summaryrefslogtreecommitdiffstats
path: root/server/mpm_fdqueue.c
blob: 3697ca722f621ab081acaea7e3927e6a9d9e8359 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
/* Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "mpm_fdqueue.h"

#if APR_HAS_THREADS

#include <apr_atomic.h>

static const apr_uint32_t zero_pt = APR_UINT32_MAX/2;

struct recycled_pool
{
    apr_pool_t *pool;
    struct recycled_pool *next;
};

struct fd_queue_info_t
{
    apr_uint32_t volatile idlers; /**
                                   * >= zero_pt: number of idle worker threads
                                   * <  zero_pt: number of threads blocked,
                                   *             waiting for an idle worker
                                   */
    apr_thread_mutex_t *idlers_mutex;
    apr_thread_cond_t *wait_for_idler;
    int terminated;
    int max_idlers;
    int max_recycled_pools;
    apr_uint32_t recycled_pools_count;
    struct recycled_pool *volatile recycled_pools;
};

struct fd_queue_elem_t
{
    apr_socket_t *sd;
    void *sd_baton;
    apr_pool_t *p;
};

static apr_status_t queue_info_cleanup(void *data_)
{
    fd_queue_info_t *qi = data_;
    apr_thread_cond_destroy(qi->wait_for_idler);
    apr_thread_mutex_destroy(qi->idlers_mutex);

    /* Clean up any pools in the recycled list */
    for (;;) {
        struct recycled_pool *first_pool = qi->recycled_pools;
        if (first_pool == NULL) {
            break;
        }
        if (apr_atomic_casptr((void *)&qi->recycled_pools, first_pool->next,
                              first_pool) == first_pool) {
            apr_pool_destroy(first_pool->pool);
        }
    }

    return APR_SUCCESS;
}

apr_status_t ap_queue_info_create(fd_queue_info_t **queue_info,
                                  apr_pool_t *pool, int max_idlers,
                                  int max_recycled_pools)
{
    apr_status_t rv;
    fd_queue_info_t *qi;

    qi = apr_pcalloc(pool, sizeof(*qi));

    rv = apr_thread_mutex_create(&qi->idlers_mutex, APR_THREAD_MUTEX_DEFAULT,
                                 pool);
    if (rv != APR_SUCCESS) {
        return rv;
    }
    rv = apr_thread_cond_create(&qi->wait_for_idler, pool);
    if (rv != APR_SUCCESS) {
        return rv;
    }
    qi->recycled_pools = NULL;
    qi->max_recycled_pools = max_recycled_pools;
    qi->max_idlers = max_idlers;
    qi->idlers = zero_pt;
    apr_pool_cleanup_register(pool, qi, queue_info_cleanup,
                              apr_pool_cleanup_null);

    *queue_info = qi;

    return APR_SUCCESS;
}

apr_status_t ap_queue_info_set_idle(fd_queue_info_t *queue_info,
                                    apr_pool_t *pool_to_recycle)
{
    apr_status_t rv;

    ap_queue_info_push_pool(queue_info, pool_to_recycle);

    /* If other threads are waiting on a worker, wake one up */
    if (apr_atomic_inc32(&queue_info->idlers) < zero_pt) {
        rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
        if (rv != APR_SUCCESS) {
            AP_DEBUG_ASSERT(0);
            return rv;
        }
        rv = apr_thread_cond_signal(queue_info->wait_for_idler);
        if (rv != APR_SUCCESS) {
            apr_thread_mutex_unlock(queue_info->idlers_mutex);
            return rv;
        }
        rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
        if (rv != APR_SUCCESS) {
            return rv;
        }
    }

    return APR_SUCCESS;
}

apr_status_t ap_queue_info_try_get_idler(fd_queue_info_t *queue_info)
{
    /* Don't block if there isn't any idle worker. */
    for (;;) {
        apr_uint32_t idlers = queue_info->idlers;
        if (idlers <= zero_pt) {
            return APR_EAGAIN;
        }
        if (apr_atomic_cas32(&queue_info->idlers, idlers - 1,
                             idlers) == idlers) {
            return APR_SUCCESS;
        }
    }
}

apr_status_t ap_queue_info_wait_for_idler(fd_queue_info_t *queue_info,
                                          int *had_to_block)
{
    apr_status_t rv;

