summaryrefslogtreecommitdiffstats
path: root/src/spdk/dpdk/app/test-bbdev/test_bbdev_perf.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
commit19fcec84d8d7d21e796c7624e521b60d28ee21ed (patch)
tree42d26aa27d1e3f7c0b8bd3fd14e7d7082f5008dc /src/spdk/dpdk/app/test-bbdev/test_bbdev_perf.c
parentInitial commit. (diff)
downloadceph-19fcec84d8d7d21e796c7624e521b60d28ee21ed.tar.xz
ceph-19fcec84d8d7d21e796c7624e521b60d28ee21ed.zip
Adding upstream version 16.2.11+ds.upstream/16.2.11+dsupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/spdk/dpdk/app/test-bbdev/test_bbdev_perf.c')
-rw-r--r--src/spdk/dpdk/app/test-bbdev/test_bbdev_perf.c4933
1 files changed, 4933 insertions, 0 deletions
diff --git a/src/spdk/dpdk/app/test-bbdev/test_bbdev_perf.c b/src/spdk/dpdk/app/test-bbdev/test_bbdev_perf.c
new file mode 100644
index 000000000..45c0d62ac
--- /dev/null
+++ b/src/spdk/dpdk/app/test-bbdev/test_bbdev_perf.c
@@ -0,0 +1,4933 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2017 Intel Corporation
+ */
+
+#include <stdio.h>
+#include <inttypes.h>
+#include <math.h>
+
+#include <rte_eal.h>
+#include <rte_common.h>
+#include <rte_dev.h>
+#include <rte_launch.h>
+#include <rte_bbdev.h>
+#include <rte_cycles.h>
+#include <rte_lcore.h>
+#include <rte_malloc.h>
+#include <rte_random.h>
+#include <rte_hexdump.h>
+#include <rte_interrupts.h>
+
+#include "main.h"
+#include "test_bbdev_vector.h"
+
+#define GET_SOCKET(socket_id) (((socket_id) == SOCKET_ID_ANY) ? 0 : (socket_id))
+
+#define MAX_QUEUES RTE_MAX_LCORE
+#define TEST_REPETITIONS 1000
+
+#ifdef RTE_LIBRTE_PMD_BBDEV_FPGA_LTE_FEC
+#include <fpga_lte_fec.h>
+#define FPGA_LTE_PF_DRIVER_NAME ("intel_fpga_lte_fec_pf")
+#define FPGA_LTE_VF_DRIVER_NAME ("intel_fpga_lte_fec_vf")
+#define VF_UL_4G_QUEUE_VALUE 4
+#define VF_DL_4G_QUEUE_VALUE 4
+#define UL_4G_BANDWIDTH 3
+#define DL_4G_BANDWIDTH 3
+#define UL_4G_LOAD_BALANCE 128
+#define DL_4G_LOAD_BALANCE 128
+#define FLR_4G_TIMEOUT 610
+#endif
+
+#ifdef RTE_LIBRTE_PMD_BBDEV_FPGA_5GNR_FEC
+#include <rte_pmd_fpga_5gnr_fec.h>
+#define FPGA_5GNR_PF_DRIVER_NAME ("intel_fpga_5gnr_fec_pf")
+#define FPGA_5GNR_VF_DRIVER_NAME ("intel_fpga_5gnr_fec_vf")
+#define VF_UL_5G_QUEUE_VALUE 4
+#define VF_DL_5G_QUEUE_VALUE 4
+#define UL_5G_BANDWIDTH 3
+#define DL_5G_BANDWIDTH 3
+#define UL_5G_LOAD_BALANCE 128
+#define DL_5G_LOAD_BALANCE 128
+#define FLR_5G_TIMEOUT 610
+#endif
+
+#define OPS_CACHE_SIZE 256U
+#define OPS_POOL_SIZE_MIN 511U /* 0.5K per queue */
+
+#define SYNC_WAIT 0
+#define SYNC_START 1
+#define INVALID_OPAQUE -1
+
+#define INVALID_QUEUE_ID -1
+/* Increment for next code block in external HARQ memory */
+#define HARQ_INCR 32768
+/* Headroom for filler LLRs insertion in HARQ buffer */
+#define FILLER_HEADROOM 1024
+/* Constants from K0 computation from 3GPP 38.212 Table 5.4.2.1-2 */
+#define N_ZC_1 66 /* N = 66 Zc for BG 1 */
+#define N_ZC_2 50 /* N = 50 Zc for BG 2 */
+#define K0_1_1 17 /* K0 fraction numerator for rv 1 and BG 1 */
+#define K0_1_2 13 /* K0 fraction numerator for rv 1 and BG 2 */
+#define K0_2_1 33 /* K0 fraction numerator for rv 2 and BG 1 */
+#define K0_2_2 25 /* K0 fraction numerator for rv 2 and BG 2 */
+#define K0_3_1 56 /* K0 fraction numerator for rv 3 and BG 1 */
+#define K0_3_2 43 /* K0 fraction numerator for rv 3 and BG 2 */
+
+static struct test_bbdev_vector test_vector;
+
+/* Switch between PMD and Interrupt for throughput TC */
+static bool intr_enabled;
+
+/* LLR arithmetic representation for numerical conversion */
+static int ldpc_llr_decimals;
+static int ldpc_llr_size;
+/* Keep track of the LDPC decoder device capability flag */
+static uint32_t ldpc_cap_flags;
+
+/* Represents tested active devices */
+static struct active_device {
+ const char *driver_name;
+ uint8_t dev_id;
+ uint16_t supported_ops;
+ uint16_t queue_ids[MAX_QUEUES];
+ uint16_t nb_queues;
+ struct rte_mempool *ops_mempool;
+ struct rte_mempool *in_mbuf_pool;
+ struct rte_mempool *hard_out_mbuf_pool;
+ struct rte_mempool *soft_out_mbuf_pool;
+ struct rte_mempool *harq_in_mbuf_pool;
+ struct rte_mempool *harq_out_mbuf_pool;
+} active_devs[RTE_BBDEV_MAX_DEVS];
+
+static uint8_t nb_active_devs;
+
+/* Data buffers used by BBDEV ops */
+struct test_buffers {
+ struct rte_bbdev_op_data *inputs;
+ struct rte_bbdev_op_data *hard_outputs;
+ struct rte_bbdev_op_data *soft_outputs;
+ struct rte_bbdev_op_data *harq_inputs;
+ struct rte_bbdev_op_data *harq_outputs;
+};
+
+/* Operation parameters specific for given test case */
+struct test_op_params {
+ struct rte_mempool *mp;
+ struct rte_bbdev_dec_op *ref_dec_op;
+ struct rte_bbdev_enc_op *ref_enc_op;
+ uint16_t burst_sz;
+ uint16_t num_to_process;
+ uint16_t num_lcores;
+ int vector_mask;
+ rte_atomic16_t sync;
+ struct test_buffers q_bufs[RTE_MAX_NUMA_NODES][MAX_QUEUES];
+};
+
+/* Contains per lcore params */
+struct thread_params {
+ uint8_t dev_id;
+ uint16_t queue_id;
+ uint32_t lcore_id;
+ uint64_t start_time;
+ double ops_per_sec;
+ double mbps;
+ uint8_t iter_count;
+ double iter_average;
+ double bler;
+ rte_atomic16_t nb_dequeued;
+ rte_atomic16_t processing_status;
+ rte_atomic16_t burst_sz;
+ struct test_op_params *op_params;
+ struct rte_bbdev_dec_op *dec_ops[MAX_BURST];
+ struct rte_bbdev_enc_op *enc_ops[MAX_BURST];
+};
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+/* Stores time statistics */
+struct test_time_stats {
+ /* Stores software enqueue total working time */
+ uint64_t enq_sw_total_time;
+ /* Stores minimum value of software enqueue working time */
+ uint64_t enq_sw_min_time;
+ /* Stores maximum value of software enqueue working time */
+ uint64_t enq_sw_max_time;
+ /* Stores turbo enqueue total working time */
+ uint64_t enq_acc_total_time;
+ /* Stores minimum value of accelerator enqueue working time */
+ uint64_t enq_acc_min_time;
+ /* Stores maximum value of accelerator enqueue working time */
+ uint64_t enq_acc_max_time;
+ /* Stores dequeue total working time */
+ uint64_t deq_total_time;
+ /* Stores minimum value of dequeue working time */
+ uint64_t deq_min_time;
+ /* Stores maximum value of dequeue working time */
+ uint64_t deq_max_time;
+};
+#endif
+
+typedef int (test_case_function)(struct active_device *ad,
+ struct test_op_params *op_params);
+
+static inline void
+mbuf_reset(struct rte_mbuf *m)
+{
+ m->pkt_len = 0;
+
+ do {
+ m->data_len = 0;
+ m = m->next;
+ } while (m != NULL);
+}
+
+/* Read flag value 0/1 from bitmap */
+static inline bool
+check_bit(uint32_t bitmap, uint32_t bitmask)
+{
+ return bitmap & bitmask;
+}
+
+static inline void
+set_avail_op(struct active_device *ad, enum rte_bbdev_op_type op_type)
+{
+ ad->supported_ops |= (1 << op_type);
+}
+
+static inline bool
+is_avail_op(struct active_device *ad, enum rte_bbdev_op_type op_type)
+{
+ return ad->supported_ops & (1 << op_type);
+}
+
+static inline bool
+flags_match(uint32_t flags_req, uint32_t flags_present)
+{
+ return (flags_req & flags_present) == flags_req;
+}
+
+static void
+clear_soft_out_cap(uint32_t *op_flags)
+{
+ *op_flags &= ~RTE_BBDEV_TURBO_SOFT_OUTPUT;
+ *op_flags &= ~RTE_BBDEV_TURBO_POS_LLR_1_BIT_SOFT_OUT;
+ *op_flags &= ~RTE_BBDEV_TURBO_NEG_LLR_1_BIT_SOFT_OUT;
+}
+
+static int
+check_dev_cap(const struct rte_bbdev_info *dev_info)
+{
+ unsigned int i;
+ unsigned int nb_inputs, nb_soft_outputs, nb_hard_outputs,
+ nb_harq_inputs, nb_harq_outputs;
+ const struct rte_bbdev_op_cap *op_cap = dev_info->drv.capabilities;
+
+ nb_inputs = test_vector.entries[DATA_INPUT].nb_segments;
+ nb_soft_outputs = test_vector.entries[DATA_SOFT_OUTPUT].nb_segments;
+ nb_hard_outputs = test_vector.entries[DATA_HARD_OUTPUT].nb_segments;
+ nb_harq_inputs = test_vector.entries[DATA_HARQ_INPUT].nb_segments;
+ nb_harq_outputs = test_vector.entries[DATA_HARQ_OUTPUT].nb_segments;
+
+ for (i = 0; op_cap->type != RTE_BBDEV_OP_NONE; ++i, ++op_cap) {
+ if (op_cap->type != test_vector.op_type)
+ continue;
+
+ if (op_cap->type == RTE_BBDEV_OP_TURBO_DEC) {
+ const struct rte_bbdev_op_cap_turbo_dec *cap =
+ &op_cap->cap.turbo_dec;
+ /* Ignore lack of soft output capability, just skip
+ * checking if soft output is valid.
+ */
+ if ((test_vector.turbo_dec.op_flags &
+ RTE_BBDEV_TURBO_SOFT_OUTPUT) &&
+ !(cap->capability_flags &
+ RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
+ printf(
+ "INFO: Device \"%s\" does not support soft output - soft output flags will be ignored.\n",
+ dev_info->dev_name);
+ clear_soft_out_cap(
+ &test_vector.turbo_dec.op_flags);
+ }
+
+ if (!flags_match(test_vector.turbo_dec.op_flags,
+ cap->capability_flags))
+ return TEST_FAILED;
+ if (nb_inputs > cap->num_buffers_src) {
+ printf("Too many inputs defined: %u, max: %u\n",
+ nb_inputs, cap->num_buffers_src);
+ return TEST_FAILED;
+ }
+ if (nb_soft_outputs > cap->num_buffers_soft_out &&
+ (test_vector.turbo_dec.op_flags &
+ RTE_BBDEV_TURBO_SOFT_OUTPUT)) {
+ printf(
+ "Too many soft outputs defined: %u, max: %u\n",
+ nb_soft_outputs,
+ cap->num_buffers_soft_out);
+ return TEST_FAILED;
+ }
+ if (nb_hard_outputs > cap->num_buffers_hard_out) {
+ printf(
+ "Too many hard outputs defined: %u, max: %u\n",
+ nb_hard_outputs,
+ cap->num_buffers_hard_out);
+ return TEST_FAILED;
+ }
+ if (intr_enabled && !(cap->capability_flags &
+ RTE_BBDEV_TURBO_DEC_INTERRUPTS)) {
+ printf(
+ "Dequeue interrupts are not supported!\n");
+ return TEST_FAILED;
+ }
+
+ return TEST_SUCCESS;
+ } else if (op_cap->type == RTE_BBDEV_OP_TURBO_ENC) {
+ const struct rte_bbdev_op_cap_turbo_enc *cap =
+ &op_cap->cap.turbo_enc;
+
+ if (!flags_match(test_vector.turbo_enc.op_flags,
+ cap->capability_flags))
+ return TEST_FAILED;
+ if (nb_inputs > cap->num_buffers_src) {
+ printf("Too many inputs defined: %u, max: %u\n",
+ nb_inputs, cap->num_buffers_src);
+ return TEST_FAILED;
+ }
+ if (nb_hard_outputs > cap->num_buffers_dst) {
+ printf(
+ "Too many hard outputs defined: %u, max: %u\n",
+ nb_hard_outputs, cap->num_buffers_dst);
+ return TEST_FAILED;
+ }
+ if (intr_enabled && !(cap->capability_flags &
+ RTE_BBDEV_TURBO_ENC_INTERRUPTS)) {
+ printf(
+ "Dequeue interrupts are not supported!\n");
+ return TEST_FAILED;
+ }
+
+ return TEST_SUCCESS;
+ } else if (op_cap->type == RTE_BBDEV_OP_LDPC_ENC) {
+ const struct rte_bbdev_op_cap_ldpc_enc *cap =
+ &op_cap->cap.ldpc_enc;
+
+ if (!flags_match(test_vector.ldpc_enc.op_flags,
+ cap->capability_flags)){
+ printf("Flag Mismatch\n");
+ return TEST_FAILED;
+ }
+ if (nb_inputs > cap->num_buffers_src) {
+ printf("Too many inputs defined: %u, max: %u\n",
+ nb_inputs, cap->num_buffers_src);
+ return TEST_FAILED;
+ }
+ if (nb_hard_outputs > cap->num_buffers_dst) {
+ printf(
+ "Too many hard outputs defined: %u, max: %u\n",
+ nb_hard_outputs, cap->num_buffers_dst);
+ return TEST_FAILED;
+ }
+ if (intr_enabled && !(cap->capability_flags &
+ RTE_BBDEV_LDPC_ENC_INTERRUPTS)) {
+ printf(
+ "Dequeue interrupts are not supported!\n");
+ return TEST_FAILED;
+ }
+
+ return TEST_SUCCESS;
+ } else if (op_cap->type == RTE_BBDEV_OP_LDPC_DEC) {
+ const struct rte_bbdev_op_cap_ldpc_dec *cap =
+ &op_cap->cap.ldpc_dec;
+
+ if (!flags_match(test_vector.ldpc_dec.op_flags,
+ cap->capability_flags)){
+ printf("Flag Mismatch\n");
+ return TEST_FAILED;
+ }
+ if (nb_inputs > cap->num_buffers_src) {
+ printf("Too many inputs defined: %u, max: %u\n",
+ nb_inputs, cap->num_buffers_src);
+ return TEST_FAILED;
+ }
+ if (nb_hard_outputs > cap->num_buffers_hard_out) {
