summaryrefslogtreecommitdiffstats
path: root/src/seastar/dpdk/drivers/net/ice/ice_rxtx.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
commit19fcec84d8d7d21e796c7624e521b60d28ee21ed (patch)
tree42d26aa27d1e3f7c0b8bd3fd14e7d7082f5008dc /src/seastar/dpdk/drivers/net/ice/ice_rxtx.c
parentInitial commit. (diff)
downloadceph-19fcec84d8d7d21e796c7624e521b60d28ee21ed.tar.xz
ceph-19fcec84d8d7d21e796c7624e521b60d28ee21ed.zip
Adding upstream version 16.2.11+ds.upstream/16.2.11+dsupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/seastar/dpdk/drivers/net/ice/ice_rxtx.c')
-rw-r--r--src/seastar/dpdk/drivers/net/ice/ice_rxtx.c2984
1 files changed, 2984 insertions, 0 deletions
diff --git a/src/seastar/dpdk/drivers/net/ice/ice_rxtx.c b/src/seastar/dpdk/drivers/net/ice/ice_rxtx.c
new file mode 100644
index 000000000..ace766b1d
--- /dev/null
+++ b/src/seastar/dpdk/drivers/net/ice/ice_rxtx.c
@@ -0,0 +1,2984 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2018 Intel Corporation
+ */
+
+#include <rte_ethdev_driver.h>
+#include <rte_net.h>
+
+#include "ice_rxtx.h"
+
+#define ICE_TX_CKSUM_OFFLOAD_MASK ( \
+ PKT_TX_IP_CKSUM | \
+ PKT_TX_L4_MASK | \
+ PKT_TX_TCP_SEG | \
+ PKT_TX_OUTER_IP_CKSUM)
+
+#define ICE_RX_ERR_BITS 0x3f
+
+static enum ice_status
+ice_program_hw_rx_queue(struct ice_rx_queue *rxq)
+{
+ struct ice_vsi *vsi = rxq->vsi;
+ struct ice_hw *hw = ICE_VSI_TO_HW(vsi);
+ struct rte_eth_dev *dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
+ struct ice_rlan_ctx rx_ctx;
+ enum ice_status err;
+ uint16_t buf_size, len;
+ struct rte_eth_rxmode *rxmode = &dev->data->dev_conf.rxmode;
+ uint32_t regval;
+
+ /**
+ * The kernel driver uses flex descriptor. It sets the register
+ * to flex descriptor mode.
+ * DPDK uses legacy descriptor. It should set the register back
+ * to the default value, then uses legacy descriptor mode.
+ */
+ regval = (0x01 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
+ QRXFLXP_CNTXT_RXDID_PRIO_M;
+ ICE_WRITE_REG(hw, QRXFLXP_CNTXT(rxq->reg_idx), regval);
+
+ /* Set buffer size as the head split is disabled. */
+ buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
+ RTE_PKTMBUF_HEADROOM);
+ rxq->rx_hdr_len = 0;
+ rxq->rx_buf_len = RTE_ALIGN(buf_size, (1 << ICE_RLAN_CTX_DBUF_S));
+ len = ICE_SUPPORT_CHAIN_NUM * rxq->rx_buf_len;
+ rxq->max_pkt_len = RTE_MIN(len,
+ dev->data->dev_conf.rxmode.max_rx_pkt_len);
+
+ if (rxmode->offloads & DEV_RX_OFFLOAD_JUMBO_FRAME) {
+ if (rxq->max_pkt_len <= ETHER_MAX_LEN ||
+ rxq->max_pkt_len > ICE_FRAME_SIZE_MAX) {
+ PMD_DRV_LOG(ERR, "maximum packet length must "
+ "be larger than %u and smaller than %u,"
+ "as jumbo frame is enabled",
+ (uint32_t)ETHER_MAX_LEN,
+ (uint32_t)ICE_FRAME_SIZE_MAX);
+ return -EINVAL;
+ }
+ } else {
+ if (rxq->max_pkt_len < ETHER_MIN_LEN ||
+ rxq->max_pkt_len > ETHER_MAX_LEN) {
+ PMD_DRV_LOG(ERR, "maximum packet length must be "
+ "larger than %u and smaller than %u, "
+ "as jumbo frame is disabled",
+ (uint32_t)ETHER_MIN_LEN,
+ (uint32_t)ETHER_MAX_LEN);
+ return -EINVAL;
+ }
+ }
+
+ memset(&rx_ctx, 0, sizeof(rx_ctx));
+
+ rx_ctx.base = rxq->rx_ring_phys_addr / ICE_QUEUE_BASE_ADDR_UNIT;
+ rx_ctx.qlen = rxq->nb_rx_desc;
+ rx_ctx.dbuf = rxq->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
+ rx_ctx.hbuf = rxq->rx_hdr_len >> ICE_RLAN_CTX_HBUF_S;
+ rx_ctx.dtype = 0; /* No Header Split mode */
+#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
+ rx_ctx.dsize = 1; /* 32B descriptors */
+#endif
+ rx_ctx.rxmax = rxq->max_pkt_len;
+ /* TPH: Transaction Layer Packet (TLP) processing hints */
+ rx_ctx.tphrdesc_ena = 1;
+ rx_ctx.tphwdesc_ena = 1;
+ rx_ctx.tphdata_ena = 1;
+ rx_ctx.tphhead_ena = 1;
+ /* Low Receive Queue Threshold defined in 64 descriptors units.
+ * When the number of free descriptors goes below the lrxqthresh,
+ * an immediate interrupt is triggered.
+ */
+ rx_ctx.lrxqthresh = 2;
+ /*default use 32 byte descriptor, vlan tag extract to L2TAG2(1st)*/
+ rx_ctx.l2tsel = 1;
+ rx_ctx.showiv = 0;
+ rx_ctx.crcstrip = (rxq->crc_len == 0) ? 1 : 0;
+
+ err = ice_clear_rxq_ctx(hw, rxq->reg_idx);
+ if (err) {
+ PMD_DRV_LOG(ERR, "Failed to clear Lan Rx queue (%u) context",
+ rxq->queue_id);
+ return -EINVAL;
+ }
+ err = ice_write_rxq_ctx(hw, &rx_ctx, rxq->reg_idx);
+ if (err) {
+ PMD_DRV_LOG(ERR, "Failed to write Lan Rx queue (%u) context",
+ rxq->queue_id);
+ return -EINVAL;
+ }
+
+ buf_size = (uint16_t)(rte_pktmbuf_data_room_size(rxq->mp) -
+ RTE_PKTMBUF_HEADROOM);
+
+ /* Check if scattered RX needs to be used. */
+ if (rxq->max_pkt_len > buf_size)
+ dev->data->scattered_rx = 1;
+
+ rxq->qrx_tail = hw->hw_addr + QRX_TAIL(rxq->reg_idx);
+
+ /* Init the Rx tail register*/
+ ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
+
+ return 0;
+}
+
+/* Allocate mbufs for all descriptors in rx queue */
+static int
+ice_alloc_rx_queue_mbufs(struct ice_rx_queue *rxq)
+{
+ struct ice_rx_entry *rxe = rxq->sw_ring;
+ uint64_t dma_addr;
+ uint16_t i;
+
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ volatile union ice_rx_desc *rxd;
+ struct rte_mbuf *mbuf = rte_mbuf_raw_alloc(rxq->mp);
+
+ if (unlikely(!mbuf)) {
+ PMD_DRV_LOG(ERR, "Failed to allocate mbuf for RX");
+ return -ENOMEM;
+ }
+
+ rte_mbuf_refcnt_set(mbuf, 1);
+ mbuf->next = NULL;
+ mbuf->data_off = RTE_PKTMBUF_HEADROOM;
+ mbuf->nb_segs = 1;
+ mbuf->port = rxq->port_id;
+
+ dma_addr =
+ rte_cpu_to_le_64(rte_mbuf_data_iova_default(mbuf));
+
+ rxd = &rxq->rx_ring[i];
+ rxd->read.pkt_addr = dma_addr;
+ rxd->read.hdr_addr = 0;
+#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
+ rxd->read.rsvd1 = 0;
+ rxd->read.rsvd2 = 0;
+#endif
+ rxe[i].mbuf = mbuf;
+ }
+
+ return 0;
+}
+
+/* Free all mbufs for descriptors in rx queue */
+static void
+_ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
+{
+ uint16_t i;
+
+ if (!rxq || !rxq->sw_ring) {
+ PMD_DRV_LOG(DEBUG, "Pointer to sw_ring is NULL");
+ return;
+ }
+
+ for (i = 0; i < rxq->nb_rx_desc; i++) {
+ if (rxq->sw_ring[i].mbuf) {
+ rte_pktmbuf_free_seg(rxq->sw_ring[i].mbuf);
+ rxq->sw_ring[i].mbuf = NULL;
+ }
+ }
+#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
+ if (rxq->rx_nb_avail == 0)
+ return;
+ for (i = 0; i < rxq->rx_nb_avail; i++) {
+ struct rte_mbuf *mbuf;
+
+ mbuf = rxq->rx_stage[rxq->rx_next_avail + i];
+ rte_pktmbuf_free_seg(mbuf);
+ }
+ rxq->rx_nb_avail = 0;
+#endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
+}
+
+static void
+ice_rx_queue_release_mbufs(struct ice_rx_queue *rxq)
+{
+ rxq->rx_rel_mbufs(rxq);
+}
+
+/* turn on or off rx queue
+ * @q_idx: queue index in pf scope
+ * @on: turn on or off the queue
+ */
+static int
+ice_switch_rx_queue(struct ice_hw *hw, uint16_t q_idx, bool on)
+{
+ uint32_t reg;
+ uint16_t j;
+
+ /* QRX_CTRL = QRX_ENA */
+ reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
+
+ if (on) {
+ if (reg & QRX_CTRL_QENA_STAT_M)
+ return 0; /* Already on, skip */
+ reg |= QRX_CTRL_QENA_REQ_M;
+ } else {
+ if (!(reg & QRX_CTRL_QENA_STAT_M))
+ return 0; /* Already off, skip */
+ reg &= ~QRX_CTRL_QENA_REQ_M;
+ }
+
+ /* Write the register */
+ ICE_WRITE_REG(hw, QRX_CTRL(q_idx), reg);
+ /* Check the result. It is said that QENA_STAT
+ * follows the QENA_REQ not more than 10 use.