    /* Block if there isn't any idle worker.
     * apr_atomic_add32(x, -1) does the same as dec32(x), except
     * that it returns the previous value (unlike dec32's bool).
     */
    if (apr_atomic_add32(&queue_info->idlers, -1) <= zero_pt) {
        rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
        if (rv != APR_SUCCESS) {
            AP_DEBUG_ASSERT(0);
            apr_atomic_inc32(&(queue_info->idlers));    /* back out dec */
            return rv;
        }
        /* Re-check the idle worker count to guard against a
         * race condition.  Now that we're in the mutex-protected
         * region, one of two things may have happened:
         *   - If the idle worker count is still negative, the
         *     workers are all still busy, so it's safe to
         *     block on a condition variable.
         *   - If the idle worker count is non-negative, then a
         *     worker has become idle since the first check
         *     of queue_info->idlers above.  It's possible
         *     that the worker has also signaled the condition
         *     variable--and if so, the listener missed it
         *     because it wasn't yet blocked on the condition
         *     variable.  But if the idle worker count is
         *     now non-negative, it's safe for this function to
         *     return immediately.
         *
         *     A "negative value" (relative to zero_pt) in
         *     queue_info->idlers tells how many
         *     threads are waiting on an idle worker.
         */
        if (queue_info->idlers < zero_pt) {
            if (had_to_block) {
                *had_to_block = 1;
            }
            rv = apr_thread_cond_wait(queue_info->wait_for_idler,
                                      queue_info->idlers_mutex);
            if (rv != APR_SUCCESS) {
                AP_DEBUG_ASSERT(0);
                apr_thread_mutex_unlock(queue_info->idlers_mutex);
                return rv;
            }
        }
        rv = apr_thread_mutex_unlock(queue_info->idlers_mutex);
        if (rv != APR_SUCCESS) {
            return rv;
        }
    }

    if (queue_info->terminated) {
        return APR_EOF;
    }
    else {
        return APR_SUCCESS;
    }
}

apr_uint32_t ap_queue_info_num_idlers(fd_queue_info_t *queue_info)
{
    apr_uint32_t val;
    val = apr_atomic_read32(&queue_info->idlers);
    return (val > zero_pt) ? val - zero_pt : 0;
}

void ap_queue_info_push_pool(fd_queue_info_t *queue_info,
                             apr_pool_t *pool_to_recycle)
{
    struct recycled_pool *new_recycle;
    /* If we have been given a pool to recycle, atomically link
     * it into the queue_info's list of recycled pools
     */
    if (!pool_to_recycle)
        return;

    if (queue_info->max_recycled_pools >= 0) {
        apr_uint32_t n = apr_atomic_read32(&queue_info->recycled_pools_count);
        if (n >= queue_info->max_recycled_pools) {
            apr_pool_destroy(pool_to_recycle);
            return;
        }
        apr_atomic_inc32(&queue_info->recycled_pools_count);
    }

    apr_pool_clear(pool_to_recycle);
    new_recycle = apr_palloc(pool_to_recycle, sizeof *new_recycle);
    new_recycle->pool = pool_to_recycle;
    for (;;) {
        /*
         * Save queue_info->recycled_pool in local variable next because
         * new_recycle->next can be changed after apr_atomic_casptr
         * function call. For gory details see PR 44402.
         */
        struct recycled_pool *next = queue_info->recycled_pools;
        new_recycle->next = next;
        if (apr_atomic_casptr((void *)&queue_info->recycled_pools,
                              new_recycle, next) == next)
            break;
    }
}

void ap_queue_info_pop_pool(fd_queue_info_t *queue_info,
                            apr_pool_t **recycled_pool)
{
    /* Atomically pop a pool from the recycled list */

    /* This function is safe only as long as it is single threaded because
     * it reaches into the queue and accesses "next" which can change.
     * We are OK today because it is only called from the listener thread.
     * cas-based pushes do not have the same limitation - any number can
     * happen concurrently with a single cas-based pop.
     */

