress.objectid)
			goto done;
		if (root->defrag_max.type > root->defrag_progress.type)
			goto done;
		if (root->defrag_max.offset > root->defrag_progress.offset)
			goto done;
		ret = 0;
	}
done:
	if (ret != -EAGAIN)
		memset(&root->defrag_progress, 0,
		       sizeof(root->defrag_progress));

	return ret;
}

void __cold btrfs_auto_defrag_exit(void)
{
	kmem_cache_destroy(btrfs_inode_defrag_cachep);
}

int __init btrfs_auto_defrag_init(void)
{
	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
					sizeof(struct inode_defrag), 0,
					SLAB_MEM_SPREAD,
					NULL);
	if (!btrfs_inode_defrag_cachep)
		return -ENOMEM;

	return 0;
}