+ * TODO: need to change the wait counter later
+ */
+ for (j = 0; j < ICE_CHK_Q_ENA_COUNT; j++) {
+ rte_delay_us(ICE_CHK_Q_ENA_INTERVAL_US);
+ reg = ICE_READ_REG(hw, QRX_CTRL(q_idx));
+ if (on) {
+ if ((reg & QRX_CTRL_QENA_REQ_M) &&
+ (reg & QRX_CTRL_QENA_STAT_M))
+ break;
+ } else {
+ if (!(reg & QRX_CTRL_QENA_REQ_M) &&
+ !(reg & QRX_CTRL_QENA_STAT_M))
+ break;
+ }
+ }
+
+ /* Check if it is timeout */
+ if (j >= ICE_CHK_Q_ENA_COUNT) {
+ PMD_DRV_LOG(ERR, "Failed to %s rx queue[%u]",
+ (on ? "enable" : "disable"), q_idx);
+ return -ETIMEDOUT;
+ }
+
+ return 0;
+}
+
+static inline int
+#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
+ice_check_rx_burst_bulk_alloc_preconditions(struct ice_rx_queue *rxq)
+#else
+ice_check_rx_burst_bulk_alloc_preconditions
+ (__rte_unused struct ice_rx_queue *rxq)
+#endif
+{
+ int ret = 0;
+
+#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
+ if (!(rxq->rx_free_thresh >= ICE_RX_MAX_BURST)) {
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
+ "rxq->rx_free_thresh=%d, "
+ "ICE_RX_MAX_BURST=%d",
+ rxq->rx_free_thresh, ICE_RX_MAX_BURST);
+ ret = -EINVAL;
+ } else if (!(rxq->rx_free_thresh < rxq->nb_rx_desc)) {
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
+ "rxq->rx_free_thresh=%d, "
+ "rxq->nb_rx_desc=%d",
+ rxq->rx_free_thresh, rxq->nb_rx_desc);
+ ret = -EINVAL;
+ } else if (rxq->nb_rx_desc % rxq->rx_free_thresh != 0) {
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions: "
+ "rxq->nb_rx_desc=%d, "
+ "rxq->rx_free_thresh=%d",
+ rxq->nb_rx_desc, rxq->rx_free_thresh);
+ ret = -EINVAL;
+ }
+#else
+ ret = -EINVAL;
+#endif
+
+ return ret;
+}
+
+/* reset fields in ice_rx_queue back to default */
+static void
+ice_reset_rx_queue(struct ice_rx_queue *rxq)
+{
+ unsigned int i;
+ uint16_t len;
+
+ if (!rxq) {
+ PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
+ return;
+ }
+
+#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
+ if (ice_check_rx_burst_bulk_alloc_preconditions(rxq) == 0)
+ len = (uint16_t)(rxq->nb_rx_desc + ICE_RX_MAX_BURST);
+ else
+#endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
+ len = rxq->nb_rx_desc;
+
+ for (i = 0; i < len * sizeof(union ice_rx_desc); i++)
+ ((volatile char *)rxq->rx_ring)[i] = 0;
+
+#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
+ memset(&rxq->fake_mbuf, 0x0, sizeof(rxq->fake_mbuf));
+ for (i = 0; i < ICE_RX_MAX_BURST; ++i)
+ rxq->sw_ring[rxq->nb_rx_desc + i].mbuf = &rxq->fake_mbuf;
+
+ rxq->rx_nb_avail = 0;
+ rxq->rx_next_avail = 0;
+ rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
+#endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
+
+ rxq->rx_tail = 0;
+ rxq->nb_rx_hold = 0;
+ rxq->pkt_first_seg = NULL;
+ rxq->pkt_last_seg = NULL;
+
+ rxq->rxrearm_start = 0;
+ rxq->rxrearm_nb = 0;
+}
+
+int
+ice_rx_queue_start(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+ struct ice_rx_queue *rxq;
+ int err;
+ struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ PMD_INIT_FUNC_TRACE();
+
+ if (rx_queue_id >= dev->data->nb_rx_queues) {
+ PMD_DRV_LOG(ERR, "RX queue %u is out of range %u",
+ rx_queue_id, dev->data->nb_rx_queues);
+ return -EINVAL;
+ }
+
+ rxq = dev->data->rx_queues[rx_queue_id];
+ if (!rxq || !rxq->q_set) {
+ PMD_DRV_LOG(ERR, "RX queue %u not available or setup",
+ rx_queue_id);
+ return -EINVAL;
+ }
+
+ err = ice_program_hw_rx_queue(rxq);
+ if (err) {
+ PMD_DRV_LOG(ERR, "fail to program RX queue %u",
+ rx_queue_id);
+ return -EIO;
+ }
+
+ err = ice_alloc_rx_queue_mbufs(rxq);
+ if (err) {
+ PMD_DRV_LOG(ERR, "Failed to allocate RX queue mbuf");
+ return -ENOMEM;
+ }
+
+ rte_wmb();
+
+ /* Init the RX tail register. */
+ ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->nb_rx_desc - 1);
+
+ err = ice_switch_rx_queue(hw, rxq->reg_idx, TRUE);
+ if (err) {
+ PMD_DRV_LOG(ERR, "Failed to switch RX queue %u on",
+ rx_queue_id);
+
+ ice_rx_queue_release_mbufs(rxq);
+ ice_reset_rx_queue(rxq);
+ return -EINVAL;
+ }
+
+ dev->data->rx_queue_state[rx_queue_id] =
+ RTE_ETH_QUEUE_STATE_STARTED;
+
+ return 0;
+}
+
+int
+ice_rx_queue_stop(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+ struct ice_rx_queue *rxq;
+ int err;
+ struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+
+ if (rx_queue_id < dev->data->nb_rx_queues) {
+ rxq = dev->data->rx_queues[rx_queue_id];
+
+ err = ice_switch_rx_queue(hw, rxq->reg_idx, FALSE);
+ if (err) {
+ PMD_DRV_LOG(ERR, "Failed to switch RX queue %u off",
+ rx_queue_id);
+ return -EINVAL;
+ }
+ ice_rx_queue_release_mbufs(rxq);
+ ice_reset_rx_queue(rxq);
+ dev->data->rx_queue_state[rx_queue_id] =
+ RTE_ETH_QUEUE_STATE_STOPPED;
+ }
+
+ return 0;
+}
+
+int
+ice_tx_queue_start(struct rte_eth_dev *dev, uint16_t tx_queue_id)
+{
+ struct ice_tx_queue *txq;
+ int err;
+ struct ice_vsi *vsi;
+ struct ice_hw *hw;
+ struct ice_aqc_add_tx_qgrp txq_elem;
+ struct ice_tlan_ctx tx_ctx;
+
+ PMD_INIT_FUNC_TRACE();
+
+ if (tx_queue_id >= dev->data->nb_tx_queues) {
+ PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
+ tx_queue_id, dev->data->nb_tx_queues);
+ return -EINVAL;
+ }
+
+ txq = dev->data->tx_queues[tx_queue_id];
+ if (!txq || !txq->q_set) {
+ PMD_DRV_LOG(ERR, "TX queue %u is not available or setup",
+ tx_queue_id);
+ return -EINVAL;
+ }
+
+ vsi = txq->vsi;
+ hw = ICE_VSI_TO_HW(vsi);
+
+ memset(&txq_elem, 0, sizeof(txq_elem));
+ memset(&tx_ctx, 0, sizeof(tx_ctx));
+ txq_elem.num_txqs = 1;
+ txq_elem.txqs[0].txq_id = rte_cpu_to_le_16(txq->reg_idx);
+
+ tx_ctx.base = txq->tx_ring_phys_addr / ICE_QUEUE_BASE_ADDR_UNIT;
+ tx_ctx.qlen = txq->nb_tx_desc;
+ tx_ctx.pf_num = hw->pf_id;
+ tx_ctx.vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
+ tx_ctx.src_vsi = vsi->vsi_id;
+ tx_ctx.port_num = hw->port_info->lport;
+ tx_ctx.tso_ena = 1; /* tso enable */
+ tx_ctx.tso_qnum = txq->reg_idx; /* index for tso state structure */
+ tx_ctx.legacy_int = 1; /* Legacy or Advanced Host Interface */
+
+ ice_set_ctx((uint8_t *)&tx_ctx, txq_elem.txqs[0].txq_ctx,
+ ice_tlan_ctx_info);
+
+ txq->qtx_tail = hw->hw_addr + QTX_COMM_DBELL(txq->reg_idx);
+
+ /* Init the Tx tail register*/
+ ICE_PCI_REG_WRITE(txq->qtx_tail, 0);
+
+ /* Fix me, we assume TC always 0 here */
+ err = ice_ena_vsi_txq(hw->port_info, vsi->idx, 0, tx_queue_id, 1,
+ &txq_elem, sizeof(txq_elem), NULL);
+ if (err) {
+ PMD_DRV_LOG(ERR, "Failed to add lan txq");
+ return -EIO;
+ }
+ /* store the schedule node id */
+ txq->q_teid = txq_elem.txqs[0].q_teid;
+
+ dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STARTED;
+ return 0;
+}
+
+/* Free all mbufs for descriptors in tx queue */
+static void
+_ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
+{
+ uint16_t i;
+
+ if (!txq || !txq->sw_ring) {
+ PMD_DRV_LOG(DEBUG, "Pointer to txq or sw_ring is NULL");
+ return;
+ }
+
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ if (txq->sw_ring[i].mbuf) {
+ rte_pktmbuf_free_seg(txq->sw_ring[i].mbuf);
+ txq->sw_ring[i].mbuf = NULL;
+ }
+ }
+}
+static void
+ice_tx_queue_release_mbufs(struct ice_tx_queue *txq)
+{
+ txq->tx_rel_mbufs(txq);
+}
+
+static void
+ice_reset_tx_queue(struct ice_tx_queue *txq)
+{
+ struct ice_tx_entry *txe;
+ uint16_t i, prev, size;
+
+ if (!txq) {
+ PMD_DRV_LOG(DEBUG, "Pointer to txq is NULL");
+ return;
+ }
+
+ txe = txq->sw_ring;
+ size = sizeof(struct ice_tx_desc) * txq->nb_tx_desc;
+ for (i = 0; i < size; i++)
+ ((volatile char *)txq->tx_ring)[i] = 0;
+
+ prev = (uint16_t)(txq->nb_tx_desc - 1);
+ for (i = 0; i < txq->nb_tx_desc; i++) {
+ volatile struct ice_tx_desc *txd = &txq->tx_ring[i];
+
+ txd->cmd_type_offset_bsz =
+ rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE);
+ txe[i].mbuf = NULL;
+ txe[i].last_id = i;
+ txe[prev].next_id = i;
+ prev = i;
+ }
+
+ txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
+ txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+
+ txq->tx_tail = 0;
+ txq->nb_tx_used = 0;
+
+ txq->last_desc_cleaned = (uint16_t)(txq->nb_tx_desc - 1);
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_desc - 1);
+}
+
+int
+ice_tx_queue_stop(struct rte_eth_dev *dev, uint16_t tx_queue_id)
+{
+ struct ice_tx_queue *txq;
+ struct ice_hw *hw = ICE_DEV_PRIVATE_TO_HW(dev->data->dev_private);
+ struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
+ struct ice_vsi *vsi = pf->main_vsi;
+ enum ice_status status;
+ uint16_t q_ids[1];
+ uint32_t q_teids[1];
+ uint16_t q_handle = tx_queue_id;
+
+ if (tx_queue_id >= dev->data->nb_tx_queues) {
+ PMD_DRV_LOG(ERR, "TX queue %u is out of range %u",
+ tx_queue_id, dev->data->nb_tx_queues);
+ return -EINVAL;
+ }
+
+ txq = dev->data->tx_queues[tx_queue_id];
+ if (!txq) {
+ PMD_DRV_LOG(ERR, "TX queue %u is not available",
+ tx_queue_id);
+ return -EINVAL;
+ }
+
+ q_ids[0] = txq->reg_idx;
+ q_teids[0] = txq->q_teid;
+
+ /* Fix me, we assume TC always 0 here */
+ status = ice_dis_vsi_txq(hw->port_info, vsi->idx, 0, 1, &q_handle,
+ q_ids, q_teids, ICE_NO_RESET, 0, NULL);
+ if (status != ICE_SUCCESS) {
+ PMD_DRV_LOG(DEBUG, "Failed to disable Lan Tx queue");
+ return -EINVAL;
+ }
+
+ ice_tx_queue_release_mbufs(txq);
+ ice_reset_tx_queue(txq);
+ dev->data->tx_queue_state[tx_queue_id] = RTE_ETH_QUEUE_STATE_STOPPED;
+
+ return 0;
+}
+
+int
+ice_rx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_rxconf *rx_conf,
+ struct rte_mempool *mp)
+{
+ struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
+ struct ice_adapter *ad =
+ ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+ struct ice_vsi *vsi = pf->main_vsi;
+ struct ice_rx_queue *rxq;
+ const struct rte_memzone *rz;
+ uint32_t ring_size;
+ uint16_t len;
+ int use_def_burst_func = 1;
+
+ if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
+ nb_desc > ICE_MAX_RING_DESC ||
+ nb_desc < ICE_MIN_RING_DESC) {
+ PMD_INIT_LOG(ERR, "Number (%u) of receive descriptors is "
+ "invalid", nb_desc);
+ return -EINVAL;
+ }
+
+ /* Free memory if needed */
+ if (dev->data->rx_queues[queue_idx]) {
+ ice_rx_queue_release(dev->data->rx_queues[queue_idx]);
+ dev->data->rx_queues[queue_idx] = NULL;
+ }
+
+ /* Allocate the rx queue data structure */
+ rxq = rte_zmalloc_socket(NULL,
+ sizeof(struct ice_rx_queue),
+ RTE_CACHE_LINE_SIZE,
+ socket_id);
+ if (!rxq) {
+ PMD_INIT_LOG(ERR, "Failed to allocate memory for "
+ "rx queue data structure");
+ return -ENOMEM;
+ }
+ rxq->mp = mp;
+ rxq->nb_rx_desc = nb_desc;
+ rxq->rx_free_thresh = rx_conf->rx_free_thresh;
+ rxq->queue_id = queue_idx;
+
+ rxq->reg_idx = vsi->base_queue + queue_idx;
+ rxq->port_id = dev->data->port_id;
+ if (dev->data->dev_conf.rxmode.offloads & DEV_RX_OFFLOAD_KEEP_CRC)
+ rxq->crc_len = ETHER_CRC_LEN;
+ else
+ rxq->crc_len = 0;
+
+ rxq->drop_en = rx_conf->rx_drop_en;
+ rxq->vsi = vsi;
+ rxq->rx_deferred_start = rx_conf->rx_deferred_start;
+
+ /* Allocate the maximun number of RX ring hardware descriptor. */
+ len = ICE_MAX_RING_DESC;
+
+#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
+ /**
+ * Allocating a little more memory because vectorized/bulk_alloc Rx
+ * functions doesn't check boundaries each time.