+ printf(
+ "Too many hard outputs defined: %u, max: %u\n",
+ nb_hard_outputs,
+ cap->num_buffers_hard_out);
+ return TEST_FAILED;
+ }
+ if (nb_harq_inputs > cap->num_buffers_hard_out) {
+ printf(
+ "Too many HARQ inputs defined: %u, max: %u\n",
+ nb_hard_outputs,
+ cap->num_buffers_hard_out);
+ return TEST_FAILED;
+ }
+ if (nb_harq_outputs > cap->num_buffers_hard_out) {
+ printf(
+ "Too many HARQ outputs defined: %u, max: %u\n",
+ nb_hard_outputs,
+ cap->num_buffers_hard_out);
+ return TEST_FAILED;
+ }
+ if (intr_enabled && !(cap->capability_flags &
+ RTE_BBDEV_LDPC_DEC_INTERRUPTS)) {
+ printf(
+ "Dequeue interrupts are not supported!\n");
+ return TEST_FAILED;
+ }
+ if (intr_enabled && (test_vector.ldpc_dec.op_flags &
+ (RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE |
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE |
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK
+ ))) {
+ printf("Skip loop-back with interrupt\n");
+ return TEST_FAILED;
+ }
+ return TEST_SUCCESS;
+ }
+ }
+
+ if ((i == 0) && (test_vector.op_type == RTE_BBDEV_OP_NONE))
+ return TEST_SUCCESS; /* Special case for NULL device */
+
+ return TEST_FAILED;
+}
+
+/* calculates optimal mempool size not smaller than the val */
+static unsigned int
+optimal_mempool_size(unsigned int val)
+{
+ return rte_align32pow2(val + 1) - 1;
+}
+
+/* allocates mbuf mempool for inputs and outputs */
+static struct rte_mempool *
+create_mbuf_pool(struct op_data_entries *entries, uint8_t dev_id,
+ int socket_id, unsigned int mbuf_pool_size,
+ const char *op_type_str)
+{
+ unsigned int i;
+ uint32_t max_seg_sz = 0;
+ char pool_name[RTE_MEMPOOL_NAMESIZE];
+
+ /* find max input segment size */
+ for (i = 0; i < entries->nb_segments; ++i)
+ if (entries->segments[i].length > max_seg_sz)
+ max_seg_sz = entries->segments[i].length;
+
+ snprintf(pool_name, sizeof(pool_name), "%s_pool_%u", op_type_str,
+ dev_id);
+ return rte_pktmbuf_pool_create(pool_name, mbuf_pool_size, 0, 0,
+ RTE_MAX(max_seg_sz + RTE_PKTMBUF_HEADROOM
+ + FILLER_HEADROOM,
+ (unsigned int)RTE_MBUF_DEFAULT_BUF_SIZE), socket_id);
+}
+
+static int
+create_mempools(struct active_device *ad, int socket_id,
+ enum rte_bbdev_op_type org_op_type, uint16_t num_ops)
+{
+ struct rte_mempool *mp;
+ unsigned int ops_pool_size, mbuf_pool_size = 0;
+ char pool_name[RTE_MEMPOOL_NAMESIZE];
+ const char *op_type_str;
+ enum rte_bbdev_op_type op_type = org_op_type;
+
+ struct op_data_entries *in = &test_vector.entries[DATA_INPUT];
+ struct op_data_entries *hard_out =
+ &test_vector.entries[DATA_HARD_OUTPUT];
+ struct op_data_entries *soft_out =
+ &test_vector.entries[DATA_SOFT_OUTPUT];
+ struct op_data_entries *harq_in =
+ &test_vector.entries[DATA_HARQ_INPUT];
+ struct op_data_entries *harq_out =
+ &test_vector.entries[DATA_HARQ_OUTPUT];
+
+ /* allocate ops mempool */
+ ops_pool_size = optimal_mempool_size(RTE_MAX(
+ /* Ops used plus 1 reference op */
+ RTE_MAX((unsigned int)(ad->nb_queues * num_ops + 1),
+ /* Minimal cache size plus 1 reference op */
+ (unsigned int)(1.5 * rte_lcore_count() *
+ OPS_CACHE_SIZE + 1)),
+ OPS_POOL_SIZE_MIN));
+
+ if (org_op_type == RTE_BBDEV_OP_NONE)
+ op_type = RTE_BBDEV_OP_TURBO_ENC;
+
+ op_type_str = rte_bbdev_op_type_str(op_type);
+ TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u", op_type);
+
+ snprintf(pool_name, sizeof(pool_name), "%s_pool_%u", op_type_str,
+ ad->dev_id);
+ mp = rte_bbdev_op_pool_create(pool_name, op_type,
+ ops_pool_size, OPS_CACHE_SIZE, socket_id);
+ TEST_ASSERT_NOT_NULL(mp,
+ "ERROR Failed to create %u items ops pool for dev %u on socket %u.",
+ ops_pool_size,
+ ad->dev_id,
+ socket_id);
+ ad->ops_mempool = mp;
+
+ /* Do not create inputs and outputs mbufs for BaseBand Null Device */
+ if (org_op_type == RTE_BBDEV_OP_NONE)
+ return TEST_SUCCESS;
+
+ /* Inputs */
+ if (in->nb_segments > 0) {
+ mbuf_pool_size = optimal_mempool_size(ops_pool_size *
+ in->nb_segments);
+ mp = create_mbuf_pool(in, ad->dev_id, socket_id,
+ mbuf_pool_size, "in");
+ TEST_ASSERT_NOT_NULL(mp,
+ "ERROR Failed to create %u items input pktmbuf pool for dev %u on socket %u.",
+ mbuf_pool_size,
+ ad->dev_id,
+ socket_id);
+ ad->in_mbuf_pool = mp;
+ }
+
+ /* Hard outputs */
+ if (hard_out->nb_segments > 0) {
+ mbuf_pool_size = optimal_mempool_size(ops_pool_size *
+ hard_out->nb_segments);
+ mp = create_mbuf_pool(hard_out, ad->dev_id, socket_id,
+ mbuf_pool_size,
+ "hard_out");
+ TEST_ASSERT_NOT_NULL(mp,
+ "ERROR Failed to create %u items hard output pktmbuf pool for dev %u on socket %u.",
+ mbuf_pool_size,
+ ad->dev_id,
+ socket_id);
+ ad->hard_out_mbuf_pool = mp;
+ }
+
+ /* Soft outputs */
+ if (soft_out->nb_segments > 0) {
+ mbuf_pool_size = optimal_mempool_size(ops_pool_size *
+ soft_out->nb_segments);
+ mp = create_mbuf_pool(soft_out, ad->dev_id, socket_id,
+ mbuf_pool_size,
+ "soft_out");
+ TEST_ASSERT_NOT_NULL(mp,
+ "ERROR Failed to create %uB soft output pktmbuf pool for dev %u on socket %u.",
+ mbuf_pool_size,
+ ad->dev_id,
+ socket_id);
+ ad->soft_out_mbuf_pool = mp;
+ }
+
+ /* HARQ inputs */
+ if (harq_in->nb_segments > 0) {
+ mbuf_pool_size = optimal_mempool_size(ops_pool_size *
+ harq_in->nb_segments);
+ mp = create_mbuf_pool(harq_in, ad->dev_id, socket_id,
+ mbuf_pool_size,
+ "harq_in");
+ TEST_ASSERT_NOT_NULL(mp,
+ "ERROR Failed to create %uB harq input pktmbuf pool for dev %u on socket %u.",
+ mbuf_pool_size,
+ ad->dev_id,
+ socket_id);
+ ad->harq_in_mbuf_pool = mp;
+ }
+
+ /* HARQ outputs */
+ if (harq_out->nb_segments > 0) {
+ mbuf_pool_size = optimal_mempool_size(ops_pool_size *
+ harq_out->nb_segments);
+ mp = create_mbuf_pool(harq_out, ad->dev_id, socket_id,
+ mbuf_pool_size,
+ "harq_out");
+ TEST_ASSERT_NOT_NULL(mp,
+ "ERROR Failed to create %uB harq output pktmbuf pool for dev %u on socket %u.",
+ mbuf_pool_size,
+ ad->dev_id,
+ socket_id);
+ ad->harq_out_mbuf_pool = mp;
+ }
+
+ return TEST_SUCCESS;
+}
+
+static int
+add_bbdev_dev(uint8_t dev_id, struct rte_bbdev_info *info,
+ struct test_bbdev_vector *vector)
+{
+ int ret;
+ unsigned int queue_id;
+ struct rte_bbdev_queue_conf qconf;
+ struct active_device *ad = &active_devs[nb_active_devs];
+ unsigned int nb_queues;
+ enum rte_bbdev_op_type op_type = vector->op_type;
+
+/* Configure fpga lte fec with PF & VF values
+ * if '-i' flag is set and using fpga device
+ */
+#ifdef RTE_LIBRTE_PMD_BBDEV_FPGA_LTE_FEC
+ if ((get_init_device() == true) &&
+ (!strcmp(info->drv.driver_name, FPGA_LTE_PF_DRIVER_NAME))) {
+ struct fpga_lte_fec_conf conf;
+ unsigned int i;
+
+ printf("Configure FPGA LTE FEC Driver %s with default values\n",
+ info->drv.driver_name);
+
+ /* clear default configuration before initialization */
+ memset(&conf, 0, sizeof(struct fpga_lte_fec_conf));
+
+ /* Set PF mode :
+ * true if PF is used for data plane
+ * false for VFs
+ */
+ conf.pf_mode_en = true;
+
+ for (i = 0; i < FPGA_LTE_FEC_NUM_VFS; ++i) {
+ /* Number of UL queues per VF (fpga supports 8 VFs) */
+ conf.vf_ul_queues_number[i] = VF_UL_4G_QUEUE_VALUE;
+ /* Number of DL queues per VF (fpga supports 8 VFs) */
+ conf.vf_dl_queues_number[i] = VF_DL_4G_QUEUE_VALUE;
+ }
+
+ /* UL bandwidth. Needed for schedule algorithm */
+ conf.ul_bandwidth = UL_4G_BANDWIDTH;
+ /* DL bandwidth */
+ conf.dl_bandwidth = DL_4G_BANDWIDTH;
+
+ /* UL & DL load Balance Factor to 64 */
+ conf.ul_load_balance = UL_4G_LOAD_BALANCE;
+ conf.dl_load_balance = DL_4G_LOAD_BALANCE;
+
+ /**< FLR timeout value */
+ conf.flr_time_out = FLR_4G_TIMEOUT;
+
+ /* setup FPGA PF with configuration information */
+ ret = fpga_lte_fec_configure(info->dev_name, &conf);
+ TEST_ASSERT_SUCCESS(ret,
+ "Failed to configure 4G FPGA PF for bbdev %s",
+ info->dev_name);
+ }
+#endif
+#ifdef RTE_LIBRTE_PMD_BBDEV_FPGA_5GNR_FEC
+ if ((get_init_device() == true) &&
+ (!strcmp(info->drv.driver_name, FPGA_5GNR_PF_DRIVER_NAME))) {
+ struct fpga_5gnr_fec_conf conf;
+ unsigned int i;
+
+ printf("Configure FPGA 5GNR FEC Driver %s with default values\n",
+ info->drv.driver_name);
+
+ /* clear default configuration before initialization */
+ memset(&conf, 0, sizeof(struct fpga_5gnr_fec_conf));
+
+ /* Set PF mode :
+ * true if PF is used for data plane
+ * false for VFs
+ */
+ conf.pf_mode_en = true;
+
+ for (i = 0; i < FPGA_5GNR_FEC_NUM_VFS; ++i) {
+ /* Number of UL queues per VF (fpga supports 8 VFs) */
+ conf.vf_ul_queues_number[i] = VF_UL_5G_QUEUE_VALUE;
+ /* Number of DL queues per VF (fpga supports 8 VFs) */
+ conf.vf_dl_queues_number[i] = VF_DL_5G_QUEUE_VALUE;
+ }
+
+ /* UL bandwidth. Needed for schedule algorithm */
+ conf.ul_bandwidth = UL_5G_BANDWIDTH;
+ /* DL bandwidth */
+ conf.dl_bandwidth = DL_5G_BANDWIDTH;
+
+ /* UL & DL load Balance Factor to 64 */
+ conf.ul_load_balance = UL_5G_LOAD_BALANCE;
+ conf.dl_load_balance = DL_5G_LOAD_BALANCE;
+
+ /**< FLR timeout value */
+ conf.flr_time_out = FLR_5G_TIMEOUT;
+
+ /* setup FPGA PF with configuration information */
+ ret = fpga_5gnr_fec_configure(info->dev_name, &conf);
+ TEST_ASSERT_SUCCESS(ret,
+ "Failed to configure 5G FPGA PF for bbdev %s",
+ info->dev_name);
+ }
+#endif
+ nb_queues = RTE_MIN(rte_lcore_count(), info->drv.max_num_queues);
+ nb_queues = RTE_MIN(nb_queues, (unsigned int) MAX_QUEUES);
+
+ /* setup device */
+ ret = rte_bbdev_setup_queues(dev_id, nb_queues, info->socket_id);
+ if (ret < 0) {
+ printf("rte_bbdev_setup_queues(%u, %u, %d) ret %i\n",
+ dev_id, nb_queues, info->socket_id, ret);
+ return TEST_FAILED;
+ }
+
+ /* configure interrupts if needed */
+ if (intr_enabled) {
+ ret = rte_bbdev_intr_enable(dev_id);
+ if (ret < 0) {
+ printf("rte_bbdev_intr_enable(%u) ret %i\n", dev_id,
+ ret);
+ return TEST_FAILED;
+ }
+ }
+
+ /* setup device queues */
+ qconf.socket = info->socket_id;
+ qconf.queue_size = info->drv.default_queue_conf.queue_size;
+ qconf.priority = 0;
+ qconf.deferred_start = 0;
+ qconf.op_type = op_type;
+
+ for (queue_id = 0; queue_id < nb_queues; ++queue_id) {
+ ret = rte_bbdev_queue_configure(dev_id, queue_id, &qconf);
+ if (ret != 0) {
+ printf(
+ "Allocated all queues (id=%u) at prio%u on dev%u\n",
+ queue_id, qconf.priority, dev_id);
+ qconf.priority++;
+ ret = rte_bbdev_queue_configure(ad->dev_id, queue_id,
+ &qconf);
+ }
+ if (ret != 0) {
+ printf("All queues on dev %u allocated: %u\n",
+ dev_id, queue_id);
+ break;
+ }
+ ad->queue_ids[queue_id] = queue_id;
+ }
+ TEST_ASSERT(queue_id != 0,
+ "ERROR Failed to configure any queues on dev %u",
+ dev_id);
+ ad->nb_queues = queue_id;
+
+ set_avail_op(ad, op_type);
+
+ return TEST_SUCCESS;
+}
+
+static int
+add_active_device(uint8_t dev_id, struct rte_bbdev_info *info,
+ struct test_bbdev_vector *vector)
+{
+ int ret;
+
+ active_devs[nb_active_devs].driver_name = info->drv.driver_name;
+ active_devs[nb_active_devs].dev_id = dev_id;
+
+ ret = add_bbdev_dev(dev_id, info, vector);
+ if (ret == TEST_SUCCESS)
+ ++nb_active_devs;
+ return ret;
+}
+
+static uint8_t
+populate_active_devices(void)
+{
+ int ret;
+ uint8_t dev_id;
+ uint8_t nb_devs_added = 0;
+ struct rte_bbdev_info info;
+
+ RTE_BBDEV_FOREACH(dev_id) {
+ rte_bbdev_info_get(dev_id, &info);
+
+ if (check_dev_cap(&info)) {
+ printf(
+ "Device %d (%s) does not support specified capabilities\n",
+ dev_id, info.dev_name);
+ continue;
+ }
+
+ ret = add_active_device(dev_id, &info, &test_vector);
+ if (ret != 0) {
+ printf("Adding active bbdev %s skipped\n",
+ info.dev_name);
+ continue;
+ }
+ nb_devs_added++;
+ }