    *recycled_pool = NULL;


    /* Atomically pop a pool from the recycled list */
    for (;;) {
        struct recycled_pool *first_pool = queue_info->recycled_pools;
        if (first_pool == NULL) {
            break;
        }
        if (apr_atomic_casptr((void *)&queue_info->recycled_pools,
                              first_pool->next, first_pool) == first_pool) {
            *recycled_pool = first_pool->pool;
            if (queue_info->max_recycled_pools >= 0)
                apr_atomic_dec32(&queue_info->recycled_pools_count);
            break;
        }
    }
}

void ap_queue_info_free_idle_pools(fd_queue_info_t *queue_info)
{
    apr_pool_t *p;

    queue_info->max_recycled_pools = 0;
    for (;;) {
        ap_queue_info_pop_pool(queue_info, &p);
        if (p == NULL)
            break;
        apr_pool_destroy(p);
    }
    apr_atomic_set32(&queue_info->recycled_pools_count, 0);
}


apr_status_t ap_queue_info_term(fd_queue_info_t *queue_info)
{
    apr_status_t rv;

    rv = apr_thread_mutex_lock(queue_info->idlers_mutex);
    if (rv != APR_SUCCESS) {
        return rv;
    }

    queue_info->terminated = 1;
    apr_thread_cond_broadcast(queue_info->wait_for_idler);

    return apr_thread_mutex_unlock(queue_info->idlers_mutex);
}

/**
 * Detects when the fd_queue_t is full. This utility function is expected
 * to be called from within critical sections, and is not threadsafe.
 */
#define ap_queue_full(queue) ((queue)->nelts == (queue)->bounds)

/**
 * Detects when the fd_queue_t is empty. This utility function is expected
 * to be called from within critical sections, and is not threadsafe.
 */
#define ap_queue_empty(queue) ((queue)->nelts == 0 && \
                               APR_RING_EMPTY(&queue->timers, \
                                              timer_event_t, link))

/**
 * Callback routine that is called to destroy this
 * fd_queue_t when its pool is destroyed.
 */
static apr_status_t ap_queue_destroy(void *data)
{
    fd_queue_t *queue = data;

    /* Ignore errors here, we can't do anything about them anyway.
     * XXX: We should at least try to signal an error here, it is
     * indicative of a programmer error. -aaron */
    apr_thread_cond_destroy(queue->not_empty);
    apr_thread_mutex_destroy(queue->one_big_mutex);

    return APR_SUCCESS;
}

/**
 * Initialize the fd_queue_t.
 */
apr_status_t ap_queue_create(fd_queue_t **pqueue, int capacity, apr_pool_t *p)
{
    apr_status_t rv;
    fd_queue_t *queue;

    queue = apr_pcalloc(p, sizeof *queue);

    if ((rv = apr_thread_mutex_create(&queue->one_big_mutex,
                                      APR_THREAD_MUTEX_DEFAULT,
                                      p)) != APR_SUCCESS) {
        return rv;
    }
    if ((rv = apr_thread_cond_create(&queue->not_empty, p)) != APR_SUCCESS) {
        return rv;
    }

    APR_RING_INIT(&queue->timers, timer_event_t, link);

    queue->data = apr_pcalloc(p, capacity * sizeof(fd_queue_elem_t));
    queue->bounds = capacity;

    apr_pool_cleanup_register(p, queue, ap_queue_destroy,
                              apr_pool_cleanup_null);
    *pqueue = queue;

    return APR_SUCCESS;
}

/**
 * Push a new socket onto the queue.
 *
 * precondition: ap_queue_info_wait_for_idler has already been called
 *               to reserve an idle worker thread
 */
apr_status_t ap_queue_push_socket(fd_queue_t *queue,
                                  apr_socket_t *sd, void *sd_baton,
                                  apr_pool_t *p)
{
    fd_queue_elem_t *elem;
    apr_status_t rv;