+ */
+ len += ICE_RX_MAX_BURST;
+#endif
+
+ /* Allocate the maximum number of RX ring hardware descriptor. */
+ ring_size = sizeof(union ice_rx_desc) * len;
+ ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
+ rz = rte_eth_dma_zone_reserve(dev, "rx_ring", queue_idx,
+ ring_size, ICE_RING_BASE_ALIGN,
+ socket_id);
+ if (!rz) {
+ ice_rx_queue_release(rxq);
+ PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for RX");
+ return -ENOMEM;
+ }
+
+ /* Zero all the descriptors in the ring. */
+ memset(rz->addr, 0, ring_size);
+
+ rxq->rx_ring_phys_addr = rz->phys_addr;
+ rxq->rx_ring = (union ice_rx_desc *)rz->addr;
+
+#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
+ len = (uint16_t)(nb_desc + ICE_RX_MAX_BURST);
+#else
+ len = nb_desc;
+#endif
+
+ /* Allocate the software ring. */
+ rxq->sw_ring = rte_zmalloc_socket(NULL,
+ sizeof(struct ice_rx_entry) * len,
+ RTE_CACHE_LINE_SIZE,
+ socket_id);
+ if (!rxq->sw_ring) {
+ ice_rx_queue_release(rxq);
+ PMD_INIT_LOG(ERR, "Failed to allocate memory for SW ring");
+ return -ENOMEM;
+ }
+
+ ice_reset_rx_queue(rxq);
+ rxq->q_set = TRUE;
+ dev->data->rx_queues[queue_idx] = rxq;
+ rxq->rx_rel_mbufs = _ice_rx_queue_release_mbufs;
+
+ use_def_burst_func = ice_check_rx_burst_bulk_alloc_preconditions(rxq);
+
+ if (!use_def_burst_func) {
+#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
+ "satisfied. Rx Burst Bulk Alloc function will be "
+ "used on port=%d, queue=%d.",
+ rxq->port_id, rxq->queue_id);
+#endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
+ } else {
+ PMD_INIT_LOG(DEBUG, "Rx Burst Bulk Alloc Preconditions are "
+ "not satisfied, Scattered Rx is requested, "
+ "or RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC is "
+ "not enabled on port=%d, queue=%d.",
+ rxq->port_id, rxq->queue_id);
+ ad->rx_bulk_alloc_allowed = false;
+ }
+
+ return 0;
+}
+
+void
+ice_rx_queue_release(void *rxq)
+{
+ struct ice_rx_queue *q = (struct ice_rx_queue *)rxq;
+
+ if (!q) {
+ PMD_DRV_LOG(DEBUG, "Pointer to rxq is NULL");
+ return;
+ }
+
+ ice_rx_queue_release_mbufs(q);
+ rte_free(q->sw_ring);
+ rte_free(q);
+}
+
+int
+ice_tx_queue_setup(struct rte_eth_dev *dev,
+ uint16_t queue_idx,
+ uint16_t nb_desc,
+ unsigned int socket_id,
+ const struct rte_eth_txconf *tx_conf)
+{
+ struct ice_pf *pf = ICE_DEV_PRIVATE_TO_PF(dev->data->dev_private);
+ struct ice_vsi *vsi = pf->main_vsi;
+ struct ice_tx_queue *txq;
+ const struct rte_memzone *tz;
+ uint32_t ring_size;
+ uint16_t tx_rs_thresh, tx_free_thresh;
+ uint64_t offloads;
+
+ offloads = tx_conf->offloads | dev->data->dev_conf.txmode.offloads;
+
+ if (nb_desc % ICE_ALIGN_RING_DESC != 0 ||
+ nb_desc > ICE_MAX_RING_DESC ||
+ nb_desc < ICE_MIN_RING_DESC) {
+ PMD_INIT_LOG(ERR, "Number (%u) of transmit descriptors is "
+ "invalid", nb_desc);
+ return -EINVAL;
+ }
+
+ /**
+ * The following two parameters control the setting of the RS bit on
+ * transmit descriptors. TX descriptors will have their RS bit set
+ * after txq->tx_rs_thresh descriptors have been used. The TX
+ * descriptor ring will be cleaned after txq->tx_free_thresh
+ * descriptors are used or if the number of descriptors required to
+ * transmit a packet is greater than the number of free TX descriptors.
+ *
+ * The following constraints must be satisfied:
+ * - tx_rs_thresh must be greater than 0.
+ * - tx_rs_thresh must be less than the size of the ring minus 2.
+ * - tx_rs_thresh must be less than or equal to tx_free_thresh.
+ * - tx_rs_thresh must be a divisor of the ring size.
+ * - tx_free_thresh must be greater than 0.
+ * - tx_free_thresh must be less than the size of the ring minus 3.
+ *
+ * One descriptor in the TX ring is used as a sentinel to avoid a H/W
+ * race condition, hence the maximum threshold constraints. When set
+ * to zero use default values.
+ */
+ tx_rs_thresh = (uint16_t)(tx_conf->tx_rs_thresh ?
+ tx_conf->tx_rs_thresh :
+ ICE_DEFAULT_TX_RSBIT_THRESH);
+ tx_free_thresh = (uint16_t)(tx_conf->tx_free_thresh ?
+ tx_conf->tx_free_thresh :
+ ICE_DEFAULT_TX_FREE_THRESH);
+ if (tx_rs_thresh >= (nb_desc - 2)) {
+ PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
+ "number of TX descriptors minus 2. "
+ "(tx_rs_thresh=%u port=%d queue=%d)",
+ (unsigned int)tx_rs_thresh,
+ (int)dev->data->port_id,
+ (int)queue_idx);
+ return -EINVAL;
+ }
+ if (tx_free_thresh >= (nb_desc - 3)) {
+ PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than the "
+ "tx_free_thresh must be less than the "
+ "number of TX descriptors minus 3. "
+ "(tx_free_thresh=%u port=%d queue=%d)",
+ (unsigned int)tx_free_thresh,
+ (int)dev->data->port_id,
+ (int)queue_idx);
+ return -EINVAL;
+ }
+ if (tx_rs_thresh > tx_free_thresh) {
+ PMD_INIT_LOG(ERR, "tx_rs_thresh must be less than or "
+ "equal to tx_free_thresh. (tx_free_thresh=%u"
+ " tx_rs_thresh=%u port=%d queue=%d)",
+ (unsigned int)tx_free_thresh,
+ (unsigned int)tx_rs_thresh,
+ (int)dev->data->port_id,
+ (int)queue_idx);
+ return -EINVAL;
+ }
+ if ((nb_desc % tx_rs_thresh) != 0) {
+ PMD_INIT_LOG(ERR, "tx_rs_thresh must be a divisor of the "
+ "number of TX descriptors. (tx_rs_thresh=%u"
+ " port=%d queue=%d)",
+ (unsigned int)tx_rs_thresh,
+ (int)dev->data->port_id,
+ (int)queue_idx);
+ return -EINVAL;
+ }
+ if (tx_rs_thresh > 1 && tx_conf->tx_thresh.wthresh != 0) {
+ PMD_INIT_LOG(ERR, "TX WTHRESH must be set to 0 if "
+ "tx_rs_thresh is greater than 1. "
+ "(tx_rs_thresh=%u port=%d queue=%d)",
+ (unsigned int)tx_rs_thresh,
+ (int)dev->data->port_id,
+ (int)queue_idx);
+ return -EINVAL;
+ }
+
+ /* Free memory if needed. */
+ if (dev->data->tx_queues[queue_idx]) {
+ ice_tx_queue_release(dev->data->tx_queues[queue_idx]);
+ dev->data->tx_queues[queue_idx] = NULL;
+ }
+
+ /* Allocate the TX queue data structure. */
+ txq = rte_zmalloc_socket(NULL,
+ sizeof(struct ice_tx_queue),
+ RTE_CACHE_LINE_SIZE,
+ socket_id);
+ if (!txq) {
+ PMD_INIT_LOG(ERR, "Failed to allocate memory for "
+ "tx queue structure");
+ return -ENOMEM;
+ }
+
+ /* Allocate TX hardware ring descriptors. */
+ ring_size = sizeof(struct ice_tx_desc) * ICE_MAX_RING_DESC;
+ ring_size = RTE_ALIGN(ring_size, ICE_DMA_MEM_ALIGN);
+ tz = rte_eth_dma_zone_reserve(dev, "tx_ring", queue_idx,
+ ring_size, ICE_RING_BASE_ALIGN,
+ socket_id);
+ if (!tz) {
+ ice_tx_queue_release(txq);
+ PMD_INIT_LOG(ERR, "Failed to reserve DMA memory for TX");
+ return -ENOMEM;
+ }
+
+ txq->nb_tx_desc = nb_desc;
+ txq->tx_rs_thresh = tx_rs_thresh;
+ txq->tx_free_thresh = tx_free_thresh;
+ txq->pthresh = tx_conf->tx_thresh.pthresh;
+ txq->hthresh = tx_conf->tx_thresh.hthresh;
+ txq->wthresh = tx_conf->tx_thresh.wthresh;
+ txq->queue_id = queue_idx;
+
+ txq->reg_idx = vsi->base_queue + queue_idx;
+ txq->port_id = dev->data->port_id;
+ txq->offloads = offloads;
+ txq->vsi = vsi;
+ txq->tx_deferred_start = tx_conf->tx_deferred_start;
+
+ txq->tx_ring_phys_addr = tz->phys_addr;
+ txq->tx_ring = (struct ice_tx_desc *)tz->addr;
+
+ /* Allocate software ring */
+ txq->sw_ring =
+ rte_zmalloc_socket(NULL,
+ sizeof(struct ice_tx_entry) * nb_desc,
+ RTE_CACHE_LINE_SIZE,
+ socket_id);
+ if (!txq->sw_ring) {
+ ice_tx_queue_release(txq);
+ PMD_INIT_LOG(ERR, "Failed to allocate memory for SW TX ring");
+ return -ENOMEM;
+ }
+
+ ice_reset_tx_queue(txq);
+ txq->q_set = TRUE;
+ dev->data->tx_queues[queue_idx] = txq;
+ txq->tx_rel_mbufs = _ice_tx_queue_release_mbufs;
+ ice_set_tx_function_flag(dev, txq);
+
+ return 0;
+}
+
+void
+ice_tx_queue_release(void *txq)
+{
+ struct ice_tx_queue *q = (struct ice_tx_queue *)txq;
+
+ if (!q) {
+ PMD_DRV_LOG(DEBUG, "Pointer to TX queue is NULL");
+ return;
+ }
+
+ ice_tx_queue_release_mbufs(q);
+ rte_free(q->sw_ring);
+ rte_free(q);
+}
+
+void
+ice_rxq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
+ struct rte_eth_rxq_info *qinfo)
+{
+ struct ice_rx_queue *rxq;
+
+ rxq = dev->data->rx_queues[queue_id];
+
+ qinfo->mp = rxq->mp;
+ qinfo->scattered_rx = dev->data->scattered_rx;
+ qinfo->nb_desc = rxq->nb_rx_desc;
+
+ qinfo->conf.rx_free_thresh = rxq->rx_free_thresh;
+ qinfo->conf.rx_drop_en = rxq->drop_en;
+ qinfo->conf.rx_deferred_start = rxq->rx_deferred_start;
+}
+
+void
+ice_txq_info_get(struct rte_eth_dev *dev, uint16_t queue_id,
+ struct rte_eth_txq_info *qinfo)
+{
+ struct ice_tx_queue *txq;
+
+ txq = dev->data->tx_queues[queue_id];
+
+ qinfo->nb_desc = txq->nb_tx_desc;
+
+ qinfo->conf.tx_thresh.pthresh = txq->pthresh;
+ qinfo->conf.tx_thresh.hthresh = txq->hthresh;
+ qinfo->conf.tx_thresh.wthresh = txq->wthresh;
+
+ qinfo->conf.tx_free_thresh = txq->tx_free_thresh;
+ qinfo->conf.tx_rs_thresh = txq->tx_rs_thresh;
+ qinfo->conf.offloads = txq->offloads;
+ qinfo->conf.tx_deferred_start = txq->tx_deferred_start;
+}
+
+uint32_t
+ice_rx_queue_count(struct rte_eth_dev *dev, uint16_t rx_queue_id)
+{
+#define ICE_RXQ_SCAN_INTERVAL 4
+ volatile union ice_rx_desc *rxdp;
+ struct ice_rx_queue *rxq;
+ uint16_t desc = 0;
+
+ rxq = dev->data->rx_queues[rx_queue_id];
+ rxdp = &rxq->rx_ring[rxq->rx_tail];
+ while ((desc < rxq->nb_rx_desc) &&
+ ((rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
+ ICE_RXD_QW1_STATUS_M) >> ICE_RXD_QW1_STATUS_S) &
+ (1 << ICE_RX_DESC_STATUS_DD_S)) {
+ /**
+ * Check the DD bit of a rx descriptor of each 4 in a group,
+ * to avoid checking too frequently and downgrading performance
+ * too much.