+
+ return nb_devs_added;
+}
+
+static int
+read_test_vector(void)
+{
+ int ret;
+
+ memset(&test_vector, 0, sizeof(test_vector));
+ printf("Test vector file = %s\n", get_vector_filename());
+ ret = test_bbdev_vector_read(get_vector_filename(), &test_vector);
+ TEST_ASSERT_SUCCESS(ret, "Failed to parse file %s\n",
+ get_vector_filename());
+
+ return TEST_SUCCESS;
+}
+
+static int
+testsuite_setup(void)
+{
+ TEST_ASSERT_SUCCESS(read_test_vector(), "Test suite setup failed\n");
+
+ if (populate_active_devices() == 0) {
+ printf("No suitable devices found!\n");
+ return TEST_SKIPPED;
+ }
+
+ return TEST_SUCCESS;
+}
+
+static int
+interrupt_testsuite_setup(void)
+{
+ TEST_ASSERT_SUCCESS(read_test_vector(), "Test suite setup failed\n");
+
+ /* Enable interrupts */
+ intr_enabled = true;
+
+ /* Special case for NULL device (RTE_BBDEV_OP_NONE) */
+ if (populate_active_devices() == 0 ||
+ test_vector.op_type == RTE_BBDEV_OP_NONE) {
+ intr_enabled = false;
+ printf("No suitable devices found!\n");
+ return TEST_SKIPPED;
+ }
+
+ return TEST_SUCCESS;
+}
+
+static void
+testsuite_teardown(void)
+{
+ uint8_t dev_id;
+
+ /* Unconfigure devices */
+ RTE_BBDEV_FOREACH(dev_id)
+ rte_bbdev_close(dev_id);
+
+ /* Clear active devices structs. */
+ memset(active_devs, 0, sizeof(active_devs));
+ nb_active_devs = 0;
+
+ /* Disable interrupts */
+ intr_enabled = false;
+}
+
+static int
+ut_setup(void)
+{
+ uint8_t i, dev_id;
+
+ for (i = 0; i < nb_active_devs; i++) {
+ dev_id = active_devs[i].dev_id;
+ /* reset bbdev stats */
+ TEST_ASSERT_SUCCESS(rte_bbdev_stats_reset(dev_id),
+ "Failed to reset stats of bbdev %u", dev_id);
+ /* start the device */
+ TEST_ASSERT_SUCCESS(rte_bbdev_start(dev_id),
+ "Failed to start bbdev %u", dev_id);
+ }
+
+ return TEST_SUCCESS;
+}
+
+static void
+ut_teardown(void)
+{
+ uint8_t i, dev_id;
+ struct rte_bbdev_stats stats;
+
+ for (i = 0; i < nb_active_devs; i++) {
+ dev_id = active_devs[i].dev_id;
+ /* read stats and print */
+ rte_bbdev_stats_get(dev_id, &stats);
+ /* Stop the device */
+ rte_bbdev_stop(dev_id);
+ }
+}
+
+static int
+init_op_data_objs(struct rte_bbdev_op_data *bufs,
+ struct op_data_entries *ref_entries,
+ struct rte_mempool *mbuf_pool, const uint16_t n,
+ enum op_data_type op_type, uint16_t min_alignment)
+{
+ int ret;
+ unsigned int i, j;
+ bool large_input = false;
+
+ for (i = 0; i < n; ++i) {
+ char *data;
+ struct op_data_buf *seg = &ref_entries->segments[0];
+ struct rte_mbuf *m_head = rte_pktmbuf_alloc(mbuf_pool);
+ TEST_ASSERT_NOT_NULL(m_head,
+ "Not enough mbufs in %d data type mbuf pool (needed %u, available %u)",
+ op_type, n * ref_entries->nb_segments,
+ mbuf_pool->size);
+
+ if (seg->length > RTE_BBDEV_LDPC_E_MAX_MBUF) {
+ /*
+ * Special case when DPDK mbuf cannot handle
+ * the required input size
+ */
+ printf("Warning: Larger input size than DPDK mbuf %d\n",
+ seg->length);
+ large_input = true;
+ }
+ bufs[i].data = m_head;
+ bufs[i].offset = 0;
+ bufs[i].length = 0;
+
+ if ((op_type == DATA_INPUT) || (op_type == DATA_HARQ_INPUT)) {
+ if ((op_type == DATA_INPUT) && large_input) {
+ /* Allocate a fake overused mbuf */
+ data = rte_malloc(NULL, seg->length, 0);
+ memcpy(data, seg->addr, seg->length);
+ m_head->buf_addr = data;
+ m_head->buf_iova = rte_malloc_virt2iova(data);
+ m_head->data_off = 0;
+ m_head->data_len = seg->length;
+ } else {
+ data = rte_pktmbuf_append(m_head, seg->length);
+ TEST_ASSERT_NOT_NULL(data,
+ "Couldn't append %u bytes to mbuf from %d data type mbuf pool",
+ seg->length, op_type);
+
+ TEST_ASSERT(data == RTE_PTR_ALIGN(
+ data, min_alignment),
+ "Data addr in mbuf (%p) is not aligned to device min alignment (%u)",
+ data, min_alignment);
+ rte_memcpy(data, seg->addr, seg->length);
+ }
+
+ bufs[i].length += seg->length;
+
+ for (j = 1; j < ref_entries->nb_segments; ++j) {
+ struct rte_mbuf *m_tail =
+ rte_pktmbuf_alloc(mbuf_pool);
+ TEST_ASSERT_NOT_NULL(m_tail,
+ "Not enough mbufs in %d data type mbuf pool (needed %u, available %u)",
+ op_type,
+ n * ref_entries->nb_segments,
+ mbuf_pool->size);
+ seg += 1;
+
+ data = rte_pktmbuf_append(m_tail, seg->length);
+ TEST_ASSERT_NOT_NULL(data,
+ "Couldn't append %u bytes to mbuf from %d data type mbuf pool",
+ seg->length, op_type);
+
+ TEST_ASSERT(data == RTE_PTR_ALIGN(data,
+ min_alignment),
+ "Data addr in mbuf (%p) is not aligned to device min alignment (%u)",
+ data, min_alignment);
+ rte_memcpy(data, seg->addr, seg->length);
+ bufs[i].length += seg->length;
+
+ ret = rte_pktmbuf_chain(m_head, m_tail);
+ TEST_ASSERT_SUCCESS(ret,
+ "Couldn't chain mbufs from %d data type mbuf pool",
+ op_type);
+ }
+ } else {
+
+ /* allocate chained-mbuf for output buffer */
+ for (j = 1; j < ref_entries->nb_segments; ++j) {
+ struct rte_mbuf *m_tail =
+ rte_pktmbuf_alloc(mbuf_pool);
+ TEST_ASSERT_NOT_NULL(m_tail,
+ "Not enough mbufs in %d data type mbuf pool (needed %u, available %u)",
+ op_type,
+ n * ref_entries->nb_segments,
+ mbuf_pool->size);
+
+ ret = rte_pktmbuf_chain(m_head, m_tail);
+ TEST_ASSERT_SUCCESS(ret,
+ "Couldn't chain mbufs from %d data type mbuf pool",
+ op_type);
+ }
+ }
+ }
+
+ return 0;
+}
+
+static int
+allocate_buffers_on_socket(struct rte_bbdev_op_data **buffers, const int len,
+ const int socket)
+{
+ int i;
+
+ *buffers = rte_zmalloc_socket(NULL, len, 0, socket);
+ if (*buffers == NULL) {
+ printf("WARNING: Failed to allocate op_data on socket %d\n",
+ socket);
+ /* try to allocate memory on other detected sockets */
+ for (i = 0; i < socket; i++) {
+ *buffers = rte_zmalloc_socket(NULL, len, 0, i);
+ if (*buffers != NULL)
+ break;
+ }
+ }
+
+ return (*buffers == NULL) ? TEST_FAILED : TEST_SUCCESS;
+}
+
+static void
+limit_input_llr_val_range(struct rte_bbdev_op_data *input_ops,
+ const uint16_t n, const int8_t max_llr_modulus)
+{
+ uint16_t i, byte_idx;
+
+ for (i = 0; i < n; ++i) {
+ struct rte_mbuf *m = input_ops[i].data;
+ while (m != NULL) {
+ int8_t *llr = rte_pktmbuf_mtod_offset(m, int8_t *,
+ input_ops[i].offset);
+ for (byte_idx = 0; byte_idx < rte_pktmbuf_data_len(m);
+ ++byte_idx)
+ llr[byte_idx] = round((double)max_llr_modulus *
+ llr[byte_idx] / INT8_MAX);
+
+ m = m->next;
+ }
+ }
+}
+
+/*
+ * We may have to insert filler bits
+ * when they are required by the HARQ assumption
+ */
+static void
+ldpc_add_filler(struct rte_bbdev_op_data *input_ops,
+ const uint16_t n, struct test_op_params *op_params)
+{
+ struct rte_bbdev_op_ldpc_dec dec = op_params->ref_dec_op->ldpc_dec;
+
+ if (input_ops == NULL)
+ return;
+ /* No need to add filler if not required by device */
+ if (!(ldpc_cap_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS))
+ return;
+ /* No need to add filler for loopback operation */
+ if (dec.op_flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)
+ return;
+
+ uint16_t i, j, parity_offset;
+ for (i = 0; i < n; ++i) {
+ struct rte_mbuf *m = input_ops[i].data;
+ int8_t *llr = rte_pktmbuf_mtod_offset(m, int8_t *,
+ input_ops[i].offset);
+ parity_offset = (dec.basegraph == 1 ? 20 : 8)
+ * dec.z_c - dec.n_filler;
+ uint16_t new_hin_size = input_ops[i].length + dec.n_filler;
+ m->data_len = new_hin_size;
+ input_ops[i].length = new_hin_size;
+ for (j = new_hin_size - 1; j >= parity_offset + dec.n_filler;
+ j--)
+ llr[j] = llr[j - dec.n_filler];
+ uint16_t llr_max_pre_scaling = (1 << (ldpc_llr_size - 1)) - 1;
+ for (j = 0; j < dec.n_filler; j++)
+ llr[parity_offset + j] = llr_max_pre_scaling;
+ }
+}
+
+static void
+ldpc_input_llr_scaling(struct rte_bbdev_op_data *input_ops,
+ const uint16_t n, const int8_t llr_size,
+ const int8_t llr_decimals)
+{
+ if (input_ops == NULL)
+ return;
+
+ uint16_t i, byte_idx;
+
+ int16_t llr_max, llr_min, llr_tmp;
+ llr_max = (1 << (llr_size - 1)) - 1;
+ llr_min = -llr_max;
+ for (i = 0; i < n; ++i) {
+ struct rte_mbuf *m = input_ops[i].data;
+ while (m != NULL) {
+ int8_t *llr = rte_pktmbuf_mtod_offset(m, int8_t *,
+ input_ops[i].offset);
+ for (byte_idx = 0; byte_idx < rte_pktmbuf_data_len(m);
+ ++byte_idx) {
+
+ llr_tmp = llr[byte_idx];
+ if (llr_decimals == 4)
+ llr_tmp *= 8;
+ else if (llr_decimals == 2)
+ llr_tmp *= 2;
+ else if (llr_decimals == 0)
+ llr_tmp /= 2;
+ llr_tmp = RTE_MIN(llr_max,
+ RTE_MAX(llr_min, llr_tmp));
+ llr[byte_idx] = (int8_t) llr_tmp;
+ }
+
+ m = m->next;
+ }
+ }
+}
+
+
+
+static int
+fill_queue_buffers(struct test_op_params *op_params,
+ struct rte_mempool *in_mp, struct rte_mempool *hard_out_mp,
+ struct rte_mempool *soft_out_mp,
+ struct rte_mempool *harq_in_mp, struct rte_mempool *harq_out_mp,
+ uint16_t queue_id,
+ const struct rte_bbdev_op_cap *capabilities,
+ uint16_t min_alignment, const int socket_id)
+{
+ int ret;
+ enum op_data_type type;
+ const uint16_t n = op_params->num_to_process;
+
+ struct rte_mempool *mbuf_pools[DATA_NUM_TYPES] = {
+ in_mp,
+ soft_out_mp,
+ hard_out_mp,
+ harq_in_mp,
+ harq_out_mp,
+ };
+
+ struct rte_bbdev_op_data **queue_ops[DATA_NUM_TYPES] = {
+ &op_params->q_bufs[socket_id][queue_id].inputs,
+ &op_params->q_bufs[socket_id][queue_id].soft_outputs,
+ &op_params->q_bufs[socket_id][queue_id].hard_outputs,
+ &op_params->q_bufs[socket_id][queue_id].harq_inputs,
+ &op_params->q_bufs[socket_id][queue_id].harq_outputs,
+ };
+
+ for (type = DATA_INPUT; type < DATA_NUM_TYPES; ++type) {
+ struct op_data_entries *ref_entries =
+ &test_vector.entries[type];
+ if (ref_entries->nb_segments == 0)
+ continue;
+
+ ret = allocate_buffers_on_socket(queue_ops[type],
+ n * sizeof(struct rte_bbdev_op_data),
+ socket_id);
+ TEST_ASSERT_SUCCESS(ret,
+ "Couldn't allocate memory for rte_bbdev_op_data structs");
+
+ ret = init_op_data_objs(*queue_ops[type], ref_entries,
+ mbuf_pools[type], n, type, min_alignment);
+ TEST_ASSERT_SUCCESS(ret,
+ "Couldn't init rte_bbdev_op_data structs");
+ }
+
+ if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
+ limit_input_llr_val_range(*queue_ops[DATA_INPUT], n,
+ capabilities->cap.turbo_dec.max_llr_modulus);
+
+ if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC) {
+ bool loopback = op_params->ref_dec_op->ldpc_dec.op_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK;
+ bool llr_comp = op_params->ref_dec_op->ldpc_dec.op_flags &
+ RTE_BBDEV_LDPC_LLR_COMPRESSION;
+ bool harq_comp = op_params->ref_dec_op->ldpc_dec.op_flags &
+ RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
+ ldpc_llr_decimals = capabilities->cap.ldpc_dec.llr_decimals;
+ ldpc_llr_size = capabilities->cap.ldpc_dec.llr_size;
+ ldpc_cap_flags = capabilities->cap.ldpc_dec.capability_flags;
+ if (!loopback && !llr_comp)
+ ldpc_input_llr_scaling(*queue_ops[DATA_INPUT], n,
+ ldpc_llr_size, ldpc_llr_decimals);
+ if (!loopback && !harq_comp)
+ ldpc_input_llr_scaling(*queue_ops[DATA_HARQ_INPUT], n,
+ ldpc_llr_size, ldpc_llr_decimals);
+ if (!loopback)
+ ldpc_add_filler(*queue_ops[DATA_HARQ_INPUT], n,
+ op_params);
+ }
+
+ return 0;
+}
+
+static void
+free_buffers(struct active_device *ad, struct test_op_params *op_params)
+{
+ unsigned int i, j;
+
+ rte_mempool_free(ad->ops_mempool);
+ rte_mempool_free(ad->in_mbuf_pool);
+ rte_mempool_free(ad->hard_out_mbuf_pool);
+ rte_mempool_free(ad->soft_out_mbuf_pool);
+ rte_mempool_free(ad->harq_in_mbuf_pool);
+ rte_mempool_free(ad->harq_out_mbuf_pool);
+
+ for (i = 0; i < rte_lcore_count(); ++i) {
+ for (j = 0; j < RTE_MAX_NUMA_NODES; ++j) {
+ rte_free(op_params->q_bufs[j][i].inputs);
+ rte_free(op_params->q_bufs[j][i].hard_outputs);