    if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
        return rv;
    }

    AP_DEBUG_ASSERT(!queue->terminated);
    AP_DEBUG_ASSERT(!ap_queue_full(queue));

    elem = &queue->data[queue->in++];
    if (queue->in >= queue->bounds)
        queue->in -= queue->bounds;
    elem->sd = sd;
    elem->sd_baton = sd_baton;
    elem->p = p;
    queue->nelts++;

    apr_thread_cond_signal(queue->not_empty);

    return apr_thread_mutex_unlock(queue->one_big_mutex);
}

apr_status_t ap_queue_push_timer(fd_queue_t *queue, timer_event_t *te)
{
    apr_status_t rv;

    if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
        return rv;
    }

    AP_DEBUG_ASSERT(!queue->terminated);

    APR_RING_INSERT_TAIL(&queue->timers, te, timer_event_t, link);

    apr_thread_cond_signal(queue->not_empty);

    return apr_thread_mutex_unlock(queue->one_big_mutex);
}

/**
 * Retrieves the next available socket from the queue. If there are no
 * sockets available, it will block until one becomes available.
 * Once retrieved, the socket is placed into the address specified by
 * 'sd'.
 */
apr_status_t ap_queue_pop_something(fd_queue_t *queue,
                                    apr_socket_t **sd, void **sd_baton,
                                    apr_pool_t **p, timer_event_t **te_out)
{
    fd_queue_elem_t *elem;
    timer_event_t *te;
    apr_status_t rv;

    if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
        return rv;
    }

    /* Keep waiting until we wake up and find that the queue is not empty. */
    if (ap_queue_empty(queue)) {
        if (!queue->terminated) {
            apr_thread_cond_wait(queue->not_empty, queue->one_big_mutex);
        }
        /* If we wake up and it's still empty, then we were interrupted */
        if (ap_queue_empty(queue)) {
            rv = apr_thread_mutex_unlock(queue->one_big_mutex);
            if (rv != APR_SUCCESS) {
                return rv;
            }
            if (queue->terminated) {
                return APR_EOF; /* no more elements ever again */
            }
            else {
                return APR_EINTR;
            }
        }
    }

    te = NULL;
    if (te_out) {
        if (!APR_RING_EMPTY(&queue->timers, timer_event_t, link)) {
            te = APR_RING_FIRST(&queue->timers);
            APR_RING_REMOVE(te, link);
        }
        *te_out = te;
    }
    if (!te) {
        elem = &queue->data[queue->out++];
        if (queue->out >= queue->bounds)
            queue->out -= queue->bounds;
        queue->nelts--;

        *sd = elem->sd;
        if (sd_baton) {
            *sd_baton = elem->sd_baton;
        }
        *p = elem->p;
#ifdef AP_DEBUG
        elem->sd = NULL;
        elem->p = NULL;
#endif /* AP_DEBUG */
    }

    return apr_thread_mutex_unlock(queue->one_big_mutex);
}

static apr_status_t queue_interrupt(fd_queue_t *queue, int all, int term)
{
    apr_status_t rv;

    if (queue->terminated) {
        return APR_EOF;
    }

    if ((rv = apr_thread_mutex_lock(queue->one_big_mutex)) != APR_SUCCESS) {
        return rv;
    }

    /* we must hold one_big_mutex when setting this... otherwise,
     * we could end up setting it and waking everybody up just after a
     * would-be popper checks it but right before they block
     */
    if (term) {
        queue->terminated = 1;
    }
    if (all)
        apr_thread_cond_broadcast(queue->not_empty);
    else
        apr_thread_cond_signal(queue->not_empty);

    return apr_thread_mutex_unlock(queue->one_big_mutex);
}

apr_status_t ap_queue_interrupt_all(fd_queue_t *queue)
{
    return queue_interrupt(queue, 1, 0);
}

apr_status_t ap_queue_interrupt_one(fd_queue_t *queue)
{
    return queue_interrupt(queue, 0, 0);
}

apr_status_t ap_queue_term(fd_queue_t *queue)
{
    return queue_interrupt(queue, 1, 1);
}

#endif /* APR_HAS_THREADS */