+ */
+ desc += ICE_RXQ_SCAN_INTERVAL;
+ rxdp += ICE_RXQ_SCAN_INTERVAL;
+ if (rxq->rx_tail + desc >= rxq->nb_rx_desc)
+ rxdp = &(rxq->rx_ring[rxq->rx_tail +
+ desc - rxq->nb_rx_desc]);
+ }
+
+ return desc;
+}
+
+/* Translate the rx descriptor status to pkt flags */
+static inline uint64_t
+ice_rxd_status_to_pkt_flags(uint64_t qword)
+{
+ uint64_t flags;
+
+ /* Check if RSS_HASH */
+ flags = (((qword >> ICE_RX_DESC_STATUS_FLTSTAT_S) &
+ ICE_RX_DESC_FLTSTAT_RSS_HASH) ==
+ ICE_RX_DESC_FLTSTAT_RSS_HASH) ? PKT_RX_RSS_HASH : 0;
+
+ return flags;
+}
+
+/* Rx L3/L4 checksum */
+static inline uint64_t
+ice_rxd_error_to_pkt_flags(uint64_t qword)
+{
+ uint64_t flags = 0;
+ uint64_t error_bits = (qword >> ICE_RXD_QW1_ERROR_S);
+
+ if (likely((error_bits & ICE_RX_ERR_BITS) == 0)) {
+ flags |= (PKT_RX_IP_CKSUM_GOOD | PKT_RX_L4_CKSUM_GOOD);
+ return flags;
+ }
+
+ if (unlikely(error_bits & (1 << ICE_RX_DESC_ERROR_IPE_S)))
+ flags |= PKT_RX_IP_CKSUM_BAD;
+ else
+ flags |= PKT_RX_IP_CKSUM_GOOD;
+
+ if (unlikely(error_bits & (1 << ICE_RX_DESC_ERROR_L4E_S)))
+ flags |= PKT_RX_L4_CKSUM_BAD;
+ else
+ flags |= PKT_RX_L4_CKSUM_GOOD;
+
+ if (unlikely(error_bits & (1 << ICE_RX_DESC_ERROR_EIPE_S)))
+ flags |= PKT_RX_EIP_CKSUM_BAD;
+
+ return flags;
+}
+
+static inline void
+ice_rxd_to_vlan_tci(struct rte_mbuf *mb, volatile union ice_rx_desc *rxdp)
+{
+ if (rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len) &
+ (1 << ICE_RX_DESC_STATUS_L2TAG1P_S)) {
+ mb->ol_flags |= PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED;
+ mb->vlan_tci =
+ rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1);
+ PMD_RX_LOG(DEBUG, "Descriptor l2tag1: %u",
+ rte_le_to_cpu_16(rxdp->wb.qword0.lo_dword.l2tag1));
+ } else {
+ mb->vlan_tci = 0;
+ }
+
+#ifndef RTE_LIBRTE_ICE_16BYTE_RX_DESC
+ if (rte_le_to_cpu_16(rxdp->wb.qword2.ext_status) &
+ (1 << ICE_RX_DESC_EXT_STATUS_L2TAG2P_S)) {
+ mb->ol_flags |= PKT_RX_QINQ_STRIPPED | PKT_RX_QINQ |
+ PKT_RX_VLAN_STRIPPED | PKT_RX_VLAN;
+ mb->vlan_tci_outer = mb->vlan_tci;
+ mb->vlan_tci = rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2);
+ PMD_RX_LOG(DEBUG, "Descriptor l2tag2_1: %u, l2tag2_2: %u",
+ rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_1),
+ rte_le_to_cpu_16(rxdp->wb.qword2.l2tag2_2));
+ } else {
+ mb->vlan_tci_outer = 0;
+ }
+#endif
+ PMD_RX_LOG(DEBUG, "Mbuf vlan_tci: %u, vlan_tci_outer: %u",
+ mb->vlan_tci, mb->vlan_tci_outer);
+}
+
+#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
+#define ICE_LOOK_AHEAD 8
+#if (ICE_LOOK_AHEAD != 8)
+#error "PMD ICE: ICE_LOOK_AHEAD must be 8\n"
+#endif
+static inline int
+ice_rx_scan_hw_ring(struct ice_rx_queue *rxq)
+{
+ volatile union ice_rx_desc *rxdp;
+ struct ice_rx_entry *rxep;
+ struct rte_mbuf *mb;
+ uint16_t pkt_len;
+ uint64_t qword1;
+ uint32_t rx_status;
+ int32_t s[ICE_LOOK_AHEAD], nb_dd;
+ int32_t i, j, nb_rx = 0;
+ uint64_t pkt_flags = 0;
+ uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
+
+ rxdp = &rxq->rx_ring[rxq->rx_tail];
+ rxep = &rxq->sw_ring[rxq->rx_tail];
+
+ qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
+ rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >> ICE_RXD_QW1_STATUS_S;
+
+ /* Make sure there is at least 1 packet to receive */
+ if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
+ return 0;
+
+ /**
+ * Scan LOOK_AHEAD descriptors at a time to determine which
+ * descriptors reference packets that are ready to be received.
+ */
+ for (i = 0; i < ICE_RX_MAX_BURST; i += ICE_LOOK_AHEAD,
+ rxdp += ICE_LOOK_AHEAD, rxep += ICE_LOOK_AHEAD) {
+ /* Read desc statuses backwards to avoid race condition */
+ for (j = ICE_LOOK_AHEAD - 1; j >= 0; j--) {
+ qword1 = rte_le_to_cpu_64(
+ rxdp[j].wb.qword1.status_error_len);
+ s[j] = (qword1 & ICE_RXD_QW1_STATUS_M) >>
+ ICE_RXD_QW1_STATUS_S;
+ }
+
+ rte_smp_rmb();
+
+ /* Compute how many status bits were set */
+ for (j = 0, nb_dd = 0; j < ICE_LOOK_AHEAD; j++)
+ nb_dd += s[j] & (1 << ICE_RX_DESC_STATUS_DD_S);
+
+ nb_rx += nb_dd;
+
+ /* Translate descriptor info to mbuf parameters */
+ for (j = 0; j < nb_dd; j++) {
+ mb = rxep[j].mbuf;
+ qword1 = rte_le_to_cpu_64(
+ rxdp[j].wb.qword1.status_error_len);
+ pkt_len = ((qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
+ ICE_RXD_QW1_LEN_PBUF_S) - rxq->crc_len;
+ mb->data_len = pkt_len;
+ mb->pkt_len = pkt_len;
+ mb->ol_flags = 0;
+ pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
+ pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
+ if (pkt_flags & PKT_RX_RSS_HASH)
+ mb->hash.rss =
+ rte_le_to_cpu_32(
+ rxdp[j].wb.qword0.hi_dword.rss);
+ mb->packet_type = ptype_tbl[(uint8_t)(
+ (qword1 &
+ ICE_RXD_QW1_PTYPE_M) >>
+ ICE_RXD_QW1_PTYPE_S)];
+ ice_rxd_to_vlan_tci(mb, &rxdp[j]);
+
+ mb->ol_flags |= pkt_flags;
+ }
+
+ for (j = 0; j < ICE_LOOK_AHEAD; j++)
+ rxq->rx_stage[i + j] = rxep[j].mbuf;
+
+ if (nb_dd != ICE_LOOK_AHEAD)
+ break;
+ }
+
+ /* Clear software ring entries */
+ for (i = 0; i < nb_rx; i++)
+ rxq->sw_ring[rxq->rx_tail + i].mbuf = NULL;
+
+ PMD_RX_LOG(DEBUG, "ice_rx_scan_hw_ring: "
+ "port_id=%u, queue_id=%u, nb_rx=%d",
+ rxq->port_id, rxq->queue_id, nb_rx);
+
+ return nb_rx;
+}
+
+static inline uint16_t
+ice_rx_fill_from_stage(struct ice_rx_queue *rxq,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t i;
+ struct rte_mbuf **stage = &rxq->rx_stage[rxq->rx_next_avail];
+
+ nb_pkts = (uint16_t)RTE_MIN(nb_pkts, rxq->rx_nb_avail);
+
+ for (i = 0; i < nb_pkts; i++)
+ rx_pkts[i] = stage[i];
+
+ rxq->rx_nb_avail = (uint16_t)(rxq->rx_nb_avail - nb_pkts);
+ rxq->rx_next_avail = (uint16_t)(rxq->rx_next_avail + nb_pkts);
+
+ return nb_pkts;
+}
+
+static inline int
+ice_rx_alloc_bufs(struct ice_rx_queue *rxq)
+{
+ volatile union ice_rx_desc *rxdp;
+ struct ice_rx_entry *rxep;
+ struct rte_mbuf *mb;
+ uint16_t alloc_idx, i;
+ uint64_t dma_addr;
+ int diag;
+
+ /* Allocate buffers in bulk */
+ alloc_idx = (uint16_t)(rxq->rx_free_trigger -
+ (rxq->rx_free_thresh - 1));
+ rxep = &rxq->sw_ring[alloc_idx];
+ diag = rte_mempool_get_bulk(rxq->mp, (void *)rxep,
+ rxq->rx_free_thresh);
+ if (unlikely(diag != 0)) {
+ PMD_RX_LOG(ERR, "Failed to get mbufs in bulk");
+ return -ENOMEM;
+ }
+
+ rxdp = &rxq->rx_ring[alloc_idx];
+ for (i = 0; i < rxq->rx_free_thresh; i++) {
+ if (likely(i < (rxq->rx_free_thresh - 1)))
+ /* Prefetch next mbuf */
+ rte_prefetch0(rxep[i + 1].mbuf);
+
+ mb = rxep[i].mbuf;
+ rte_mbuf_refcnt_set(mb, 1);
+ mb->next = NULL;
+ mb->data_off = RTE_PKTMBUF_HEADROOM;
+ mb->nb_segs = 1;
+ mb->port = rxq->port_id;
+ dma_addr = rte_cpu_to_le_64(rte_mbuf_data_iova_default(mb));
+ rxdp[i].read.hdr_addr = 0;
+ rxdp[i].read.pkt_addr = dma_addr;
+ }
+
+ /* Update rx tail regsiter */
+ rte_wmb();
+ ICE_PCI_REG_WRITE(rxq->qrx_tail, rxq->rx_free_trigger);
+
+ rxq->rx_free_trigger =
+ (uint16_t)(rxq->rx_free_trigger + rxq->rx_free_thresh);
+ if (rxq->rx_free_trigger >= rxq->nb_rx_desc)
+ rxq->rx_free_trigger = (uint16_t)(rxq->rx_free_thresh - 1);
+
+ return 0;
+}
+
+static inline uint16_t
+rx_recv_pkts(void *rx_queue, struct rte_mbuf **rx_pkts, uint16_t nb_pkts)
+{
+ struct ice_rx_queue *rxq = (struct ice_rx_queue *)rx_queue;
+ uint16_t nb_rx = 0;
+ struct rte_eth_dev *dev;
+
+ if (!nb_pkts)
+ return 0;
+
+ if (rxq->rx_nb_avail)
+ return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
+
+ nb_rx = (uint16_t)ice_rx_scan_hw_ring(rxq);
+ rxq->rx_next_avail = 0;
+ rxq->rx_nb_avail = nb_rx;
+ rxq->rx_tail = (uint16_t)(rxq->rx_tail + nb_rx);
+
+ if (rxq->rx_tail > rxq->rx_free_trigger) {
+ if (ice_rx_alloc_bufs(rxq) != 0) {
+ uint16_t i, j;
+
+ dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
+ dev->data->rx_mbuf_alloc_failed +=
+ rxq->rx_free_thresh;
+ PMD_RX_LOG(DEBUG, "Rx mbuf alloc failed for "
+ "port_id=%u, queue_id=%u",
+ rxq->port_id, rxq->queue_id);
+ rxq->rx_nb_avail = 0;
+ rxq->rx_tail = (uint16_t)(rxq->rx_tail - nb_rx);
+ for (i = 0, j = rxq->rx_tail; i < nb_rx; i++, j++)
+ rxq->sw_ring[j].mbuf = rxq->rx_stage[i];
+
+ return 0;
+ }
+ }
+
+ if (rxq->rx_tail >= rxq->nb_rx_desc)
+ rxq->rx_tail = 0;
+
+ if (rxq->rx_nb_avail)
+ return ice_rx_fill_from_stage(rxq, rx_pkts, nb_pkts);
+
+ return 0;
+}
+
+static uint16_t
+ice_recv_pkts_bulk_alloc(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t nb_rx = 0;
+ uint16_t n;
+ uint16_t count;
+
+ if (unlikely(nb_pkts == 0))
+ return nb_rx;
+
+ if (likely(nb_pkts <= ICE_RX_MAX_BURST))
+ return rx_recv_pkts(rx_queue, rx_pkts, nb_pkts);
+
+ while (nb_pkts) {
+ n = RTE_MIN(nb_pkts, ICE_RX_MAX_BURST);
+ count = rx_recv_pkts(rx_queue, &rx_pkts[nb_rx], n);
+ nb_rx = (uint16_t)(nb_rx + count);
+ nb_pkts = (uint16_t)(nb_pkts - count);
+ if (count < n)
+ break;
+ }
+
+ return nb_rx;
+}
+#else
+static uint16_t
+ice_recv_pkts_bulk_alloc(void __rte_unused *rx_queue,
+ struct rte_mbuf __rte_unused **rx_pkts,
+ uint16_t __rte_unused nb_pkts)
+{
+ return 0;
+}
+#endif /* RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC */
+
+static uint16_t
+ice_recv_scattered_pkts(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct ice_rx_queue *rxq = rx_queue;
+ volatile union ice_rx_desc *rx_ring = rxq->rx_ring;
+ volatile union ice_rx_desc *rxdp;
+ union ice_rx_desc rxd;
+ struct ice_rx_entry *sw_ring = rxq->sw_ring;
+ struct ice_rx_entry *rxe;
+ struct rte_mbuf *first_seg = rxq->pkt_first_seg;
+ struct rte_mbuf *last_seg = rxq->pkt_last_seg;
+ struct rte_mbuf *nmb; /* new allocated mbuf */
+ struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
+ uint16_t rx_id = rxq->rx_tail;
+ uint16_t nb_rx = 0;
+ uint16_t nb_hold = 0;
+ uint16_t rx_packet_len;
+ uint32_t rx_status;
+ uint64_t qword1;
+ uint64_t dma_addr;
+ uint64_t pkt_flags = 0;
+ uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
+ struct rte_eth_dev *dev;
+
+ while (nb_rx < nb_pkts) {
+ rxdp = &rx_ring[rx_id];
+ qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
+ rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >>
+ ICE_RXD_QW1_STATUS_S;
+
+ /* Check the DD bit first */
+ if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
+ break;
+
+ /* allocate mbuf */
+ nmb = rte_mbuf_raw_alloc(rxq->mp);
+ if (unlikely(!nmb)) {
+ dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
+ dev->data->rx_mbuf_alloc_failed++;
+ break;
+ }
+ rxd = *rxdp; /* copy descriptor in ring to temp variable*/
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
+ rx_id++;
+ if (unlikely(rx_id == rxq->nb_rx_desc))
+ rx_id = 0;
+
+ /* Prefetch next mbuf */
+ rte_prefetch0(sw_ring[rx_id].mbuf);
+
+ /**
+ * When next RX descriptor is on a cache line boundary,
+ * prefetch the next 4 RX descriptors and next 8 pointers
+ * to mbufs.