+ rte_free(op_params->q_bufs[j][i].soft_outputs);
+ rte_free(op_params->q_bufs[j][i].harq_inputs);
+ rte_free(op_params->q_bufs[j][i].harq_outputs);
+ }
+ }
+}
+
+static void
+copy_reference_dec_op(struct rte_bbdev_dec_op **ops, unsigned int n,
+ unsigned int start_idx,
+ struct rte_bbdev_op_data *inputs,
+ struct rte_bbdev_op_data *hard_outputs,
+ struct rte_bbdev_op_data *soft_outputs,
+ struct rte_bbdev_dec_op *ref_op)
+{
+ unsigned int i;
+ struct rte_bbdev_op_turbo_dec *turbo_dec = &ref_op->turbo_dec;
+
+ for (i = 0; i < n; ++i) {
+ if (turbo_dec->code_block_mode == 0) {
+ ops[i]->turbo_dec.tb_params.ea =
+ turbo_dec->tb_params.ea;
+ ops[i]->turbo_dec.tb_params.eb =
+ turbo_dec->tb_params.eb;
+ ops[i]->turbo_dec.tb_params.k_pos =
+ turbo_dec->tb_params.k_pos;
+ ops[i]->turbo_dec.tb_params.k_neg =
+ turbo_dec->tb_params.k_neg;
+ ops[i]->turbo_dec.tb_params.c =
+ turbo_dec->tb_params.c;
+ ops[i]->turbo_dec.tb_params.c_neg =
+ turbo_dec->tb_params.c_neg;
+ ops[i]->turbo_dec.tb_params.cab =
+ turbo_dec->tb_params.cab;
+ ops[i]->turbo_dec.tb_params.r =
+ turbo_dec->tb_params.r;
+ } else {
+ ops[i]->turbo_dec.cb_params.e = turbo_dec->cb_params.e;
+ ops[i]->turbo_dec.cb_params.k = turbo_dec->cb_params.k;
+ }
+
+ ops[i]->turbo_dec.ext_scale = turbo_dec->ext_scale;
+ ops[i]->turbo_dec.iter_max = turbo_dec->iter_max;
+ ops[i]->turbo_dec.iter_min = turbo_dec->iter_min;
+ ops[i]->turbo_dec.op_flags = turbo_dec->op_flags;
+ ops[i]->turbo_dec.rv_index = turbo_dec->rv_index;
+ ops[i]->turbo_dec.num_maps = turbo_dec->num_maps;
+ ops[i]->turbo_dec.code_block_mode = turbo_dec->code_block_mode;
+
+ ops[i]->turbo_dec.hard_output = hard_outputs[start_idx + i];
+ ops[i]->turbo_dec.input = inputs[start_idx + i];
+ if (soft_outputs != NULL)
+ ops[i]->turbo_dec.soft_output =
+ soft_outputs[start_idx + i];
+ }
+}
+
+static void
+copy_reference_enc_op(struct rte_bbdev_enc_op **ops, unsigned int n,
+ unsigned int start_idx,
+ struct rte_bbdev_op_data *inputs,
+ struct rte_bbdev_op_data *outputs,
+ struct rte_bbdev_enc_op *ref_op)
+{
+ unsigned int i;
+ struct rte_bbdev_op_turbo_enc *turbo_enc = &ref_op->turbo_enc;
+ for (i = 0; i < n; ++i) {
+ if (turbo_enc->code_block_mode == 0) {
+ ops[i]->turbo_enc.tb_params.ea =
+ turbo_enc->tb_params.ea;
+ ops[i]->turbo_enc.tb_params.eb =
+ turbo_enc->tb_params.eb;
+ ops[i]->turbo_enc.tb_params.k_pos =
+ turbo_enc->tb_params.k_pos;
+ ops[i]->turbo_enc.tb_params.k_neg =
+ turbo_enc->tb_params.k_neg;
+ ops[i]->turbo_enc.tb_params.c =
+ turbo_enc->tb_params.c;
+ ops[i]->turbo_enc.tb_params.c_neg =
+ turbo_enc->tb_params.c_neg;
+ ops[i]->turbo_enc.tb_params.cab =
+ turbo_enc->tb_params.cab;
+ ops[i]->turbo_enc.tb_params.ncb_pos =
+ turbo_enc->tb_params.ncb_pos;
+ ops[i]->turbo_enc.tb_params.ncb_neg =
+ turbo_enc->tb_params.ncb_neg;
+ ops[i]->turbo_enc.tb_params.r = turbo_enc->tb_params.r;
+ } else {
+ ops[i]->turbo_enc.cb_params.e = turbo_enc->cb_params.e;
+ ops[i]->turbo_enc.cb_params.k = turbo_enc->cb_params.k;
+ ops[i]->turbo_enc.cb_params.ncb =
+ turbo_enc->cb_params.ncb;
+ }
+ ops[i]->turbo_enc.rv_index = turbo_enc->rv_index;
+ ops[i]->turbo_enc.op_flags = turbo_enc->op_flags;
+ ops[i]->turbo_enc.code_block_mode = turbo_enc->code_block_mode;
+
+ ops[i]->turbo_enc.output = outputs[start_idx + i];
+ ops[i]->turbo_enc.input = inputs[start_idx + i];
+ }
+}
+
+
+/* Returns a random number drawn from a normal distribution
+ * with mean of 0 and variance of 1
+ * Marsaglia algorithm
+ */
+static double
+randn(int n)
+{
+ double S, Z, U1, U2, u, v, fac;
+
+ do {
+ U1 = (double)rand() / RAND_MAX;
+ U2 = (double)rand() / RAND_MAX;
+ u = 2. * U1 - 1.;
+ v = 2. * U2 - 1.;
+ S = u * u + v * v;
+ } while (S >= 1 || S == 0);
+ fac = sqrt(-2. * log(S) / S);
+ Z = (n % 2) ? u * fac : v * fac;
+ return Z;
+}
+
+static inline double
+maxstar(double A, double B)
+{
+ if (fabs(A - B) > 5)
+ return RTE_MAX(A, B);
+ else
+ return RTE_MAX(A, B) + log1p(exp(-fabs(A - B)));
+}
+
+/*
+ * Generate Qm LLRS for Qm==8
+ * Modulation, AWGN and LLR estimation from max log development
+ */
+static void
+gen_qm8_llr(int8_t *llrs, uint32_t i, double N0, double llr_max)
+{
+ int qm = 8;
+ int qam = 256;
+ int m, k;
+ double I, Q, p0, p1, llr_, b[qm], log_syml_prob[qam];
+ /* 5.1.4 of TS38.211 */
+ const double symbols_I[256] = {
+ 5, 5, 7, 7, 5, 5, 7, 7, 3, 3, 1, 1, 3, 3, 1, 1, 5,
+ 5, 7, 7, 5, 5, 7, 7, 3, 3, 1, 1, 3, 3, 1, 1, 11,
+ 11, 9, 9, 11, 11, 9, 9, 13, 13, 15, 15, 13, 13,
+ 15, 15, 11, 11, 9, 9, 11, 11, 9, 9, 13, 13, 15,
+ 15, 13, 13, 15, 15, 5, 5, 7, 7, 5, 5, 7, 7, 3, 3,
+ 1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 7, 7, 3, 3, 1,
+ 1, 3, 3, 1, 1, 11, 11, 9, 9, 11, 11, 9, 9, 13, 13,
+ 15, 15, 13, 13, 15, 15, 11, 11, 9, 9, 11, 11, 9, 9,
+ 13, 13, 15, 15, 13, 13, 15, 15, -5, -5, -7, -7, -5,
+ -5, -7, -7, -3, -3, -1, -1, -3, -3, -1, -1, -5, -5,
+ -7, -7, -5, -5, -7, -7, -3, -3, -1, -1, -3, -3,
+ -1, -1, -11, -11, -9, -9, -11, -11, -9, -9, -13,
+ -13, -15, -15, -13, -13, -15, -15, -11, -11, -9,
+ -9, -11, -11, -9, -9, -13, -13, -15, -15, -13,
+ -13, -15, -15, -5, -5, -7, -7, -5, -5, -7, -7, -3,
+ -3, -1, -1, -3, -3, -1, -1, -5, -5, -7, -7, -5, -5,
+ -7, -7, -3, -3, -1, -1, -3, -3, -1, -1, -11, -11,
+ -9, -9, -11, -11, -9, -9, -13, -13, -15, -15, -13,
+ -13, -15, -15, -11, -11, -9, -9, -11, -11, -9, -9,
+ -13, -13, -15, -15, -13, -13, -15, -15};
+ const double symbols_Q[256] = {
+ 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1, 11,
+ 9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9, 13, 15, 13,
+ 15, 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1,
+ 11, 9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9, 13,
+ 15, 13, 15, -5, -7, -5, -7, -3, -1, -3, -1, -5,
+ -7, -5, -7, -3, -1, -3, -1, -11, -9, -11, -9, -13,
+ -15, -13, -15, -11, -9, -11, -9, -13, -15, -13,
+ -15, -5, -7, -5, -7, -3, -1, -3, -1, -5, -7, -5,
+ -7, -3, -1, -3, -1, -11, -9, -11, -9, -13, -15,
+ -13, -15, -11, -9, -11, -9, -13, -15, -13, -15, 5,
+ 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1, 11,
+ 9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9, 13, 15,
+ 13, 15, 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1,
+ 3, 1, 11, 9, 11, 9, 13, 15, 13, 15, 11, 9, 11, 9,
+ 13, 15, 13, 15, -5, -7, -5, -7, -3, -1, -3, -1,
+ -5, -7, -5, -7, -3, -1, -3, -1, -11, -9, -11, -9,
+ -13, -15, -13, -15, -11, -9, -11, -9, -13, -15,
+ -13, -15, -5, -7, -5, -7, -3, -1, -3, -1, -5, -7,
+ -5, -7, -3, -1, -3, -1, -11, -9, -11, -9, -13, -15,
+ -13, -15, -11, -9, -11, -9, -13, -15, -13, -15};
+ /* Average constellation point energy */
+ N0 *= 170.0;
+ for (k = 0; k < qm; k++)
+ b[k] = llrs[qm * i + k] < 0 ? 1.0 : 0.0;
+ /* 5.1.4 of TS38.211 */
+ I = (1 - 2 * b[0]) * (8 - (1 - 2 * b[2]) *
+ (4 - (1 - 2 * b[4]) * (2 - (1 - 2 * b[6]))));
+ Q = (1 - 2 * b[1]) * (8 - (1 - 2 * b[3]) *
+ (4 - (1 - 2 * b[5]) * (2 - (1 - 2 * b[7]))));
+ /* AWGN channel */
+ I += sqrt(N0 / 2) * randn(0);
+ Q += sqrt(N0 / 2) * randn(1);
+ /*
+ * Calculate the log of the probability that each of
+ * the constellation points was transmitted
+ */
+ for (m = 0; m < qam; m++)
+ log_syml_prob[m] = -(pow(I - symbols_I[m], 2.0)
+ + pow(Q - symbols_Q[m], 2.0)) / N0;
+ /* Calculate an LLR for each of the k_64QAM bits in the set */
+ for (k = 0; k < qm; k++) {
+ p0 = -999999;
+ p1 = -999999;
+ /* For each constellation point */
+ for (m = 0; m < qam; m++) {
+ if ((m >> (qm - k - 1)) & 1)
+ p1 = maxstar(p1, log_syml_prob[m]);
+ else
+ p0 = maxstar(p0, log_syml_prob[m]);
+ }
+ /* Calculate the LLR */
+ llr_ = p0 - p1;
+ llr_ *= (1 << ldpc_llr_decimals);
+ llr_ = round(llr_);
+ if (llr_ > llr_max)
+ llr_ = llr_max;
+ if (llr_ < -llr_max)
+ llr_ = -llr_max;
+ llrs[qm * i + k] = (int8_t) llr_;
+ }
+}
+
+
+/*
+ * Generate Qm LLRS for Qm==6
+ * Modulation, AWGN and LLR estimation from max log development
+ */
+static void
+gen_qm6_llr(int8_t *llrs, uint32_t i, double N0, double llr_max)
+{
+ int qm = 6;
+ int qam = 64;
+ int m, k;
+ double I, Q, p0, p1, llr_, b[qm], log_syml_prob[qam];
+ /* 5.1.4 of TS38.211 */
+ const double symbols_I[64] = {
+ 3, 3, 1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 7, 7,
+ 3, 3, 1, 1, 3, 3, 1, 1, 5, 5, 7, 7, 5, 5, 7, 7,
+ -3, -3, -1, -1, -3, -3, -1, -1, -5, -5, -7, -7,
+ -5, -5, -7, -7, -3, -3, -1, -1, -3, -3, -1, -1,
+ -5, -5, -7, -7, -5, -5, -7, -7};
+ const double symbols_Q[64] = {
+ 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1, 5, 7, 5, 7,
+ -3, -1, -3, -1, -5, -7, -5, -7, -3, -1, -3, -1,
+ -5, -7, -5, -7, 3, 1, 3, 1, 5, 7, 5, 7, 3, 1, 3, 1,
+ 5, 7, 5, 7, -3, -1, -3, -1, -5, -7, -5, -7,
+ -3, -1, -3, -1, -5, -7, -5, -7};
+ /* Average constellation point energy */
+ N0 *= 42.0;
+ for (k = 0; k < qm; k++)
+ b[k] = llrs[qm * i + k] < 0 ? 1.0 : 0.0;
+ /* 5.1.4 of TS38.211 */
+ I = (1 - 2 * b[0])*(4 - (1 - 2 * b[2]) * (2 - (1 - 2 * b[4])));
+ Q = (1 - 2 * b[1])*(4 - (1 - 2 * b[3]) * (2 - (1 - 2 * b[5])));
+ /* AWGN channel */
+ I += sqrt(N0 / 2) * randn(0);
+ Q += sqrt(N0 / 2) * randn(1);
+ /*
+ * Calculate the log of the probability that each of
+ * the constellation points was transmitted
+ */
+ for (m = 0; m < qam; m++)
+ log_syml_prob[m] = -(pow(I - symbols_I[m], 2.0)
+ + pow(Q - symbols_Q[m], 2.0)) / N0;
+ /* Calculate an LLR for each of the k_64QAM bits in the set */
+ for (k = 0; k < qm; k++) {
+ p0 = -999999;
+ p1 = -999999;
+ /* For each constellation point */
+ for (m = 0; m < qam; m++) {
+ if ((m >> (qm - k - 1)) & 1)
+ p1 = maxstar(p1, log_syml_prob[m]);
+ else
+ p0 = maxstar(p0, log_syml_prob[m]);
+ }
+ /* Calculate the LLR */
+ llr_ = p0 - p1;
+ llr_ *= (1 << ldpc_llr_decimals);
+ llr_ = round(llr_);
+ if (llr_ > llr_max)
+ llr_ = llr_max;
+ if (llr_ < -llr_max)
+ llr_ = -llr_max;
+ llrs[qm * i + k] = (int8_t) llr_;
+ }
+}
+
+/*
+ * Generate Qm LLRS for Qm==4
+ * Modulation, AWGN and LLR estimation from max log development
+ */
+static void
+gen_qm4_llr(int8_t *llrs, uint32_t i, double N0, double llr_max)
+{
+ int qm = 4;
+ int qam = 16;
+ int m, k;
+ double I, Q, p0, p1, llr_, b[qm], log_syml_prob[qam];
+ /* 5.1.4 of TS38.211 */
+ const double symbols_I[16] = {1, 1, 3, 3, 1, 1, 3, 3,
+ -1, -1, -3, -3, -1, -1, -3, -3};
+ const double symbols_Q[16] = {1, 3, 1, 3, -1, -3, -1, -3,
+ 1, 3, 1, 3, -1, -3, -1, -3};
+ /* Average constellation point energy */
+ N0 *= 10.0;
+ for (k = 0; k < qm; k++)
+ b[k] = llrs[qm * i + k] < 0 ? 1.0 : 0.0;
+ /* 5.1.4 of TS38.211 */
+ I = (1 - 2 * b[0]) * (2 - (1 - 2 * b[2]));
+ Q = (1 - 2 * b[1]) * (2 - (1 - 2 * b[3]));
+ /* AWGN channel */
+ I += sqrt(N0 / 2) * randn(0);
+ Q += sqrt(N0 / 2) * randn(1);
+ /*
+ * Calculate the log of the probability that each of
+ * the constellation points was transmitted
+ */
+ for (m = 0; m < qam; m++)
+ log_syml_prob[m] = -(pow(I - symbols_I[m], 2.0)
+ + pow(Q - symbols_Q[m], 2.0)) / N0;
+ /* Calculate an LLR for each of the k_64QAM bits in the set */
+ for (k = 0; k < qm; k++) {
+ p0 = -999999;
+ p1 = -999999;
+ /* For each constellation point */
+ for (m = 0; m < qam; m++) {
+ if ((m >> (qm - k - 1)) & 1)
+ p1 = maxstar(p1, log_syml_prob[m]);
+ else
+ p0 = maxstar(p0, log_syml_prob[m]);
+ }
+ /* Calculate the LLR */
+ llr_ = p0 - p1;
+ llr_ *= (1 << ldpc_llr_decimals);
+ llr_ = round(llr_);
+ if (llr_ > llr_max)
+ llr_ = llr_max;
+ if (llr_ < -llr_max)
+ llr_ = -llr_max;
+ llrs[qm * i + k] = (int8_t) llr_;
+ }
+}
+
+static void
+gen_qm2_llr(int8_t *llrs, uint32_t j, double N0, double llr_max)
+{
+ double b, b1, n;
+ double coeff = 2.0 * sqrt(N0);
+
+ /* Ignore in vectors rare quasi null LLRs not to be saturated */
+ if (llrs[j] < 8 && llrs[j] > -8)
+ return;
+
+ /* Note don't change sign here */
+ n = randn(j % 2);
+ b1 = ((llrs[j] > 0 ? 2.0 : -2.0)
+ + coeff * n) / N0;
+ b = b1 * (1 << ldpc_llr_decimals);
+ b = round(b);
+ if (b > llr_max)
+ b = llr_max;
+ if (b < -llr_max)
+ b = -llr_max;
+ llrs[j] = (int8_t) b;
+}
+
+/* Generate LLR for a given SNR */
+static void
+generate_llr_input(uint16_t n, struct rte_bbdev_op_data *inputs,
+ struct rte_bbdev_dec_op *ref_op)
+{
+ struct rte_mbuf *m;
+ uint16_t qm;
+ uint32_t i, j, e, range;
+ double N0, llr_max;
+
+ e = ref_op->ldpc_dec.cb_params.e;
+ qm = ref_op->ldpc_dec.q_m;
+ llr_max = (1 << (ldpc_llr_size - 1)) - 1;
+ range = e / qm;
+ N0 = 1.0 / pow(10.0, get_snr() / 10.0);
+
+ for (i = 0; i < n; ++i) {
+ m = inputs[i].data;
+ int8_t *llrs = rte_pktmbuf_mtod_offset(m, int8_t *, 0);
+ if (qm == 8) {
+ for (j = 0; j < range; ++j)
+ gen_qm8_llr(llrs, j, N0, llr_max);
+ } else if (qm == 6) {
+ for (j = 0; j < range; ++j)
+ gen_qm6_llr(llrs, j, N0, llr_max);
+ } else if (qm == 4) {
+ for (j = 0; j < range; ++j)
+ gen_qm4_llr(llrs, j, N0, llr_max);
+ } else {
+ for (j = 0; j < e; ++j)
+ gen_qm2_llr(llrs, j, N0, llr_max);
+ }
+ }
+}
+
+static void
+copy_reference_ldpc_dec_op(struct rte_bbdev_dec_op **ops, unsigned int n,
+ unsigned int start_idx,
+ struct rte_bbdev_op_data *inputs,
+ struct rte_bbdev_op_data *hard_outputs,
+ struct rte_bbdev_op_data *soft_outputs,
+ struct rte_bbdev_op_data *harq_inputs,
+ struct rte_bbdev_op_data *harq_outputs,
+ struct rte_bbdev_dec_op *ref_op)
+{
+ unsigned int i;
+ struct rte_bbdev_op_ldpc_dec *ldpc_dec = &ref_op->ldpc_dec;
+
+ for (i = 0; i < n; ++i) {
+ if (ldpc_dec->code_block_mode == 0) {
+ ops[i]->ldpc_dec.tb_params.ea =
+ ldpc_dec->tb_params.ea;
+ ops[i]->ldpc_dec.tb_params.eb =
+ ldpc_dec->tb_params.eb;
+ ops[i]->ldpc_dec.tb_params.c =
+ ldpc_dec->tb_params.c;
+ ops[i]->ldpc_dec.tb_params.cab =
+ ldpc_dec->tb_params.cab;
+ ops[i]->ldpc_dec.tb_params.r =
+ ldpc_dec->tb_params.r;
+ } else {
+ ops[i]->ldpc_dec.cb_params.e = ldpc_dec->cb_params.e;
+ }
+
+ ops[i]->ldpc_dec.basegraph = ldpc_dec->basegraph;
+ ops[i]->ldpc_dec.z_c = ldpc_dec->z_c;
+ ops[i]->ldpc_dec.q_m = ldpc_dec->q_m;
+ ops[i]->ldpc_dec.n_filler = ldpc_dec->n_filler;
+ ops[i]->ldpc_dec.n_cb = ldpc_dec->n_cb;
+ ops[i]->ldpc_dec.iter_max = ldpc_dec->iter_max;
+ ops[i]->ldpc_dec.rv_index = ldpc_dec->rv_index;
+ ops[i]->ldpc_dec.op_flags = ldpc_dec->op_flags;
+ ops[i]->ldpc_dec.code_block_mode = ldpc_dec->code_block_mode;
+
+ if (hard_outputs != NULL)
+ ops[i]->ldpc_dec.hard_output =
+ hard_outputs[start_idx + i];
+ if (inputs != NULL)
+ ops[i]->ldpc_dec.input =
+ inputs[start_idx + i];
+ if (soft_outputs != NULL)
+ ops[i]->ldpc_dec.soft_output =
+ soft_outputs[start_idx + i];
+ if (harq_inputs != NULL)
+ ops[i]->ldpc_dec.harq_combined_input =
+ harq_inputs[start_idx + i];
+ if (harq_outputs != NULL)
+ ops[i]->ldpc_dec.harq_combined_output =
+ harq_outputs[start_idx + i];
+ }
+}
+
+
+static void
+copy_reference_ldpc_enc_op(struct rte_bbdev_enc_op **ops, unsigned int n,
+ unsigned int start_idx,
+ struct rte_bbdev_op_data *inputs,
+ struct rte_bbdev_op_data *outputs,
+ struct rte_bbdev_enc_op *ref_op)
+{
+ unsigned int i;
+ struct rte_bbdev_op_ldpc_enc *ldpc_enc = &ref_op->ldpc_enc;
+ for (i = 0; i < n; ++i) {
+ if (ldpc_enc->code_block_mode == 0) {
+ ops[i]->ldpc_enc.tb_params.ea = ldpc_enc->tb_params.ea;
+ ops[i]->ldpc_enc.tb_params.eb = ldpc_enc->tb_params.eb;
+ ops[i]->ldpc_enc.tb_params.cab =
+ ldpc_enc->tb_params.cab;
+ ops[i]->ldpc_enc.tb_params.c = ldpc_enc->tb_params.c;
+ ops[i]->ldpc_enc.tb_params.r = ldpc_enc->tb_params.r;
+ } else {
+ ops[i]->ldpc_enc.cb_params.e = ldpc_enc->cb_params.e;
+ }
+ ops[i]->ldpc_enc.basegraph = ldpc_enc->basegraph;
+ ops[i]->ldpc_enc.z_c = ldpc_enc->z_c;
+ ops[i]->ldpc_enc.q_m = ldpc_enc->q_m;
+ ops[i]->ldpc_enc.n_filler = ldpc_enc->n_filler;
+ ops[i]->ldpc_enc.n_cb = ldpc_enc->n_cb;
+ ops[i]->ldpc_enc.rv_index = ldpc_enc->rv_index;
+ ops[i]->ldpc_enc.op_flags = ldpc_enc->op_flags;
+ ops[i]->ldpc_enc.code_block_mode = ldpc_enc->code_block_mode;
+ ops[i]->ldpc_enc.output = outputs[start_idx + i];
+ ops[i]->ldpc_enc.input = inputs[start_idx + i];
+ }
+}
+
+static int
+check_dec_status_and_ordering(struct rte_bbdev_dec_op *op,
+ unsigned int order_idx, const int expected_status)
+{
+ int status = op->status;
+ /* ignore parity mismatch false alarms for long iterations */
+ if (get_iter_max() >= 10) {
+ if (!(expected_status & (1 << RTE_BBDEV_SYNDROME_ERROR)) &&
+ (status & (1 << RTE_BBDEV_SYNDROME_ERROR))) {
+ printf("WARNING: Ignore Syndrome Check mismatch\n");
+ status -= (1 << RTE_BBDEV_SYNDROME_ERROR);
+ }
+ if ((expected_status & (1 << RTE_BBDEV_SYNDROME_ERROR)) &&
+ !(status & (1 << RTE_BBDEV_SYNDROME_ERROR))) {
+ printf("WARNING: Ignore Syndrome Check mismatch\n");
+ status += (1 << RTE_BBDEV_SYNDROME_ERROR);
+ }
+ }
+
+ TEST_ASSERT(status == expected_status,
+ "op_status (%d) != expected_status (%d)",
+ op->status, expected_status);
+
+ TEST_ASSERT((void *)(uintptr_t)order_idx == op->opaque_data,
+ "Ordering error, expected %p, got %p",
+ (void *)(uintptr_t)order_idx, op->opaque_data);
+
+ return TEST_SUCCESS;
+}
+
+static int
+check_enc_status_and_ordering(struct rte_bbdev_enc_op *op,
+ unsigned int order_idx, const int expected_status)
+{
+ TEST_ASSERT(op->status == expected_status,
+ "op_status (%d) != expected_status (%d)",
+ op->status, expected_status);
+
+ if (op->opaque_data != (void *)(uintptr_t)INVALID_OPAQUE)
+ TEST_ASSERT((void *)(uintptr_t)order_idx == op->opaque_data,
+ "Ordering error, expected %p, got %p",
+ (void *)(uintptr_t)order_idx, op->opaque_data);
+
+ return TEST_SUCCESS;
+}
+
+static inline int
+validate_op_chain(struct rte_bbdev_op_data *op,
+ struct op_data_entries *orig_op)
+{
+ uint8_t i;
+ struct rte_mbuf *m = op->data;
+ uint8_t nb_dst_segments = orig_op->nb_segments;
+ uint32_t total_data_size = 0;
+
+ TEST_ASSERT(nb_dst_segments == m->nb_segs,
+ "Number of segments differ in original (%u) and filled (%u) op",
+ nb_dst_segments, m->nb_segs);
+
+ /* Validate each mbuf segment length */
+ for (i = 0; i < nb_dst_segments; ++i) {
+ /* Apply offset to the first mbuf segment */
+ uint16_t offset = (i == 0) ? op->offset : 0;
+ uint16_t data_len = rte_pktmbuf_data_len(m) - offset;
+ total_data_size += orig_op->segments[i].length;
+
+ TEST_ASSERT(orig_op->segments[i].length == data_len,
+ "Length of segment differ in original (%u) and filled (%u) op",
+ orig_op->segments[i].length, data_len);
+ TEST_ASSERT_BUFFERS_ARE_EQUAL(orig_op->segments[i].addr,
+ rte_pktmbuf_mtod_offset(m, uint32_t *, offset),
+ data_len,
+ "Output buffers (CB=%u) are not equal", i);
+ m = m->next;
+ }
+
+ /* Validate total mbuf pkt length */
+ uint32_t pkt_len = rte_pktmbuf_pkt_len(op->data) - op->offset;
+ TEST_ASSERT(total_data_size == pkt_len,
+ "Length of data differ in original (%u) and filled (%u) op",
+ total_data_size, pkt_len);
+
+ return TEST_SUCCESS;
+}
+
+/*
+ * Compute K0 for a given configuration for HARQ output length computation
+ * As per definition in 3GPP 38.212 Table 5.4.2.1-2
+ */
+static inline uint16_t
+get_k0(uint16_t n_cb, uint16_t z_c, uint8_t bg, uint8_t rv_index)
+{
+ if (rv_index == 0)
+ return 0;
+ uint16_t n = (bg == 1 ? N_ZC_1 : N_ZC_2) * z_c;
+ if (n_cb == n) {
+ if (rv_index == 1)
+ return (bg == 1 ? K0_1_1 : K0_1_2) * z_c;
+ else if (rv_index == 2)
+ return (bg == 1 ? K0_2_1 : K0_2_2) * z_c;
+ else
+ return (bg == 1 ? K0_3_1 : K0_3_2) * z_c;
+ }
+ /* LBRM case - includes a division by N */
+ if (rv_index == 1)
+ return (((bg == 1 ? K0_1_1 : K0_1_2) * n_cb)
+ / n) * z_c;
+ else if (rv_index == 2)
+ return (((bg == 1 ? K0_2_1 : K0_2_2) * n_cb)
+ / n) * z_c;
+ else
+ return (((bg == 1 ? K0_3_1 : K0_3_2) * n_cb)
+ / n) * z_c;
+}
+
+/* HARQ output length including the Filler bits */
+static inline uint16_t
+compute_harq_len(struct rte_bbdev_op_ldpc_dec *ops_ld)
+{
+ uint16_t k0 = 0;
+ uint8_t max_rv = (ops_ld->rv_index == 1) ? 3 : ops_ld->rv_index;
+ k0 = get_k0(ops_ld->n_cb, ops_ld->z_c, ops_ld->basegraph, max_rv);
+ /* Compute RM out size and number of rows */
+ uint16_t parity_offset = (ops_ld->basegraph == 1 ? 20 : 8)
+ * ops_ld->z_c - ops_ld->n_filler;
+ uint16_t deRmOutSize = RTE_MIN(
+ k0 + ops_ld->cb_params.e +
+ ((k0 > parity_offset) ?
+ 0 : ops_ld->n_filler),
+ ops_ld->n_cb);
+ uint16_t numRows = ((deRmOutSize + ops_ld->z_c - 1)
+ / ops_ld->z_c);
+ uint16_t harq_output_len = numRows * ops_ld->z_c;
+ return harq_output_len;
+}
+
+static inline int
+validate_op_harq_chain(struct rte_bbdev_op_data *op,
+ struct op_data_entries *orig_op,
+ struct rte_bbdev_op_ldpc_dec *ops_ld)
+{
+ uint8_t i;
+ uint32_t j, jj, k;
+ struct rte_mbuf *m = op->data;
+ uint8_t nb_dst_segments = orig_op->nb_segments;
+ uint32_t total_data_size = 0;
+ int8_t *harq_orig, *harq_out, abs_harq_origin;
+ uint32_t byte_error = 0, cum_error = 0, error;
+ int16_t llr_max = (1 << (ldpc_llr_size - ldpc_llr_decimals)) - 1;
+ int16_t llr_max_pre_scaling = (1 << (ldpc_llr_size - 1)) - 1;
+ uint16_t parity_offset;
+
+ TEST_ASSERT(nb_dst_segments == m->nb_segs,
+ "Number of segments differ in original (%u) and filled (%u) op",
+ nb_dst_segments, m->nb_segs);
+
+ /* Validate each mbuf segment length */
+ for (i = 0; i < nb_dst_segments; ++i) {
+ /* Apply offset to the first mbuf segment */
+ uint16_t offset = (i == 0) ? op->offset : 0;
+ uint16_t data_len = rte_pktmbuf_data_len(m) - offset;
+ total_data_size += orig_op->segments[i].length;
+
+ TEST_ASSERT(orig_op->segments[i].length <
+ (uint32_t)(data_len + 64),
+ "Length of segment differ in original (%u) and filled (%u) op",
+ orig_op->segments[i].length, data_len);
+ harq_orig = (int8_t *) orig_op->segments[i].addr;
+ harq_out = rte_pktmbuf_mtod_offset(m, int8_t *, offset);
+
+ if (!(ldpc_cap_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_FILLERS
+ ) || (ops_ld->op_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)) {
+ data_len -= ops_ld->z_c;
+ parity_offset = data_len;
+ } else {
+ /* Compute RM out size and number of rows */
+ parity_offset = (ops_ld->basegraph == 1 ? 20 : 8)
+ * ops_ld->z_c - ops_ld->n_filler;
+ uint16_t deRmOutSize = compute_harq_len(ops_ld) -
+ ops_ld->n_filler;
+ if (data_len > deRmOutSize)
+ data_len = deRmOutSize;
+ if (data_len > orig_op->segments[i].length)
+ data_len = orig_op->segments[i].length;
+ }
+ /*
+ * HARQ output can have minor differences
+ * due to integer representation and related scaling
+ */
+ for (j = 0, jj = 0; j < data_len; j++, jj++) {
+ if (j == parity_offset) {
+ /* Special Handling of the filler bits */
+ for (k = 0; k < ops_ld->n_filler; k++) {
+ if (harq_out[jj] !=
+ llr_max_pre_scaling) {
+ printf("HARQ Filler issue %d: %d %d\n",
+ jj, harq_out[jj],
+ llr_max);
+ byte_error++;
+ }
+ jj++;
+ }
+ }
+ if (!(ops_ld->op_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)) {
+ if (ldpc_llr_decimals > 1)
+ harq_out[jj] = (harq_out[jj] + 1)
+ >> (ldpc_llr_decimals - 1);
+ /* Saturated to S7 */
+ if (harq_orig[j] > llr_max)
+ harq_orig[j] = llr_max;
+ if (harq_orig[j] < -llr_max)
+ harq_orig[j] = -llr_max;
+ }
+ if (harq_orig[j] != harq_out[jj]) {
+ error = (harq_orig[j] > harq_out[jj]) ?