+ */
+ if ((rx_id & 0x3) == 0) {
+ rte_prefetch0(&rx_ring[rx_id]);
+ rte_prefetch0(&sw_ring[rx_id]);
+ }
+
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma_addr =
+ rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
+
+ /* Set data buffer address and data length of the mbuf */
+ rxdp->read.hdr_addr = 0;
+ rxdp->read.pkt_addr = dma_addr;
+ rx_packet_len = (qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
+ ICE_RXD_QW1_LEN_PBUF_S;
+ rxm->data_len = rx_packet_len;
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+ ice_rxd_to_vlan_tci(rxm, rxdp);
+ rxm->packet_type = ptype_tbl[(uint8_t)((qword1 &
+ ICE_RXD_QW1_PTYPE_M) >>
+ ICE_RXD_QW1_PTYPE_S)];
+
+ /**
+ * If this is the first buffer of the received packet, set the
+ * pointer to the first mbuf of the packet and initialize its
+ * context. Otherwise, update the total length and the number
+ * of segments of the current scattered packet, and update the
+ * pointer to the last mbuf of the current packet.
+ */
+ if (!first_seg) {
+ first_seg = rxm;
+ first_seg->nb_segs = 1;
+ first_seg->pkt_len = rx_packet_len;
+ } else {
+ first_seg->pkt_len =
+ (uint16_t)(first_seg->pkt_len +
+ rx_packet_len);
+ first_seg->nb_segs++;
+ last_seg->next = rxm;
+ }
+
+ /**
+ * If this is not the last buffer of the received packet,
+ * update the pointer to the last mbuf of the current scattered
+ * packet and continue to parse the RX ring.
+ */
+ if (!(rx_status & (1 << ICE_RX_DESC_STATUS_EOF_S))) {
+ last_seg = rxm;
+ continue;
+ }
+
+ /**
+ * This is the last buffer of the received packet. If the CRC
+ * is not stripped by the hardware:
+ * - Subtract the CRC length from the total packet length.
+ * - If the last buffer only contains the whole CRC or a part
+ * of it, free the mbuf associated to the last buffer. If part
+ * of the CRC is also contained in the previous mbuf, subtract
+ * the length of that CRC part from the data length of the
+ * previous mbuf.
+ */
+ rxm->next = NULL;
+ if (unlikely(rxq->crc_len > 0)) {
+ first_seg->pkt_len -= ETHER_CRC_LEN;
+ if (rx_packet_len <= ETHER_CRC_LEN) {
+ rte_pktmbuf_free_seg(rxm);
+ first_seg->nb_segs--;
+ last_seg->data_len =
+ (uint16_t)(last_seg->data_len -
+ (ETHER_CRC_LEN - rx_packet_len));
+ last_seg->next = NULL;
+ } else
+ rxm->data_len = (uint16_t)(rx_packet_len -
+ ETHER_CRC_LEN);
+ }
+
+ first_seg->port = rxq->port_id;
+ first_seg->ol_flags = 0;
+
+ pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
+ pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
+ if (pkt_flags & PKT_RX_RSS_HASH)
+ first_seg->hash.rss =
+ rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
+
+ first_seg->ol_flags |= pkt_flags;
+ /* Prefetch data of first segment, if configured to do so. */
+ rte_prefetch0(RTE_PTR_ADD(first_seg->buf_addr,
+ first_seg->data_off));
+ rx_pkts[nb_rx++] = first_seg;
+ first_seg = NULL;
+ }
+
+ /* Record index of the next RX descriptor to probe. */
+ rxq->rx_tail = rx_id;
+ rxq->pkt_first_seg = first_seg;
+ rxq->pkt_last_seg = last_seg;
+
+ /**
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the Receive Descriptor Tail (RDT)
+ * register. Update the RDT with the value of the last processed RX
+ * descriptor minus 1, to guarantee that the RDT register is never
+ * equal to the RDH register, which creates a "full" ring situtation
+ * from the hardware point of view.
+ */
+ nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ rx_id = (uint16_t)(rx_id == 0 ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ /* write TAIL register */
+ ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+
+ /* return received packet in the burst */
+ return nb_rx;
+}
+
+const uint32_t *
+ice_dev_supported_ptypes_get(struct rte_eth_dev *dev)
+{
+ static const uint32_t ptypes[] = {
+ /* refers to ice_get_default_pkt_type() */
+ RTE_PTYPE_L2_ETHER,
+ RTE_PTYPE_L2_ETHER_LLDP,
+ RTE_PTYPE_L2_ETHER_ARP,
+ RTE_PTYPE_L3_IPV4_EXT_UNKNOWN,
+ RTE_PTYPE_L3_IPV6_EXT_UNKNOWN,
+ RTE_PTYPE_L4_FRAG,
+ RTE_PTYPE_L4_ICMP,
+ RTE_PTYPE_L4_NONFRAG,
+ RTE_PTYPE_L4_SCTP,
+ RTE_PTYPE_L4_TCP,
+ RTE_PTYPE_L4_UDP,
+ RTE_PTYPE_TUNNEL_GRENAT,
+ RTE_PTYPE_TUNNEL_IP,
+ RTE_PTYPE_INNER_L2_ETHER,
+ RTE_PTYPE_INNER_L2_ETHER_VLAN,
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN,
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN,
+ RTE_PTYPE_INNER_L4_FRAG,
+ RTE_PTYPE_INNER_L4_ICMP,
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ RTE_PTYPE_INNER_L4_SCTP,
+ RTE_PTYPE_INNER_L4_TCP,
+ RTE_PTYPE_INNER_L4_UDP,
+ RTE_PTYPE_TUNNEL_GTPC,
+ RTE_PTYPE_TUNNEL_GTPU,
+ RTE_PTYPE_UNKNOWN
+ };
+
+ if (dev->rx_pkt_burst == ice_recv_pkts ||
+#ifdef RTE_LIBRTE_ICE_RX_ALLOW_BULK_ALLOC
+ dev->rx_pkt_burst == ice_recv_pkts_bulk_alloc ||
+#endif
+ dev->rx_pkt_burst == ice_recv_scattered_pkts)
+ return ptypes;
+
+#ifdef RTE_ARCH_X86
+ if (dev->rx_pkt_burst == ice_recv_pkts_vec ||
+ dev->rx_pkt_burst == ice_recv_scattered_pkts_vec ||
+ dev->rx_pkt_burst == ice_recv_pkts_vec_avx2 ||
+ dev->rx_pkt_burst == ice_recv_scattered_pkts_vec_avx2)
+ return ptypes;
+#endif
+
+ return NULL;
+}
+
+int
+ice_rx_descriptor_status(void *rx_queue, uint16_t offset)
+{
+ struct ice_rx_queue *rxq = rx_queue;
+ volatile uint64_t *status;
+ uint64_t mask;
+ uint32_t desc;
+
+ if (unlikely(offset >= rxq->nb_rx_desc))
+ return -EINVAL;
+
+ if (offset >= rxq->nb_rx_desc - rxq->nb_rx_hold)
+ return RTE_ETH_RX_DESC_UNAVAIL;
+
+ desc = rxq->rx_tail + offset;
+ if (desc >= rxq->nb_rx_desc)
+ desc -= rxq->nb_rx_desc;
+
+ status = &rxq->rx_ring[desc].wb.qword1.status_error_len;
+ mask = rte_cpu_to_le_64((1ULL << ICE_RX_DESC_STATUS_DD_S) <<
+ ICE_RXD_QW1_STATUS_S);
+ if (*status & mask)
+ return RTE_ETH_RX_DESC_DONE;
+
+ return RTE_ETH_RX_DESC_AVAIL;
+}
+
+int
+ice_tx_descriptor_status(void *tx_queue, uint16_t offset)
+{
+ struct ice_tx_queue *txq = tx_queue;
+ volatile uint64_t *status;
+ uint64_t mask, expect;
+ uint32_t desc;
+
+ if (unlikely(offset >= txq->nb_tx_desc))
+ return -EINVAL;
+
+ desc = txq->tx_tail + offset;
+ /* go to next desc that has the RS bit */
+ desc = ((desc + txq->tx_rs_thresh - 1) / txq->tx_rs_thresh) *
+ txq->tx_rs_thresh;
+ if (desc >= txq->nb_tx_desc) {
+ desc -= txq->nb_tx_desc;
+ if (desc >= txq->nb_tx_desc)
+ desc -= txq->nb_tx_desc;
+ }
+
+ status = &txq->tx_ring[desc].cmd_type_offset_bsz;
+ mask = rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M);
+ expect = rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE <<
+ ICE_TXD_QW1_DTYPE_S);
+ if ((*status & mask) == expect)
+ return RTE_ETH_TX_DESC_DONE;
+
+ return RTE_ETH_TX_DESC_FULL;
+}
+
+void
+ice_clear_queues(struct rte_eth_dev *dev)
+{
+ uint16_t i;
+
+ PMD_INIT_FUNC_TRACE();
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ ice_tx_queue_release_mbufs(dev->data->tx_queues[i]);
+ ice_reset_tx_queue(dev->data->tx_queues[i]);
+ }
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ ice_rx_queue_release_mbufs(dev->data->rx_queues[i]);
+ ice_reset_rx_queue(dev->data->rx_queues[i]);
+ }
+}
+
+void
+ice_free_queues(struct rte_eth_dev *dev)
+{
+ uint16_t i;
+
+ PMD_INIT_FUNC_TRACE();
+
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ if (!dev->data->rx_queues[i])
+ continue;
+ ice_rx_queue_release(dev->data->rx_queues[i]);
+ dev->data->rx_queues[i] = NULL;
+ }
+ dev->data->nb_rx_queues = 0;
+
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ if (!dev->data->tx_queues[i])
+ continue;
+ ice_tx_queue_release(dev->data->tx_queues[i]);
+ dev->data->tx_queues[i] = NULL;
+ }
+ dev->data->nb_tx_queues = 0;
+}
+
+uint16_t
+ice_recv_pkts(void *rx_queue,