+ harq_orig[j] - harq_out[jj] :
+ harq_out[jj] - harq_orig[j];
+ abs_harq_origin = harq_orig[j] > 0 ?
+ harq_orig[j] :
+ -harq_orig[j];
+ /* Residual quantization error */
+ if ((error > 8 && (abs_harq_origin <
+ (llr_max - 16))) ||
+ (error > 16)) {
+ printf("HARQ mismatch %d: exp %d act %d => %d\n",
+ j, harq_orig[j],
+ harq_out[jj], error);
+ byte_error++;
+ cum_error += error;
+ }
+ }
+ }
+ m = m->next;
+ }
+
+ if (byte_error)
+ TEST_ASSERT(byte_error <= 1,
+ "HARQ output mismatch (%d) %d",
+ byte_error, cum_error);
+
+ /* Validate total mbuf pkt length */
+ uint32_t pkt_len = rte_pktmbuf_pkt_len(op->data) - op->offset;
+ TEST_ASSERT(total_data_size < pkt_len + 64,
+ "Length of data differ in original (%u) and filled (%u) op",
+ total_data_size, pkt_len);
+
+ return TEST_SUCCESS;
+}
+
+static int
+validate_dec_op(struct rte_bbdev_dec_op **ops, const uint16_t n,
+ struct rte_bbdev_dec_op *ref_op, const int vector_mask)
+{
+ unsigned int i;
+ int ret;
+ struct op_data_entries *hard_data_orig =
+ &test_vector.entries[DATA_HARD_OUTPUT];
+ struct op_data_entries *soft_data_orig =
+ &test_vector.entries[DATA_SOFT_OUTPUT];
+ struct rte_bbdev_op_turbo_dec *ops_td;
+ struct rte_bbdev_op_data *hard_output;
+ struct rte_bbdev_op_data *soft_output;
+ struct rte_bbdev_op_turbo_dec *ref_td = &ref_op->turbo_dec;
+
+ for (i = 0; i < n; ++i) {
+ ops_td = &ops[i]->turbo_dec;
+ hard_output = &ops_td->hard_output;
+ soft_output = &ops_td->soft_output;
+
+ if (vector_mask & TEST_BBDEV_VF_EXPECTED_ITER_COUNT)
+ TEST_ASSERT(ops_td->iter_count <= ref_td->iter_count,
+ "Returned iter_count (%d) > expected iter_count (%d)",
+ ops_td->iter_count, ref_td->iter_count);
+ ret = check_dec_status_and_ordering(ops[i], i, ref_op->status);
+ TEST_ASSERT_SUCCESS(ret,
+ "Checking status and ordering for decoder failed");
+
+ TEST_ASSERT_SUCCESS(validate_op_chain(hard_output,
+ hard_data_orig),
+ "Hard output buffers (CB=%u) are not equal",
+ i);
+
+ if (ref_op->turbo_dec.op_flags & RTE_BBDEV_TURBO_SOFT_OUTPUT)
+ TEST_ASSERT_SUCCESS(validate_op_chain(soft_output,
+ soft_data_orig),
+ "Soft output buffers (CB=%u) are not equal",
+ i);
+ }
+
+ return TEST_SUCCESS;
+}
+
+/* Check Number of code blocks errors */
+static int
+validate_ldpc_bler(struct rte_bbdev_dec_op **ops, const uint16_t n)
+{
+ unsigned int i;
+ struct op_data_entries *hard_data_orig =
+ &test_vector.entries[DATA_HARD_OUTPUT];
+ struct rte_bbdev_op_ldpc_dec *ops_td;
+ struct rte_bbdev_op_data *hard_output;
+ int errors = 0;
+ struct rte_mbuf *m;
+
+ for (i = 0; i < n; ++i) {
+ ops_td = &ops[i]->ldpc_dec;
+ hard_output = &ops_td->hard_output;
+ m = hard_output->data;
+ if (memcmp(rte_pktmbuf_mtod_offset(m, uint32_t *, 0),
+ hard_data_orig->segments[0].addr,
+ hard_data_orig->segments[0].length))
+ errors++;
+ }
+ return errors;
+}
+
+static int
+validate_ldpc_dec_op(struct rte_bbdev_dec_op **ops, const uint16_t n,
+ struct rte_bbdev_dec_op *ref_op, const int vector_mask)
+{
+ unsigned int i;
+ int ret;
+ struct op_data_entries *hard_data_orig =
+ &test_vector.entries[DATA_HARD_OUTPUT];
+ struct op_data_entries *soft_data_orig =
+ &test_vector.entries[DATA_SOFT_OUTPUT];
+ struct op_data_entries *harq_data_orig =
+ &test_vector.entries[DATA_HARQ_OUTPUT];
+ struct rte_bbdev_op_ldpc_dec *ops_td;
+ struct rte_bbdev_op_data *hard_output;
+ struct rte_bbdev_op_data *harq_output;
+ struct rte_bbdev_op_data *soft_output;
+ struct rte_bbdev_op_ldpc_dec *ref_td = &ref_op->ldpc_dec;
+
+ for (i = 0; i < n; ++i) {
+ ops_td = &ops[i]->ldpc_dec;
+ hard_output = &ops_td->hard_output;
+ harq_output = &ops_td->harq_combined_output;
+ soft_output = &ops_td->soft_output;
+
+ ret = check_dec_status_and_ordering(ops[i], i, ref_op->status);
+ TEST_ASSERT_SUCCESS(ret,
+ "Checking status and ordering for decoder failed");
+ if (vector_mask & TEST_BBDEV_VF_EXPECTED_ITER_COUNT)
+ TEST_ASSERT(ops_td->iter_count <= ref_td->iter_count,
+ "Returned iter_count (%d) > expected iter_count (%d)",
+ ops_td->iter_count, ref_td->iter_count);
+ /*
+ * We can ignore output data when the decoding failed to
+ * converge or for loop-back cases
+ */
+ if (!check_bit(ops[i]->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK
+ ) && (
+ ops[i]->status & (1 << RTE_BBDEV_SYNDROME_ERROR
+ )) == 0)
+ TEST_ASSERT_SUCCESS(validate_op_chain(hard_output,
+ hard_data_orig),
+ "Hard output buffers (CB=%u) are not equal",
+ i);
+
+ if (ref_op->ldpc_dec.op_flags & RTE_BBDEV_LDPC_SOFT_OUT_ENABLE)
+ TEST_ASSERT_SUCCESS(validate_op_chain(soft_output,
+ soft_data_orig),
+ "Soft output buffers (CB=%u) are not equal",
+ i);
+ if (ref_op->ldpc_dec.op_flags &
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE) {
+ TEST_ASSERT_SUCCESS(validate_op_harq_chain(harq_output,
+ harq_data_orig, ops_td),
+ "HARQ output buffers (CB=%u) are not equal",
+ i);
+ }
+ if (ref_op->ldpc_dec.op_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK)
+ TEST_ASSERT_SUCCESS(validate_op_harq_chain(harq_output,
+ harq_data_orig, ops_td),
+ "HARQ output buffers (CB=%u) are not equal",
+ i);
+
+ }
+
+ return TEST_SUCCESS;
+}
+
+
+static int
+validate_enc_op(struct rte_bbdev_enc_op **ops, const uint16_t n,
+ struct rte_bbdev_enc_op *ref_op)
+{
+ unsigned int i;
+ int ret;
+ struct op_data_entries *hard_data_orig =
+ &test_vector.entries[DATA_HARD_OUTPUT];
+
+ for (i = 0; i < n; ++i) {
+ ret = check_enc_status_and_ordering(ops[i], i, ref_op->status);
+ TEST_ASSERT_SUCCESS(ret,
+ "Checking status and ordering for encoder failed");
+ TEST_ASSERT_SUCCESS(validate_op_chain(
+ &ops[i]->turbo_enc.output,
+ hard_data_orig),
+ "Output buffers (CB=%u) are not equal",
+ i);
+ }
+
+ return TEST_SUCCESS;
+}
+
+static int
+validate_ldpc_enc_op(struct rte_bbdev_enc_op **ops, const uint16_t n,
+ struct rte_bbdev_enc_op *ref_op)
+{
+ unsigned int i;
+ int ret;
+ struct op_data_entries *hard_data_orig =
+ &test_vector.entries[DATA_HARD_OUTPUT];
+
+ for (i = 0; i < n; ++i) {
+ ret = check_enc_status_and_ordering(ops[i], i, ref_op->status);
+ TEST_ASSERT_SUCCESS(ret,
+ "Checking status and ordering for encoder failed");
+ TEST_ASSERT_SUCCESS(validate_op_chain(
+ &ops[i]->ldpc_enc.output,
+ hard_data_orig),
+ "Output buffers (CB=%u) are not equal",
+ i);
+ }
+
+ return TEST_SUCCESS;
+}
+
+static void
+create_reference_dec_op(struct rte_bbdev_dec_op *op)
+{
+ unsigned int i;
+ struct op_data_entries *entry;
+
+ op->turbo_dec = test_vector.turbo_dec;
+ entry = &test_vector.entries[DATA_INPUT];
+ for (i = 0; i < entry->nb_segments; ++i)
+ op->turbo_dec.input.length +=
+ entry->segments[i].length;
+}
+
+static void
+create_reference_ldpc_dec_op(struct rte_bbdev_dec_op *op)
+{
+ unsigned int i;
+ struct op_data_entries *entry;
+
+ op->ldpc_dec = test_vector.ldpc_dec;
+ entry = &test_vector.entries[DATA_INPUT];
+ for (i = 0; i < entry->nb_segments; ++i)
+ op->ldpc_dec.input.length +=
+ entry->segments[i].length;
+ if (test_vector.ldpc_dec.op_flags &
+ RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE) {
+ entry = &test_vector.entries[DATA_HARQ_INPUT];
+ for (i = 0; i < entry->nb_segments; ++i)
+ op->ldpc_dec.harq_combined_input.length +=
+ entry->segments[i].length;
+ }
+}
+
+
+static void
+create_reference_enc_op(struct rte_bbdev_enc_op *op)
+{
+ unsigned int i;
+ struct op_data_entries *entry;
+
+ op->turbo_enc = test_vector.turbo_enc;
+ entry = &test_vector.entries[DATA_INPUT];
+ for (i = 0; i < entry->nb_segments; ++i)
+ op->turbo_enc.input.length +=
+ entry->segments[i].length;
+}
+
+static void
+create_reference_ldpc_enc_op(struct rte_bbdev_enc_op *op)
+{
+ unsigned int i;
+ struct op_data_entries *entry;
+
+ op->ldpc_enc = test_vector.ldpc_enc;
+ entry = &test_vector.entries[DATA_INPUT];
+ for (i = 0; i < entry->nb_segments; ++i)
+ op->ldpc_enc.input.length +=
+ entry->segments[i].length;
+}
+
+static uint32_t
+calc_dec_TB_size(struct rte_bbdev_dec_op *op)
+{
+ uint8_t i;
+ uint32_t c, r, tb_size = 0;
+
+ if (op->turbo_dec.code_block_mode) {
+ tb_size = op->turbo_dec.tb_params.k_neg;
+ } else {
+ c = op->turbo_dec.tb_params.c;
+ r = op->turbo_dec.tb_params.r;
+ for (i = 0; i < c-r; i++)
+ tb_size += (r < op->turbo_dec.tb_params.c_neg) ?
+ op->turbo_dec.tb_params.k_neg :
+ op->turbo_dec.tb_params.k_pos;
+ }
+ return tb_size;
+}
+
+static uint32_t
+calc_ldpc_dec_TB_size(struct rte_bbdev_dec_op *op)
+{
+ uint8_t i;
+ uint32_t c, r, tb_size = 0;
+ uint16_t sys_cols = (op->ldpc_dec.basegraph == 1) ? 22 : 10;
+
+ if (op->ldpc_dec.code_block_mode) {
+ tb_size = sys_cols * op->ldpc_dec.z_c - op->ldpc_dec.n_filler;
+ } else {
+ c = op->ldpc_dec.tb_params.c;
+ r = op->ldpc_dec.tb_params.r;
+ for (i = 0; i < c-r; i++)
+ tb_size += sys_cols * op->ldpc_dec.z_c
+ - op->ldpc_dec.n_filler;
+ }
+ return tb_size;
+}
+
+static uint32_t
+calc_enc_TB_size(struct rte_bbdev_enc_op *op)
+{
+ uint8_t i;
+ uint32_t c, r, tb_size = 0;
+
+ if (op->turbo_enc.code_block_mode) {
+ tb_size = op->turbo_enc.tb_params.k_neg;
+ } else {
+ c = op->turbo_enc.tb_params.c;
+ r = op->turbo_enc.tb_params.r;
+ for (i = 0; i < c-r; i++)
+ tb_size += (r < op->turbo_enc.tb_params.c_neg) ?
+ op->turbo_enc.tb_params.k_neg :
+ op->turbo_enc.tb_params.k_pos;
+ }
+ return tb_size;
+}
+
+static uint32_t
+calc_ldpc_enc_TB_size(struct rte_bbdev_enc_op *op)
+{
+ uint8_t i;
+ uint32_t c, r, tb_size = 0;
+ uint16_t sys_cols = (op->ldpc_enc.basegraph == 1) ? 22 : 10;
+
+ if (op->turbo_enc.code_block_mode) {
+ tb_size = sys_cols * op->ldpc_enc.z_c - op->ldpc_enc.n_filler;
+ } else {
+ c = op->turbo_enc.tb_params.c;
+ r = op->turbo_enc.tb_params.r;
+ for (i = 0; i < c-r; i++)
+ tb_size += sys_cols * op->ldpc_enc.z_c
+ - op->ldpc_enc.n_filler;
+ }
+ return tb_size;
+}
+
+
+static int
+init_test_op_params(struct test_op_params *op_params,
+ enum rte_bbdev_op_type op_type, const int expected_status,
+ const int vector_mask, struct rte_mempool *ops_mp,
+ uint16_t burst_sz, uint16_t num_to_process, uint16_t num_lcores)
+{
+ int ret = 0;
+ if (op_type == RTE_BBDEV_OP_TURBO_DEC ||
+ op_type == RTE_BBDEV_OP_LDPC_DEC)
+ ret = rte_bbdev_dec_op_alloc_bulk(ops_mp,
+ &op_params->ref_dec_op, 1);
+ else
+ ret = rte_bbdev_enc_op_alloc_bulk(ops_mp,
+ &op_params->ref_enc_op, 1);
+
+ TEST_ASSERT_SUCCESS(ret, "rte_bbdev_op_alloc_bulk() failed");
+
+ op_params->mp = ops_mp;
+ op_params->burst_sz = burst_sz;
+ op_params->num_to_process = num_to_process;
+ op_params->num_lcores = num_lcores;
+ op_params->vector_mask = vector_mask;
+ if (op_type == RTE_BBDEV_OP_TURBO_DEC ||
+ op_type == RTE_BBDEV_OP_LDPC_DEC)
+ op_params->ref_dec_op->status = expected_status;
+ else if (op_type == RTE_BBDEV_OP_TURBO_ENC
+ || op_type == RTE_BBDEV_OP_LDPC_ENC)
+ op_params->ref_enc_op->status = expected_status;
+ return 0;
+}
+
+static int
+run_test_case_on_device(test_case_function *test_case_func, uint8_t dev_id,
+ struct test_op_params *op_params)
+{
+ int t_ret, f_ret, socket_id = SOCKET_ID_ANY;
+ unsigned int i;
+ struct active_device *ad;
+ unsigned int burst_sz = get_burst_sz();
+ enum rte_bbdev_op_type op_type = test_vector.op_type;
+ const struct rte_bbdev_op_cap *capabilities = NULL;
+
+ ad = &active_devs[dev_id];
+
+ /* Check if device supports op_type */
+ if (!is_avail_op(ad, test_vector.op_type))
+ return TEST_SUCCESS;
+
+ struct rte_bbdev_info info;
+ rte_bbdev_info_get(ad->dev_id, &info);
+ socket_id = GET_SOCKET(info.socket_id);
+
+ f_ret = create_mempools(ad, socket_id, op_type,
+ get_num_ops());
+ if (f_ret != TEST_SUCCESS) {
+ printf("Couldn't create mempools");
+ goto fail;
+ }
+ if (op_type == RTE_BBDEV_OP_NONE)
+ op_type = RTE_BBDEV_OP_TURBO_ENC;
+
+ f_ret = init_test_op_params(op_params, test_vector.op_type,
+ test_vector.expected_status,
+ test_vector.mask,
+ ad->ops_mempool,
+ burst_sz,
+ get_num_ops(),
+ get_num_lcores());
+ if (f_ret != TEST_SUCCESS) {
+ printf("Couldn't init test op params");
+ goto fail;
+ }
+
+
+ /* Find capabilities */
+ const struct rte_bbdev_op_cap *cap = info.drv.capabilities;
+ for (i = 0; i < RTE_BBDEV_OP_TYPE_COUNT; i++) {
+ if (cap->type == test_vector.op_type) {
+ capabilities = cap;
+ break;
+ }
+ cap++;
+ }
+ TEST_ASSERT_NOT_NULL(capabilities,
+ "Couldn't find capabilities");
+
+ if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC) {
+ create_reference_dec_op(op_params->ref_dec_op);
+ } else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC)
+ create_reference_enc_op(op_params->ref_enc_op);
+ else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC)
+ create_reference_ldpc_enc_op(op_params->ref_enc_op);
+ else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
+ create_reference_ldpc_dec_op(op_params->ref_dec_op);
+
+ for (i = 0; i < ad->nb_queues; ++i) {
+ f_ret = fill_queue_buffers(op_params,
+ ad->in_mbuf_pool,
+ ad->hard_out_mbuf_pool,
+ ad->soft_out_mbuf_pool,
+ ad->harq_in_mbuf_pool,
+ ad->harq_out_mbuf_pool,
+ ad->queue_ids[i],
+ capabilities,
+ info.drv.min_alignment,
+ socket_id);
+ if (f_ret != TEST_SUCCESS) {
+ printf("Couldn't init queue buffers");
+ goto fail;
+ }
+ }
+
+ /* Run test case function */
+ t_ret = test_case_func(ad, op_params);
+
+ /* Free active device resources and return */
+ free_buffers(ad, op_params);
+ return t_ret;
+
+fail:
+ free_buffers(ad, op_params);
+ return TEST_FAILED;
+}
+
+/* Run given test function per active device per supported op type
+ * per burst size.
+ */
+static int
+run_test_case(test_case_function *test_case_func)
+{
+ int ret = 0;
+ uint8_t dev;
+
+ /* Alloc op_params */
+ struct test_op_params *op_params = rte_zmalloc(NULL,
+ sizeof(struct test_op_params), RTE_CACHE_LINE_SIZE);
+ TEST_ASSERT_NOT_NULL(op_params, "Failed to alloc %zuB for op_params",
+ RTE_ALIGN(sizeof(struct test_op_params),
+ RTE_CACHE_LINE_SIZE));
+
+ /* For each device run test case function */
+ for (dev = 0; dev < nb_active_devs; ++dev)
+ ret |= run_test_case_on_device(test_case_func, dev, op_params);
+
+ rte_free(op_params);
+
+ return ret;
+}
+
+
+/* Push back the HARQ output from DDR to host */
+static void
+retrieve_harq_ddr(uint16_t dev_id, uint16_t queue_id,
+ struct rte_bbdev_dec_op **ops,
+ const uint16_t n)
+{
+ uint16_t j;
+ int save_status, ret;
+ uint32_t harq_offset = (uint32_t) queue_id * HARQ_INCR * 1024;
+ struct rte_bbdev_dec_op *ops_deq[MAX_BURST];
+ uint32_t flags = ops[0]->ldpc_dec.op_flags;
+ bool loopback = flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK;
+ bool mem_out = flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
+ bool hc_out = flags & RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE;
+ bool h_comp = flags & RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
+ for (j = 0; j < n; ++j) {
+ if ((loopback && mem_out) || hc_out) {
+ save_status = ops[j]->status;
+ ops[j]->ldpc_dec.op_flags =
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK +
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE;
+ if (h_comp)
+ ops[j]->ldpc_dec.op_flags +=
+ RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
+ ops[j]->ldpc_dec.harq_combined_input.offset =
+ harq_offset;
+ ops[j]->ldpc_dec.harq_combined_output.offset = 0;
+ harq_offset += HARQ_INCR;
+ if (!loopback)
+ ops[j]->ldpc_dec.harq_combined_input.length =
+ ops[j]->ldpc_dec.harq_combined_output.length;
+ rte_bbdev_enqueue_ldpc_dec_ops(dev_id, queue_id,
+ &ops[j], 1);
+ ret = 0;
+ while (ret == 0)
+ ret = rte_bbdev_dequeue_ldpc_dec_ops(
+ dev_id, queue_id,
+ &ops_deq[j], 1);
+ ops[j]->ldpc_dec.op_flags = flags;
+ ops[j]->status = save_status;
+ }
+ }
+}
+
+/*
+ * Push back the HARQ output from HW DDR to Host
+ * Preload HARQ memory input and adjust HARQ offset
+ */
+static void
+preload_harq_ddr(uint16_t dev_id, uint16_t queue_id,
+ struct rte_bbdev_dec_op **ops, const uint16_t n,
+ bool preload)
+{
+ uint16_t j;
+ int ret;
+ uint32_t harq_offset = (uint32_t) queue_id * HARQ_INCR * 1024;
+ struct rte_bbdev_op_data save_hc_in, save_hc_out;
+ struct rte_bbdev_dec_op *ops_deq[MAX_BURST];
+ uint32_t flags = ops[0]->ldpc_dec.op_flags;
+ bool mem_in = flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_IN_ENABLE;
+ bool hc_in = flags & RTE_BBDEV_LDPC_HQ_COMBINE_IN_ENABLE;
+ bool mem_out = flags & RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
+ bool hc_out = flags & RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE;
+ bool h_comp = flags & RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
+ for (j = 0; j < n; ++j) {
+ if ((mem_in || hc_in) && preload) {
+ save_hc_in = ops[j]->ldpc_dec.harq_combined_input;
+ save_hc_out = ops[j]->ldpc_dec.harq_combined_output;
+ ops[j]->ldpc_dec.op_flags =
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK +
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
+ if (h_comp)
+ ops[j]->ldpc_dec.op_flags +=
+ RTE_BBDEV_LDPC_HARQ_6BIT_COMPRESSION;
+ ops[j]->ldpc_dec.harq_combined_output.offset =
+ harq_offset;
+ ops[j]->ldpc_dec.harq_combined_input.offset = 0;
+ rte_bbdev_enqueue_ldpc_dec_ops(dev_id, queue_id,
+ &ops[j], 1);
+ ret = 0;
+ while (ret == 0)
+ ret = rte_bbdev_dequeue_ldpc_dec_ops(
+ dev_id, queue_id, &ops_deq[j], 1);
+ ops[j]->ldpc_dec.op_flags = flags;
+ ops[j]->ldpc_dec.harq_combined_input = save_hc_in;
+ ops[j]->ldpc_dec.harq_combined_output = save_hc_out;
+ }
+ /* Adjust HARQ offset when we reach external DDR */
+ if (mem_in || hc_in)
+ ops[j]->ldpc_dec.harq_combined_input.offset
+ = harq_offset;
+ if (mem_out || hc_out)
+ ops[j]->ldpc_dec.harq_combined_output.offset
+ = harq_offset;
+ harq_offset += HARQ_INCR;
+ }
+}
+
+static void
+dequeue_event_callback(uint16_t dev_id,
+ enum rte_bbdev_event_type event, void *cb_arg,
+ void *ret_param)
+{
+ int ret;
+ uint16_t i;
+ uint64_t total_time;
+ uint16_t deq, burst_sz, num_ops;
+ uint16_t queue_id = *(uint16_t *) ret_param;
+ struct rte_bbdev_info info;
+ double tb_len_bits;
+ struct thread_params *tp = cb_arg;
+
+ /* Find matching thread params using queue_id */
+ for (i = 0; i < MAX_QUEUES; ++i, ++tp)
+ if (tp->queue_id == queue_id)
+ break;
+
+ if (i == MAX_QUEUES) {
+ printf("%s: Queue_id from interrupt details was not found!\n",
+ __func__);
+ return;
+ }
+
+ if (unlikely(event != RTE_BBDEV_EVENT_DEQUEUE)) {
+ rte_atomic16_set(&tp->processing_status, TEST_FAILED);
+ printf(
+ "Dequeue interrupt handler called for incorrect event!\n");
+ return;
+ }
+
+ burst_sz = rte_atomic16_read(&tp->burst_sz);
+ num_ops = tp->op_params->num_to_process;
+
+ if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
+ deq = rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
+ &tp->dec_ops[
+ rte_atomic16_read(&tp->nb_dequeued)],
+ burst_sz);
+ else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
+ deq = rte_bbdev_dequeue_ldpc_dec_ops(dev_id, queue_id,
+ &tp->dec_ops[
+ rte_atomic16_read(&tp->nb_dequeued)],
+ burst_sz);
+ else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC)
+ deq = rte_bbdev_dequeue_ldpc_enc_ops(dev_id, queue_id,
+ &tp->enc_ops[
+ rte_atomic16_read(&tp->nb_dequeued)],
+ burst_sz);
+ else /*RTE_BBDEV_OP_TURBO_ENC*/
+ deq = rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
+ &tp->enc_ops[
+ rte_atomic16_read(&tp->nb_dequeued)],
+ burst_sz);
+
+ if (deq < burst_sz) {
+ printf(
+ "After receiving the interrupt all operations should be dequeued. Expected: %u, got: %u\n",
+ burst_sz, deq);
+ rte_atomic16_set(&tp->processing_status, TEST_FAILED);
+ return;
+ }
+
+ if (rte_atomic16_read(&tp->nb_dequeued) + deq < num_ops) {
+ rte_atomic16_add(&tp->nb_dequeued, deq);
+ return;
+ }
+
+ total_time = rte_rdtsc_precise() - tp->start_time;
+
+ rte_bbdev_info_get(dev_id, &info);
+
+ ret = TEST_SUCCESS;
+
+ if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC) {
+ struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
+ ret = validate_dec_op(tp->dec_ops, num_ops, ref_op,
+ tp->op_params->vector_mask);
+ /* get the max of iter_count for all dequeued ops */
+ for (i = 0; i < num_ops; ++i)
+ tp->iter_count = RTE_MAX(
+ tp->dec_ops[i]->turbo_dec.iter_count,
+ tp->iter_count);
+ rte_bbdev_dec_op_free_bulk(tp->dec_ops, deq);
+ } else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC) {
+ struct rte_bbdev_enc_op *ref_op = tp->op_params->ref_enc_op;
+ ret = validate_enc_op(tp->enc_ops, num_ops, ref_op);
+ rte_bbdev_enc_op_free_bulk(tp->enc_ops, deq);
+ } else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC) {
+ struct rte_bbdev_enc_op *ref_op = tp->op_params->ref_enc_op;
+ ret = validate_ldpc_enc_op(tp->enc_ops, num_ops, ref_op);
+ rte_bbdev_enc_op_free_bulk(tp->enc_ops, deq);
+ } else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC) {
+ struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
+ ret = validate_ldpc_dec_op(tp->dec_ops, num_ops, ref_op,
+ tp->op_params->vector_mask);
+ rte_bbdev_dec_op_free_bulk(tp->dec_ops, deq);
+ }
+
+ if (ret) {
+ printf("Buffers validation failed\n");
+ rte_atomic16_set(&tp->processing_status, TEST_FAILED);
+ }
+
+ switch (test_vector.op_type) {
+ case RTE_BBDEV_OP_TURBO_DEC:
+ tb_len_bits = calc_dec_TB_size(tp->op_params->ref_dec_op);
+ break;
+ case RTE_BBDEV_OP_TURBO_ENC:
+ tb_len_bits = calc_enc_TB_size(tp->op_params->ref_enc_op);
+ break;
+ case RTE_BBDEV_OP_LDPC_DEC:
+ tb_len_bits = calc_ldpc_dec_TB_size(tp->op_params->ref_dec_op);
+ break;
+ case RTE_BBDEV_OP_LDPC_ENC:
+ tb_len_bits = calc_ldpc_enc_TB_size(tp->op_params->ref_enc_op);
+ break;
+ case RTE_BBDEV_OP_NONE:
+ tb_len_bits = 0.0;
+ break;
+ default:
+ printf("Unknown op type: %d\n", test_vector.op_type);
+ rte_atomic16_set(&tp->processing_status, TEST_FAILED);
+ return;
+ }
+
+ tp->ops_per_sec += ((double)num_ops) /
+ ((double)total_time / (double)rte_get_tsc_hz());
+ tp->mbps += (((double)(num_ops * tb_len_bits)) / 1000000.0) /
+ ((double)total_time / (double)rte_get_tsc_hz());
+
+ rte_atomic16_add(&tp->nb_dequeued, deq);
+}
+
+static int
+throughput_intr_lcore_ldpc_dec(void *arg)
+{
+ struct thread_params *tp = arg;
+ unsigned int enqueued;
+ const uint16_t queue_id = tp->queue_id;
+ const uint16_t burst_sz = tp->op_params->burst_sz;
+ const uint16_t num_to_process = tp->op_params->num_to_process;
+ struct rte_bbdev_dec_op *ops[num_to_process];
+ struct test_buffers *bufs = NULL;
+ struct rte_bbdev_info info;
+ int ret, i, j;
+ struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
+ uint16_t num_to_enq, enq;
+
+ bool loopback = check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK);
+ bool hc_out = check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ TEST_ASSERT_SUCCESS(rte_bbdev_queue_intr_enable(tp->dev_id, queue_id),
+ "Failed to enable interrupts for dev: %u, queue_id: %u",
+ tp->dev_id, queue_id);
+
+ rte_bbdev_info_get(tp->dev_id, &info);
+
+ TEST_ASSERT_SUCCESS((num_to_process > info.drv.queue_size_lim),
+ "NUM_OPS cannot exceed %u for this device",
+ info.drv.queue_size_lim);
+
+ bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
+
+ rte_atomic16_clear(&tp->processing_status);
+ rte_atomic16_clear(&tp->nb_dequeued);
+
+ while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
+ rte_pause();
+
+ ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops,
+ num_to_process);
+ TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
+ num_to_process);
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_ldpc_dec_op(ops, num_to_process, 0, bufs->inputs,
+ bufs->hard_outputs, bufs->soft_outputs,
+ bufs->harq_inputs, bufs->harq_outputs, ref_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < num_to_process; ++j)
+ ops[j]->opaque_data = (void *)(uintptr_t)j;
+
+ for (j = 0; j < TEST_REPETITIONS; ++j) {
+ for (i = 0; i < num_to_process; ++i) {
+ if (!loopback)
+ rte_pktmbuf_reset(
+ ops[i]->ldpc_dec.hard_output.data);
+ if (hc_out || loopback)
+ mbuf_reset(
+ ops[i]->ldpc_dec.harq_combined_output.data);
+ }
+
+ tp->start_time = rte_rdtsc_precise();
+ for (enqueued = 0; enqueued < num_to_process;) {
+ num_to_enq = burst_sz;
+
+ if (unlikely(num_to_process - enqueued < num_to_enq))
+ num_to_enq = num_to_process - enqueued;
+
+ enq = 0;
+ do {
+ enq += rte_bbdev_enqueue_ldpc_dec_ops(
+ tp->dev_id,
+ queue_id, &ops[enqueued],
+ num_to_enq);
+ } while (unlikely(num_to_enq != enq));
+ enqueued += enq;
+
+ /* Write to thread burst_sz current number of enqueued
+ * descriptors. It ensures that proper number of
+ * descriptors will be dequeued in callback
+ * function - needed for last batch in case where
+ * the number of operations is not a multiple of
+ * burst size.