+ struct rte_mbuf **rx_pkts,
+ uint16_t nb_pkts)
+{
+ struct ice_rx_queue *rxq = rx_queue;
+ volatile union ice_rx_desc *rx_ring = rxq->rx_ring;
+ volatile union ice_rx_desc *rxdp;
+ union ice_rx_desc rxd;
+ struct ice_rx_entry *sw_ring = rxq->sw_ring;
+ struct ice_rx_entry *rxe;
+ struct rte_mbuf *nmb; /* new allocated mbuf */
+ struct rte_mbuf *rxm; /* pointer to store old mbuf in SW ring */
+ uint16_t rx_id = rxq->rx_tail;
+ uint16_t nb_rx = 0;
+ uint16_t nb_hold = 0;
+ uint16_t rx_packet_len;
+ uint32_t rx_status;
+ uint64_t qword1;
+ uint64_t dma_addr;
+ uint64_t pkt_flags = 0;
+ uint32_t *ptype_tbl = rxq->vsi->adapter->ptype_tbl;
+ struct rte_eth_dev *dev;
+
+ while (nb_rx < nb_pkts) {
+ rxdp = &rx_ring[rx_id];
+ qword1 = rte_le_to_cpu_64(rxdp->wb.qword1.status_error_len);
+ rx_status = (qword1 & ICE_RXD_QW1_STATUS_M) >>
+ ICE_RXD_QW1_STATUS_S;
+
+ /* Check the DD bit first */
+ if (!(rx_status & (1 << ICE_RX_DESC_STATUS_DD_S)))
+ break;
+
+ /* allocate mbuf */
+ nmb = rte_mbuf_raw_alloc(rxq->mp);
+ if (unlikely(!nmb)) {
+ dev = ICE_VSI_TO_ETH_DEV(rxq->vsi);
+ dev->data->rx_mbuf_alloc_failed++;
+ break;
+ }
+ rxd = *rxdp; /* copy descriptor in ring to temp variable*/
+
+ nb_hold++;
+ rxe = &sw_ring[rx_id]; /* get corresponding mbuf in SW ring */
+ rx_id++;
+ if (unlikely(rx_id == rxq->nb_rx_desc))
+ rx_id = 0;
+ rxm = rxe->mbuf;
+ rxe->mbuf = nmb;
+ dma_addr =
+ rte_cpu_to_le_64(rte_mbuf_data_iova_default(nmb));
+
+ /**
+ * fill the read format of descriptor with physic address in
+ * new allocated mbuf: nmb
+ */
+ rxdp->read.hdr_addr = 0;
+ rxdp->read.pkt_addr = dma_addr;
+
+ /* calculate rx_packet_len of the received pkt */
+ rx_packet_len = ((qword1 & ICE_RXD_QW1_LEN_PBUF_M) >>
+ ICE_RXD_QW1_LEN_PBUF_S) - rxq->crc_len;
+
+ /* fill old mbuf with received descriptor: rxd */
+ rxm->data_off = RTE_PKTMBUF_HEADROOM;
+ rte_prefetch0(RTE_PTR_ADD(rxm->buf_addr, RTE_PKTMBUF_HEADROOM));
+ rxm->nb_segs = 1;
+ rxm->next = NULL;
+ rxm->pkt_len = rx_packet_len;
+ rxm->data_len = rx_packet_len;
+ rxm->port = rxq->port_id;
+ ice_rxd_to_vlan_tci(rxm, rxdp);
+ rxm->packet_type = ptype_tbl[(uint8_t)((qword1 &
+ ICE_RXD_QW1_PTYPE_M) >>
+ ICE_RXD_QW1_PTYPE_S)];
+ pkt_flags = ice_rxd_status_to_pkt_flags(qword1);
+ pkt_flags |= ice_rxd_error_to_pkt_flags(qword1);
+ if (pkt_flags & PKT_RX_RSS_HASH)
+ rxm->hash.rss =
+ rte_le_to_cpu_32(rxd.wb.qword0.hi_dword.rss);
+ rxm->ol_flags |= pkt_flags;
+ /* copy old mbuf to rx_pkts */
+ rx_pkts[nb_rx++] = rxm;
+ }
+ rxq->rx_tail = rx_id;
+ /**
+ * If the number of free RX descriptors is greater than the RX free
+ * threshold of the queue, advance the receive tail register of queue.
+ * Update that register with the value of the last processed RX
+ * descriptor minus 1.
+ */
+ nb_hold = (uint16_t)(nb_hold + rxq->nb_rx_hold);
+ if (nb_hold > rxq->rx_free_thresh) {
+ rx_id = (uint16_t)(rx_id == 0 ?
+ (rxq->nb_rx_desc - 1) : (rx_id - 1));
+ /* write TAIL register */
+ ICE_PCI_REG_WRITE(rxq->qrx_tail, rx_id);
+ nb_hold = 0;
+ }
+ rxq->nb_rx_hold = nb_hold;
+
+ /* return received packet in the burst */
+ return nb_rx;
+}
+
+static inline void
+ice_txd_enable_checksum(uint64_t ol_flags,
+ uint32_t *td_cmd,
+ uint32_t *td_offset,
+ union ice_tx_offload tx_offload)
+{
+ /* L2 length must be set. */
+ *td_offset |= (tx_offload.l2_len >> 1) <<
+ ICE_TX_DESC_LEN_MACLEN_S;
+
+ /* Enable L3 checksum offloads */
+ if (ol_flags & PKT_TX_IP_CKSUM) {
+ *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
+ *td_offset |= (tx_offload.l3_len >> 2) <<
+ ICE_TX_DESC_LEN_IPLEN_S;
+ } else if (ol_flags & PKT_TX_IPV4) {
+ *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
+ *td_offset |= (tx_offload.l3_len >> 2) <<
+ ICE_TX_DESC_LEN_IPLEN_S;
+ } else if (ol_flags & PKT_TX_IPV6) {
+ *td_cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
+ *td_offset |= (tx_offload.l3_len >> 2) <<
+ ICE_TX_DESC_LEN_IPLEN_S;
+ }
+
+ if (ol_flags & PKT_TX_TCP_SEG) {
+ *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
+ *td_offset |= (tx_offload.l4_len >> 2) <<
+ ICE_TX_DESC_LEN_L4_LEN_S;
+ return;
+ }
+
+ /* Enable L4 checksum offloads */
+ switch (ol_flags & PKT_TX_L4_MASK) {
+ case PKT_TX_TCP_CKSUM:
+ *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
+ *td_offset |= (sizeof(struct tcp_hdr) >> 2) <<
+ ICE_TX_DESC_LEN_L4_LEN_S;
+ break;
+ case PKT_TX_SCTP_CKSUM:
+ *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
+ *td_offset |= (sizeof(struct sctp_hdr) >> 2) <<
+ ICE_TX_DESC_LEN_L4_LEN_S;
+ break;
+ case PKT_TX_UDP_CKSUM:
+ *td_cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
+ *td_offset |= (sizeof(struct udp_hdr) >> 2) <<
+ ICE_TX_DESC_LEN_L4_LEN_S;
+ break;
+ default:
+ break;
+ }
+}
+
+static inline int
+ice_xmit_cleanup(struct ice_tx_queue *txq)
+{
+ struct ice_tx_entry *sw_ring = txq->sw_ring;
+ volatile struct ice_tx_desc *txd = txq->tx_ring;
+ uint16_t last_desc_cleaned = txq->last_desc_cleaned;
+ uint16_t nb_tx_desc = txq->nb_tx_desc;
+ uint16_t desc_to_clean_to;
+ uint16_t nb_tx_to_clean;
+
+ /* Determine the last descriptor needing to be cleaned */
+ desc_to_clean_to = (uint16_t)(last_desc_cleaned + txq->tx_rs_thresh);
+ if (desc_to_clean_to >= nb_tx_desc)
+ desc_to_clean_to = (uint16_t)(desc_to_clean_to - nb_tx_desc);
+
+ /* Check to make sure the last descriptor to clean is done */
+ desc_to_clean_to = sw_ring[desc_to_clean_to].last_id;
+ if (!(txd[desc_to_clean_to].cmd_type_offset_bsz &
+ rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))) {
+ PMD_TX_FREE_LOG(DEBUG, "TX descriptor %4u is not done "
+ "(port=%d queue=%d) value=0x%"PRIx64"\n",
+ desc_to_clean_to,
+ txq->port_id, txq->queue_id,
+ txd[desc_to_clean_to].cmd_type_offset_bsz);
+ /* Failed to clean any descriptors */
+ return -1;
+ }
+
+ /* Figure out how many descriptors will be cleaned */
+ if (last_desc_cleaned > desc_to_clean_to)
+ nb_tx_to_clean = (uint16_t)((nb_tx_desc - last_desc_cleaned) +
+ desc_to_clean_to);
+ else
+ nb_tx_to_clean = (uint16_t)(desc_to_clean_to -
+ last_desc_cleaned);
+
+ /* The last descriptor to clean is done, so that means all the
+ * descriptors from the last descriptor that was cleaned
+ * up to the last descriptor with the RS bit set
+ * are done. Only reset the threshold descriptor.
+ */
+ txd[desc_to_clean_to].cmd_type_offset_bsz = 0;
+
+ /* Update the txq to reflect the last descriptor that was cleaned */
+ txq->last_desc_cleaned = desc_to_clean_to;
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + nb_tx_to_clean);
+
+ return 0;
+}
+
+/* Construct the tx flags */
+static inline uint64_t
+ice_build_ctob(uint32_t td_cmd,
+ uint32_t td_offset,
+ uint16_t size,
+ uint32_t td_tag)
+{
+ return rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
+ ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
+ ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
+ ((uint64_t)size << ICE_TXD_QW1_TX_BUF_SZ_S) |
+ ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
+}
+
+/* Check if the context descriptor is needed for TX offloading */
+static inline uint16_t
+ice_calc_context_desc(uint64_t flags)
+{
+ static uint64_t mask = PKT_TX_TCP_SEG | PKT_TX_QINQ;
+
+ return (flags & mask) ? 1 : 0;
+}
+
+/* set ice TSO context descriptor */
+static inline uint64_t
+ice_set_tso_ctx(struct rte_mbuf *mbuf, union ice_tx_offload tx_offload)
+{
+ uint64_t ctx_desc = 0;
+ uint32_t cd_cmd, hdr_len, cd_tso_len;
+
+ if (!tx_offload.l4_len) {
+ PMD_TX_LOG(DEBUG, "L4 length set to 0");
+ return ctx_desc;
+ }
+
+ /**
+ * in case of non tunneling packet, the outer_l2_len and
+ * outer_l3_len must be 0.
+ */
+ hdr_len = tx_offload.outer_l2_len +
+ tx_offload.outer_l3_len +
+ tx_offload.l2_len +
+ tx_offload.l3_len +
+ tx_offload.l4_len;
+
+ cd_cmd = ICE_TX_CTX_DESC_TSO;
+ cd_tso_len = mbuf->pkt_len - hdr_len;
+ ctx_desc |= ((uint64_t)cd_cmd << ICE_TXD_CTX_QW1_CMD_S) |
+ ((uint64_t)cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
+ ((uint64_t)mbuf->tso_segsz << ICE_TXD_CTX_QW1_MSS_S);
+
+ return ctx_desc;
+}
+
+uint16_t
+ice_xmit_pkts(void *tx_queue, struct rte_mbuf **tx_pkts, uint16_t nb_pkts)
+{
+ struct ice_tx_queue *txq;
+ volatile struct ice_tx_desc *tx_ring;
+ volatile struct ice_tx_desc *txd;
+ struct ice_tx_entry *sw_ring;
+ struct ice_tx_entry *txe, *txn;
+ struct rte_mbuf *tx_pkt;
+ struct rte_mbuf *m_seg;
+ uint16_t tx_id;
+ uint16_t nb_tx;
+ uint16_t nb_used;
+ uint16_t nb_ctx;
+ uint32_t td_cmd = 0;
+ uint32_t td_offset = 0;
+ uint32_t td_tag = 0;
+ uint16_t tx_last;
+ uint64_t buf_dma_addr;
+ uint64_t ol_flags;
+ union ice_tx_offload tx_offload = {0};
+
+ txq = tx_queue;
+ sw_ring = txq->sw_ring;
+ tx_ring = txq->tx_ring;
+ tx_id = txq->tx_tail;
+ txe = &sw_ring[tx_id];
+
+ /* Check if the descriptor ring needs to be cleaned. */
+ if (txq->nb_tx_free < txq->tx_free_thresh)
+ ice_xmit_cleanup(txq);
+
+ for (nb_tx = 0; nb_tx < nb_pkts; nb_tx++) {
+ tx_pkt = *tx_pkts++;
+
+ td_cmd = 0;
+ ol_flags = tx_pkt->ol_flags;
+ tx_offload.l2_len = tx_pkt->l2_len;
+ tx_offload.l3_len = tx_pkt->l3_len;
+ tx_offload.outer_l2_len = tx_pkt->outer_l2_len;
+ tx_offload.outer_l3_len = tx_pkt->outer_l3_len;
+ tx_offload.l4_len = tx_pkt->l4_len;
+ tx_offload.tso_segsz = tx_pkt->tso_segsz;
+ /* Calculate the number of context descriptors needed. */
+ nb_ctx = ice_calc_context_desc(ol_flags);
+
+ /* The number of descriptors that must be allocated for
+ * a packet equals to the number of the segments of that
+ * packet plus the number of context descriptor if needed.
+ */
+ nb_used = (uint16_t)(tx_pkt->nb_segs + nb_ctx);
+ tx_last = (uint16_t)(tx_id + nb_used - 1);
+
+ /* Circular ring */
+ if (tx_last >= txq->nb_tx_desc)
+ tx_last = (uint16_t)(tx_last - txq->nb_tx_desc);
+
+ if (nb_used > txq->nb_tx_free) {
+ if (ice_xmit_cleanup(txq) != 0) {
+ if (nb_tx == 0)
+ return 0;
+ goto end_of_tx;
+ }
+ if (unlikely(nb_used > txq->tx_rs_thresh)) {
+ while (nb_used > txq->nb_tx_free) {
+ if (ice_xmit_cleanup(txq) != 0) {
+ if (nb_tx == 0)
+ return 0;
+ goto end_of_tx;
+ }
+ }
+ }
+ }
+
+ /* Descriptor based VLAN insertion */
+ if (ol_flags & (PKT_TX_VLAN | PKT_TX_QINQ)) {
+ td_cmd |= ICE_TX_DESC_CMD_IL2TAG1;
+ td_tag = tx_pkt->vlan_tci;
+ }
+
+ /* Enable checksum offloading */
+ if (ol_flags & ICE_TX_CKSUM_OFFLOAD_MASK) {
+ ice_txd_enable_checksum(ol_flags, &td_cmd,
+ &td_offset, tx_offload);
+ }
+
+ if (nb_ctx) {
+ /* Setup TX context descriptor if required */
+ volatile struct ice_tx_ctx_desc *ctx_txd =
+ (volatile struct ice_tx_ctx_desc *)
+ &tx_ring[tx_id];
+ uint16_t cd_l2tag2 = 0;
+ uint64_t cd_type_cmd_tso_mss = ICE_TX_DESC_DTYPE_CTX;
+
+ txn = &sw_ring[txe->next_id];
+ RTE_MBUF_PREFETCH_TO_FREE(txn->mbuf);
+ if (txe->mbuf) {
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = NULL;
+ }
+
+ if (ol_flags & PKT_TX_TCP_SEG)
+ cd_type_cmd_tso_mss |=
+ ice_set_tso_ctx(tx_pkt, tx_offload);
+
+ /* TX context descriptor based double VLAN insert */
+ if (ol_flags & PKT_TX_QINQ) {
+ cd_l2tag2 = tx_pkt->vlan_tci_outer;
+ cd_type_cmd_tso_mss |=
+ ((uint64_t)ICE_TX_CTX_DESC_IL2TAG2 <<
+ ICE_TXD_CTX_QW1_CMD_S);
+ }
+ ctx_txd->l2tag2 = rte_cpu_to_le_16(cd_l2tag2);
+ ctx_txd->qw1 =
+ rte_cpu_to_le_64(cd_type_cmd_tso_mss);
+
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ }
+ m_seg = tx_pkt;
+
+ do {
+ txd = &tx_ring[tx_id];
+ txn = &sw_ring[txe->next_id];
+
+ if (txe->mbuf)
+ rte_pktmbuf_free_seg(txe->mbuf);
+ txe->mbuf = m_seg;
+
+ /* Setup TX Descriptor */
+ buf_dma_addr = rte_mbuf_data_iova(m_seg);
+ txd->buf_addr = rte_cpu_to_le_64(buf_dma_addr);
+ txd->cmd_type_offset_bsz =
+ rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DATA |
+ ((uint64_t)td_cmd << ICE_TXD_QW1_CMD_S) |
+ ((uint64_t)td_offset << ICE_TXD_QW1_OFFSET_S) |
+ ((uint64_t)m_seg->data_len <<
+ ICE_TXD_QW1_TX_BUF_SZ_S) |
+ ((uint64_t)td_tag << ICE_TXD_QW1_L2TAG1_S));
+
+ txe->last_id = tx_last;
+ tx_id = txe->next_id;
+ txe = txn;
+ m_seg = m_seg->next;
+ } while (m_seg);
+
+ /* fill the last descriptor with End of Packet (EOP) bit */
+ td_cmd |= ICE_TX_DESC_CMD_EOP;
+ txq->nb_tx_used = (uint16_t)(txq->nb_tx_used + nb_used);
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_used);
+
+ /* set RS bit on the last descriptor of one packet */
+ if (txq->nb_tx_used >= txq->tx_rs_thresh) {
+ PMD_TX_FREE_LOG(DEBUG,
+ "Setting RS bit on TXD id="
+ "%4u (port=%d queue=%d)",
+ tx_last, txq->port_id, txq->queue_id);
+
+ td_cmd |= ICE_TX_DESC_CMD_RS;
+
+ /* Update txq RS bit counters */
+ txq->nb_tx_used = 0;
+ }
+ txd->cmd_type_offset_bsz |=
+ rte_cpu_to_le_64(((uint64_t)td_cmd) <<
+ ICE_TXD_QW1_CMD_S);
+ }
+end_of_tx:
+ rte_wmb();
+
+ /* update Tail register */
+ ICE_PCI_REG_WRITE(txq->qtx_tail, tx_id);
+ txq->tx_tail = tx_id;
+
+ return nb_tx;
+}
+
+static inline int __attribute__((always_inline))
+ice_tx_free_bufs(struct ice_tx_queue *txq)
+{
+ struct ice_tx_entry *txep;
+ uint16_t i;
+
+ if ((txq->tx_ring[txq->tx_next_dd].cmd_type_offset_bsz &
+ rte_cpu_to_le_64(ICE_TXD_QW1_DTYPE_M)) !=
+ rte_cpu_to_le_64(ICE_TX_DESC_DTYPE_DESC_DONE))
+ return 0;
+
+ txep = &txq->sw_ring[txq->tx_next_dd - (txq->tx_rs_thresh - 1)];
+
+ for (i = 0; i < txq->tx_rs_thresh; i++)
+ rte_prefetch0((txep + i)->mbuf);
+
+ if (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) {
+ for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
+ rte_mempool_put(txep->mbuf->pool, txep->mbuf);
+ txep->mbuf = NULL;
+ }
+ } else {
+ for (i = 0; i < txq->tx_rs_thresh; ++i, ++txep) {
+ rte_pktmbuf_free_seg(txep->mbuf);
+ txep->mbuf = NULL;
+ }
+ }
+
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free + txq->tx_rs_thresh);
+ txq->tx_next_dd = (uint16_t)(txq->tx_next_dd + txq->tx_rs_thresh);
+ if (txq->tx_next_dd >= txq->nb_tx_desc)
+ txq->tx_next_dd = (uint16_t)(txq->tx_rs_thresh - 1);
+
+ return txq->tx_rs_thresh;
+}
+
+/* Populate 4 descriptors with data from 4 mbufs */
+static inline void
+tx4(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
+{
+ uint64_t dma_addr;
+ uint32_t i;
+
+ for (i = 0; i < 4; i++, txdp++, pkts++) {
+ dma_addr = rte_mbuf_data_iova(*pkts);
+ txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
+ txdp->cmd_type_offset_bsz =
+ ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
+ (*pkts)->data_len, 0);
+ }
+}
+
+/* Populate 1 descriptor with data from 1 mbuf */
+static inline void
+tx1(volatile struct ice_tx_desc *txdp, struct rte_mbuf **pkts)
+{
+ uint64_t dma_addr;
+
+ dma_addr = rte_mbuf_data_iova(*pkts);
+ txdp->buf_addr = rte_cpu_to_le_64(dma_addr);
+ txdp->cmd_type_offset_bsz =
+ ice_build_ctob((uint32_t)ICE_TD_CMD, 0,
+ (*pkts)->data_len, 0);
+}
+
+static inline void
+ice_tx_fill_hw_ring(struct ice_tx_queue *txq, struct rte_mbuf **pkts,
+ uint16_t nb_pkts)
+{
+ volatile struct ice_tx_desc *txdp = &txq->tx_ring[txq->tx_tail];
+ struct ice_tx_entry *txep = &txq->sw_ring[txq->tx_tail];
+ const int N_PER_LOOP = 4;
+ const int N_PER_LOOP_MASK = N_PER_LOOP - 1;
+ int mainpart, leftover;
+ int i, j;
+
+ /**
+ * Process most of the packets in chunks of N pkts. Any
+ * leftover packets will get processed one at a time.
+ */
+ mainpart = nb_pkts & ((uint32_t)~N_PER_LOOP_MASK);
+ leftover = nb_pkts & ((uint32_t)N_PER_LOOP_MASK);
+ for (i = 0; i < mainpart; i += N_PER_LOOP) {
+ /* Copy N mbuf pointers to the S/W ring */
+ for (j = 0; j < N_PER_LOOP; ++j)
+ (txep + i + j)->mbuf = *(pkts + i + j);
+ tx4(txdp + i, pkts + i);
+ }
+
+ if (unlikely(leftover > 0)) {
+ for (i = 0; i < leftover; ++i) {
+ (txep + mainpart + i)->mbuf = *(pkts + mainpart + i);
+ tx1(txdp + mainpart + i, pkts + mainpart + i);
+ }
+ }
+}
+
+static inline uint16_t
+tx_xmit_pkts(struct ice_tx_queue *txq,
+ struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ volatile struct ice_tx_desc *txr = txq->tx_ring;
+ uint16_t n = 0;
+
+ /**
+ * Begin scanning the H/W ring for done descriptors when the number
+ * of available descriptors drops below tx_free_thresh. For each done
+ * descriptor, free the associated buffer.
+ */
+ if (txq->nb_tx_free < txq->tx_free_thresh)
+ ice_tx_free_bufs(txq);
+
+ /* Use available descriptor only */
+ nb_pkts = (uint16_t)RTE_MIN(txq->nb_tx_free, nb_pkts);
+ if (unlikely(!nb_pkts))
+ return 0;
+
+ txq->nb_tx_free = (uint16_t)(txq->nb_tx_free - nb_pkts);
+ if ((txq->tx_tail + nb_pkts) > txq->nb_tx_desc) {
+ n = (uint16_t)(txq->nb_tx_desc - txq->tx_tail);
+ ice_tx_fill_hw_ring(txq, tx_pkts, n);
+ txr[txq->tx_next_rs].cmd_type_offset_bsz |=
+ rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
+ ICE_TXD_QW1_CMD_S);
+ txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+ txq->tx_tail = 0;
+ }
+
+ /* Fill hardware descriptor ring with mbuf data */
+ ice_tx_fill_hw_ring(txq, tx_pkts + n, (uint16_t)(nb_pkts - n));
+ txq->tx_tail = (uint16_t)(txq->tx_tail + (nb_pkts - n));
+
+ /* Determin if RS bit needs to be set */
+ if (txq->tx_tail > txq->tx_next_rs) {
+ txr[txq->tx_next_rs].cmd_type_offset_bsz |=
+ rte_cpu_to_le_64(((uint64_t)ICE_TX_DESC_CMD_RS) <<
+ ICE_TXD_QW1_CMD_S);
+ txq->tx_next_rs =
+ (uint16_t)(txq->tx_next_rs + txq->tx_rs_thresh);
+ if (txq->tx_next_rs >= txq->nb_tx_desc)
+ txq->tx_next_rs = (uint16_t)(txq->tx_rs_thresh - 1);
+ }
+
+ if (txq->tx_tail >= txq->nb_tx_desc)
+ txq->tx_tail = 0;
+
+ /* Update the tx tail register */
+ rte_wmb();
+ ICE_PCI_REG_WRITE(txq->qtx_tail, txq->tx_tail);
+
+ return nb_pkts;
+}
+
+static uint16_t
+ice_xmit_pkts_simple(void *tx_queue,
+ struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ uint16_t nb_tx = 0;
+
+ if (likely(nb_pkts <= ICE_TX_MAX_BURST))
+ return tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
+ tx_pkts, nb_pkts);
+
+ while (nb_pkts) {
+ uint16_t ret, num = (uint16_t)RTE_MIN(nb_pkts,
+ ICE_TX_MAX_BURST);
+
+ ret = tx_xmit_pkts((struct ice_tx_queue *)tx_queue,
+ &tx_pkts[nb_tx], num);
+ nb_tx = (uint16_t)(nb_tx + ret);
+ nb_pkts = (uint16_t)(nb_pkts - ret);
+ if (ret < num)
+ break;
+ }
+
+ return nb_tx;
+}
+
+void __attribute__((cold))
+ice_set_rx_function(struct rte_eth_dev *dev)
+{
+ PMD_INIT_FUNC_TRACE();
+ struct ice_adapter *ad =
+ ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+#ifdef RTE_ARCH_X86
+ struct ice_rx_queue *rxq;
+ int i;
+ bool use_avx2 = false;
+
+ if (!ice_rx_vec_dev_check(dev)) {
+ for (i = 0; i < dev->data->nb_rx_queues; i++) {
+ rxq = dev->data->rx_queues[i];
+ (void)ice_rxq_vec_setup(rxq);
+ }
+
+ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
+ rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
+ use_avx2 = true;
+
+ if (dev->data->scattered_rx) {
+ PMD_DRV_LOG(DEBUG,
+ "Using %sVector Scattered Rx (port %d).",
+ use_avx2 ? "avx2 " : "",
+ dev->data->port_id);
+ dev->rx_pkt_burst = use_avx2 ?
+ ice_recv_scattered_pkts_vec_avx2 :
+ ice_recv_scattered_pkts_vec;
+ } else {
+ PMD_DRV_LOG(DEBUG, "Using %sVector Rx (port %d).",
+ use_avx2 ? "avx2 " : "",
+ dev->data->port_id);
+ dev->rx_pkt_burst = use_avx2 ?
+ ice_recv_pkts_vec_avx2 :
+ ice_recv_pkts_vec;
+ }
+
+ return;
+ }
+#endif
+
+ if (dev->data->scattered_rx) {
+ /* Set the non-LRO scattered function */
+ PMD_INIT_LOG(DEBUG,
+ "Using a Scattered function on port %d.",
+ dev->data->port_id);
+ dev->rx_pkt_burst = ice_recv_scattered_pkts;
+ } else if (ad->rx_bulk_alloc_allowed) {
+ PMD_INIT_LOG(DEBUG,
+ "Rx Burst Bulk Alloc Preconditions are "
+ "satisfied. Rx Burst Bulk Alloc function "
+ "will be used on port %d.",
+ dev->data->port_id);
+ dev->rx_pkt_burst = ice_recv_pkts_bulk_alloc;
+ } else {
+ PMD_INIT_LOG(DEBUG,
+ "Rx Burst Bulk Alloc Preconditions are not "
+ "satisfied, Normal Rx will be used on port %d.",
+ dev->data->port_id);
+ dev->rx_pkt_burst = ice_recv_pkts;
+ }
+}
+
+void __attribute__((cold))
+ice_set_tx_function_flag(struct rte_eth_dev *dev, struct ice_tx_queue *txq)
+{
+ struct ice_adapter *ad =
+ ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+
+ /* Use a simple Tx queue if possible (only fast free is allowed) */
+ ad->tx_simple_allowed =
+ (txq->offloads ==
+ (txq->offloads & DEV_TX_OFFLOAD_MBUF_FAST_FREE) &&
+ txq->tx_rs_thresh >= ICE_TX_MAX_BURST);
+
+ if (ad->tx_simple_allowed)
+ PMD_INIT_LOG(DEBUG, "Simple Tx can be enabled on Tx queue %u.",
+ txq->queue_id);
+ else
+ PMD_INIT_LOG(DEBUG,
+ "Simple Tx can NOT be enabled on Tx queue %u.",
+ txq->queue_id);
+}
+
+/*********************************************************************
+ *
+ * TX prep functions
+ *
+ **********************************************************************/
+/* The default values of TSO MSS */
+#define ICE_MIN_TSO_MSS 64
+#define ICE_MAX_TSO_MSS 9728
+#define ICE_MAX_TSO_FRAME_SIZE 262144
+uint16_t
+ice_prep_pkts(__rte_unused void *tx_queue, struct rte_mbuf **tx_pkts,
+ uint16_t nb_pkts)
+{
+ int i, ret;
+ uint64_t ol_flags;
+ struct rte_mbuf *m;
+
+ for (i = 0; i < nb_pkts; i++) {
+ m = tx_pkts[i];
+ ol_flags = m->ol_flags;
+
+ if (ol_flags & PKT_TX_TCP_SEG &&
+ (m->tso_segsz < ICE_MIN_TSO_MSS ||
+ m->tso_segsz > ICE_MAX_TSO_MSS ||
+ m->pkt_len > ICE_MAX_TSO_FRAME_SIZE)) {
+ /**
+ * MSS outside the range are considered malicious
+ */
+ rte_errno = -EINVAL;
+ return i;
+ }
+
+#ifdef RTE_LIBRTE_ETHDEV_DEBUG
+ ret = rte_validate_tx_offload(m);
+ if (ret != 0) {
+ rte_errno = ret;
+ return i;
+ }
+#endif
+ ret = rte_net_intel_cksum_prepare(m);
+ if (ret != 0) {
+ rte_errno = ret;
+ return i;
+ }
+ }
+ return i;
+}
+
+void __attribute__((cold))
+ice_set_tx_function(struct rte_eth_dev *dev)
+{
+ struct ice_adapter *ad =
+ ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+#ifdef RTE_ARCH_X86
+ struct ice_tx_queue *txq;
+ int i;
+ bool use_avx2 = false;
+
+ if (!ice_tx_vec_dev_check(dev)) {
+ for (i = 0; i < dev->data->nb_tx_queues; i++) {
+ txq = dev->data->tx_queues[i];
+ (void)ice_txq_vec_setup(txq);
+ }
+
+ if (rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX2) == 1 ||
+ rte_cpu_get_flag_enabled(RTE_CPUFLAG_AVX512F) == 1)
+ use_avx2 = true;
+
+ PMD_DRV_LOG(DEBUG, "Using %sVector Tx (port %d).",
+ use_avx2 ? "avx2 " : "",
+ dev->data->port_id);
+ dev->tx_pkt_burst = use_avx2 ?
+ ice_xmit_pkts_vec_avx2 :
+ ice_xmit_pkts_vec;
+ dev->tx_pkt_prepare = NULL;
+
+ return;
+ }
+#endif
+
+ if (ad->tx_simple_allowed) {
+ PMD_INIT_LOG(DEBUG, "Simple tx finally be used.");
+ dev->tx_pkt_burst = ice_xmit_pkts_simple;
+ dev->tx_pkt_prepare = NULL;
+ } else {
+ PMD_INIT_LOG(DEBUG, "Normal tx finally be used.");
+ dev->tx_pkt_burst = ice_xmit_pkts;
+ dev->tx_pkt_prepare = ice_prep_pkts;
+ }
+}
+
+/* For each value it means, datasheet of hardware can tell more details
+ *
+ * @note: fix ice_dev_supported_ptypes_get() if any change here.
+ */
+static inline uint32_t
+ice_get_default_pkt_type(uint16_t ptype)
+{
+ static const uint32_t type_table[ICE_MAX_PKT_TYPE]
+ __rte_cache_aligned = {
+ /* L2 types */
+ /* [0] reserved */
+ [1] = RTE_PTYPE_L2_ETHER,
+ /* [2] - [5] reserved */
+ [6] = RTE_PTYPE_L2_ETHER_LLDP,
+ /* [7] - [10] reserved */
+ [11] = RTE_PTYPE_L2_ETHER_ARP,
+ /* [12] - [21] reserved */
+
+ /* Non tunneled IPv4 */
+ [22] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_FRAG,
+ [23] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_NONFRAG,
+ [24] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_UDP,
+ /* [25] reserved */
+ [26] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_TCP,
+ [27] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_SCTP,
+ [28] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_L4_ICMP,
+
+ /* IPv4 --> IPv4 */
+ [29] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [30] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [31] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [32] reserved */
+ [33] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [34] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [35] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> IPv6 */
+ [36] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [37] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [38] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [39] reserved */
+ [40] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [41] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [42] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> GRE/Teredo/VXLAN */
+ [43] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> IPv4 */
+ [44] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [45] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [46] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [47] reserved */
+ [48] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [49] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [50] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> IPv6 */
+ [51] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [52] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [53] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [54] reserved */
+ [55] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [56] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [57] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> MAC */
+ [58] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
+ [59] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [60] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [61] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [62] reserved */
+ [63] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [64] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [65] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
+ [66] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [67] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [68] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [69] reserved */
+ [70] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [71] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [72] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN */
+ [73] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
+ [74] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [75] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [76] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [77] reserved */
+ [78] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [79] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [80] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv4 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
+ [81] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [82] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [83] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [84] reserved */
+ [85] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [86] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [87] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* Non tunneled IPv6 */
+ [88] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_FRAG,
+ [89] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_NONFRAG,
+ [90] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_UDP,
+ /* [91] reserved */
+ [92] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_TCP,
+ [93] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_SCTP,
+ [94] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_L4_ICMP,
+
+ /* IPv6 --> IPv4 */
+ [95] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [96] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [97] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [98] reserved */
+ [99] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [100] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [101] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> IPv6 */
+ [102] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [103] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [104] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [105] reserved */
+ [106] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [107] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [108] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_IP |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> GRE/Teredo/VXLAN */
+ [109] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> IPv4 */
+ [110] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [111] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [112] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [113] reserved */
+ [114] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [115] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [116] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> IPv6 */
+ [117] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [118] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [119] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [120] reserved */
+ [121] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [122] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [123] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> MAC */
+ [124] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv4 */
+ [125] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [126] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [127] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [128] reserved */
+ [129] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [130] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [131] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> MAC --> IPv6 */
+ [132] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [133] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [134] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [135] reserved */
+ [136] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [137] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [138] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT | RTE_PTYPE_INNER_L2_ETHER |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN */
+ [139] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv4 */
+ [140] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [141] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [142] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [143] reserved */
+ [144] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [145] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [146] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+
+ /* IPv6 --> GRE/Teredo/VXLAN --> MAC/VLAN --> IPv6 */
+ [147] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_FRAG,
+ [148] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_NONFRAG,
+ [149] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_UDP,
+ /* [150] reserved */
+ [151] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_TCP,
+ [152] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_SCTP,
+ [153] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GRENAT |
+ RTE_PTYPE_INNER_L2_ETHER_VLAN |
+ RTE_PTYPE_INNER_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_INNER_L4_ICMP,
+ /* [154] - [255] reserved */
+ [256] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GTPC,
+ [257] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GTPC,
+ [258] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GTPU,
+ [259] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV4_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GTPU,
+ /* [260] - [263] reserved */
+ [264] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GTPC,
+ [265] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GTPC,
+ [266] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GTPU,
+ [267] = RTE_PTYPE_L2_ETHER | RTE_PTYPE_L3_IPV6_EXT_UNKNOWN |
+ RTE_PTYPE_TUNNEL_GTPU,
+
+ /* All others reserved */
+ };
+
+ return type_table[ptype];
+}
+
+void __attribute__((cold))
+ice_set_default_ptype_table(struct rte_eth_dev *dev)
+{
+ struct ice_adapter *ad =
+ ICE_DEV_PRIVATE_TO_ADAPTER(dev->data->dev_private);
+ int i;
+
+ for (i = 0; i < ICE_MAX_PKT_TYPE; i++)
+ ad->ptype_tbl[i] = ice_get_default_pkt_type(i);
+}