+ */
+ rte_atomic16_set(&tp->burst_sz, num_to_enq);
+
+ /* Wait until processing of previous batch is
+ * completed
+ */
+ while (rte_atomic16_read(&tp->nb_dequeued) !=
+ (int16_t) enqueued)
+ rte_pause();
+ }
+ if (j != TEST_REPETITIONS - 1)
+ rte_atomic16_clear(&tp->nb_dequeued);
+ }
+
+ return TEST_SUCCESS;
+}
+
+static int
+throughput_intr_lcore_dec(void *arg)
+{
+ struct thread_params *tp = arg;
+ unsigned int enqueued;
+ const uint16_t queue_id = tp->queue_id;
+ const uint16_t burst_sz = tp->op_params->burst_sz;
+ const uint16_t num_to_process = tp->op_params->num_to_process;
+ struct rte_bbdev_dec_op *ops[num_to_process];
+ struct test_buffers *bufs = NULL;
+ struct rte_bbdev_info info;
+ int ret, i, j;
+ uint16_t num_to_enq, enq;
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ TEST_ASSERT_SUCCESS(rte_bbdev_queue_intr_enable(tp->dev_id, queue_id),
+ "Failed to enable interrupts for dev: %u, queue_id: %u",
+ tp->dev_id, queue_id);
+
+ rte_bbdev_info_get(tp->dev_id, &info);
+
+ TEST_ASSERT_SUCCESS((num_to_process > info.drv.queue_size_lim),
+ "NUM_OPS cannot exceed %u for this device",
+ info.drv.queue_size_lim);
+
+ bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
+
+ rte_atomic16_clear(&tp->processing_status);
+ rte_atomic16_clear(&tp->nb_dequeued);
+
+ while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
+ rte_pause();
+
+ ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops,
+ num_to_process);
+ TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
+ num_to_process);
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_dec_op(ops, num_to_process, 0, bufs->inputs,
+ bufs->hard_outputs, bufs->soft_outputs,
+ tp->op_params->ref_dec_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < num_to_process; ++j)
+ ops[j]->opaque_data = (void *)(uintptr_t)j;
+
+ for (j = 0; j < TEST_REPETITIONS; ++j) {
+ for (i = 0; i < num_to_process; ++i)
+ rte_pktmbuf_reset(ops[i]->turbo_dec.hard_output.data);
+
+ tp->start_time = rte_rdtsc_precise();
+ for (enqueued = 0; enqueued < num_to_process;) {
+ num_to_enq = burst_sz;
+
+ if (unlikely(num_to_process - enqueued < num_to_enq))
+ num_to_enq = num_to_process - enqueued;
+
+ enq = 0;
+ do {
+ enq += rte_bbdev_enqueue_dec_ops(tp->dev_id,
+ queue_id, &ops[enqueued],
+ num_to_enq);
+ } while (unlikely(num_to_enq != enq));
+ enqueued += enq;
+
+ /* Write to thread burst_sz current number of enqueued
+ * descriptors. It ensures that proper number of
+ * descriptors will be dequeued in callback
+ * function - needed for last batch in case where
+ * the number of operations is not a multiple of
+ * burst size.
+ */
+ rte_atomic16_set(&tp->burst_sz, num_to_enq);
+
+ /* Wait until processing of previous batch is
+ * completed
+ */
+ while (rte_atomic16_read(&tp->nb_dequeued) !=
+ (int16_t) enqueued)
+ rte_pause();
+ }
+ if (j != TEST_REPETITIONS - 1)
+ rte_atomic16_clear(&tp->nb_dequeued);
+ }
+
+ return TEST_SUCCESS;
+}
+
+static int
+throughput_intr_lcore_enc(void *arg)
+{
+ struct thread_params *tp = arg;
+ unsigned int enqueued;
+ const uint16_t queue_id = tp->queue_id;
+ const uint16_t burst_sz = tp->op_params->burst_sz;
+ const uint16_t num_to_process = tp->op_params->num_to_process;
+ struct rte_bbdev_enc_op *ops[num_to_process];
+ struct test_buffers *bufs = NULL;
+ struct rte_bbdev_info info;
+ int ret, i, j;
+ uint16_t num_to_enq, enq;
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ TEST_ASSERT_SUCCESS(rte_bbdev_queue_intr_enable(tp->dev_id, queue_id),
+ "Failed to enable interrupts for dev: %u, queue_id: %u",
+ tp->dev_id, queue_id);
+
+ rte_bbdev_info_get(tp->dev_id, &info);
+
+ TEST_ASSERT_SUCCESS((num_to_process > info.drv.queue_size_lim),
+ "NUM_OPS cannot exceed %u for this device",
+ info.drv.queue_size_lim);
+
+ bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
+
+ rte_atomic16_clear(&tp->processing_status);
+ rte_atomic16_clear(&tp->nb_dequeued);
+
+ while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
+ rte_pause();
+
+ ret = rte_bbdev_enc_op_alloc_bulk(tp->op_params->mp, ops,
+ num_to_process);
+ TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
+ num_to_process);
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_enc_op(ops, num_to_process, 0, bufs->inputs,
+ bufs->hard_outputs, tp->op_params->ref_enc_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < num_to_process; ++j)
+ ops[j]->opaque_data = (void *)(uintptr_t)j;
+
+ for (j = 0; j < TEST_REPETITIONS; ++j) {
+ for (i = 0; i < num_to_process; ++i)
+ rte_pktmbuf_reset(ops[i]->turbo_enc.output.data);
+
+ tp->start_time = rte_rdtsc_precise();
+ for (enqueued = 0; enqueued < num_to_process;) {
+ num_to_enq = burst_sz;
+
+ if (unlikely(num_to_process - enqueued < num_to_enq))
+ num_to_enq = num_to_process - enqueued;
+
+ enq = 0;
+ do {
+ enq += rte_bbdev_enqueue_enc_ops(tp->dev_id,
+ queue_id, &ops[enqueued],
+ num_to_enq);
+ } while (unlikely(enq != num_to_enq));
+ enqueued += enq;
+
+ /* Write to thread burst_sz current number of enqueued
+ * descriptors. It ensures that proper number of
+ * descriptors will be dequeued in callback
+ * function - needed for last batch in case where
+ * the number of operations is not a multiple of
+ * burst size.
+ */
+ rte_atomic16_set(&tp->burst_sz, num_to_enq);
+
+ /* Wait until processing of previous batch is
+ * completed
+ */
+ while (rte_atomic16_read(&tp->nb_dequeued) !=
+ (int16_t) enqueued)
+ rte_pause();
+ }
+ if (j != TEST_REPETITIONS - 1)
+ rte_atomic16_clear(&tp->nb_dequeued);
+ }
+
+ return TEST_SUCCESS;
+}
+
+
+static int
+throughput_intr_lcore_ldpc_enc(void *arg)
+{
+ struct thread_params *tp = arg;
+ unsigned int enqueued;
+ const uint16_t queue_id = tp->queue_id;
+ const uint16_t burst_sz = tp->op_params->burst_sz;
+ const uint16_t num_to_process = tp->op_params->num_to_process;
+ struct rte_bbdev_enc_op *ops[num_to_process];
+ struct test_buffers *bufs = NULL;
+ struct rte_bbdev_info info;
+ int ret, i, j;
+ uint16_t num_to_enq, enq;
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ TEST_ASSERT_SUCCESS(rte_bbdev_queue_intr_enable(tp->dev_id, queue_id),
+ "Failed to enable interrupts for dev: %u, queue_id: %u",
+ tp->dev_id, queue_id);
+
+ rte_bbdev_info_get(tp->dev_id, &info);
+
+ TEST_ASSERT_SUCCESS((num_to_process > info.drv.queue_size_lim),
+ "NUM_OPS cannot exceed %u for this device",
+ info.drv.queue_size_lim);
+
+ bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
+
+ rte_atomic16_clear(&tp->processing_status);
+ rte_atomic16_clear(&tp->nb_dequeued);
+
+ while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
+ rte_pause();
+
+ ret = rte_bbdev_enc_op_alloc_bulk(tp->op_params->mp, ops,
+ num_to_process);
+ TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
+ num_to_process);
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_ldpc_enc_op(ops, num_to_process, 0,
+ bufs->inputs, bufs->hard_outputs,
+ tp->op_params->ref_enc_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < num_to_process; ++j)
+ ops[j]->opaque_data = (void *)(uintptr_t)j;
+
+ for (j = 0; j < TEST_REPETITIONS; ++j) {
+ for (i = 0; i < num_to_process; ++i)
+ rte_pktmbuf_reset(ops[i]->turbo_enc.output.data);
+
+ tp->start_time = rte_rdtsc_precise();
+ for (enqueued = 0; enqueued < num_to_process;) {
+ num_to_enq = burst_sz;
+
+ if (unlikely(num_to_process - enqueued < num_to_enq))
+ num_to_enq = num_to_process - enqueued;
+
+ enq = 0;
+ do {
+ enq += rte_bbdev_enqueue_ldpc_enc_ops(
+ tp->dev_id,
+ queue_id, &ops[enqueued],
+ num_to_enq);
+ } while (unlikely(enq != num_to_enq));
+ enqueued += enq;
+
+ /* Write to thread burst_sz current number of enqueued
+ * descriptors. It ensures that proper number of
+ * descriptors will be dequeued in callback
+ * function - needed for last batch in case where
+ * the number of operations is not a multiple of
+ * burst size.
+ */
+ rte_atomic16_set(&tp->burst_sz, num_to_enq);
+
+ /* Wait until processing of previous batch is
+ * completed
+ */
+ while (rte_atomic16_read(&tp->nb_dequeued) !=
+ (int16_t) enqueued)
+ rte_pause();
+ }
+ if (j != TEST_REPETITIONS - 1)
+ rte_atomic16_clear(&tp->nb_dequeued);
+ }
+
+ return TEST_SUCCESS;
+}
+
+static int
+throughput_pmd_lcore_dec(void *arg)
+{
+ struct thread_params *tp = arg;
+ uint16_t enq, deq;
+ uint64_t total_time = 0, start_time;
+ const uint16_t queue_id = tp->queue_id;
+ const uint16_t burst_sz = tp->op_params->burst_sz;
+ const uint16_t num_ops = tp->op_params->num_to_process;
+ struct rte_bbdev_dec_op *ops_enq[num_ops];
+ struct rte_bbdev_dec_op *ops_deq[num_ops];
+ struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
+ struct test_buffers *bufs = NULL;
+ int i, j, ret;
+ struct rte_bbdev_info info;
+ uint16_t num_to_enq;
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ rte_bbdev_info_get(tp->dev_id, &info);
+
+ TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
+ "NUM_OPS cannot exceed %u for this device",
+ info.drv.queue_size_lim);
+
+ bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
+
+ while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
+ rte_pause();
+
+ ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops_enq, num_ops);
+ TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops", num_ops);
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_dec_op(ops_enq, num_ops, 0, bufs->inputs,
+ bufs->hard_outputs, bufs->soft_outputs, ref_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < num_ops; ++j)
+ ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
+
+ for (i = 0; i < TEST_REPETITIONS; ++i) {
+
+ for (j = 0; j < num_ops; ++j)
+ mbuf_reset(ops_enq[j]->turbo_dec.hard_output.data);
+
+ start_time = rte_rdtsc_precise();
+
+ for (enq = 0, deq = 0; enq < num_ops;) {
+ num_to_enq = burst_sz;
+
+ if (unlikely(num_ops - enq < num_to_enq))
+ num_to_enq = num_ops - enq;
+
+ enq += rte_bbdev_enqueue_dec_ops(tp->dev_id,
+ queue_id, &ops_enq[enq], num_to_enq);
+
+ deq += rte_bbdev_dequeue_dec_ops(tp->dev_id,
+ queue_id, &ops_deq[deq], enq - deq);
+ }
+
+ /* dequeue the remaining */
+ while (deq < enq) {
+ deq += rte_bbdev_dequeue_dec_ops(tp->dev_id,
+ queue_id, &ops_deq[deq], enq - deq);
+ }
+
+ total_time += rte_rdtsc_precise() - start_time;
+ }
+
+ tp->iter_count = 0;
+ /* get the max of iter_count for all dequeued ops */
+ for (i = 0; i < num_ops; ++i) {
+ tp->iter_count = RTE_MAX(ops_enq[i]->turbo_dec.iter_count,
+ tp->iter_count);
+ }
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
+ ret = validate_dec_op(ops_deq, num_ops, ref_op,
+ tp->op_params->vector_mask);
+ TEST_ASSERT_SUCCESS(ret, "Validation failed!");
+ }
+
+ rte_bbdev_dec_op_free_bulk(ops_enq, num_ops);
+
+ double tb_len_bits = calc_dec_TB_size(ref_op);
+
+ tp->ops_per_sec = ((double)num_ops * TEST_REPETITIONS) /
+ ((double)total_time / (double)rte_get_tsc_hz());
+ tp->mbps = (((double)(num_ops * TEST_REPETITIONS * tb_len_bits)) /
+ 1000000.0) / ((double)total_time /
+ (double)rte_get_tsc_hz());
+
+ return TEST_SUCCESS;
+}
+
+static int
+bler_pmd_lcore_ldpc_dec(void *arg)
+{
+ struct thread_params *tp = arg;
+ uint16_t enq, deq;
+ uint64_t total_time = 0, start_time;
+ const uint16_t queue_id = tp->queue_id;
+ const uint16_t burst_sz = tp->op_params->burst_sz;
+ const uint16_t num_ops = tp->op_params->num_to_process;
+ struct rte_bbdev_dec_op *ops_enq[num_ops];
+ struct rte_bbdev_dec_op *ops_deq[num_ops];
+ struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
+ struct test_buffers *bufs = NULL;
+ int i, j, ret;
+ float parity_bler = 0;
+ struct rte_bbdev_info info;
+ uint16_t num_to_enq;
+ bool extDdr = check_bit(ldpc_cap_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE);
+ bool loopback = check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK);
+ bool hc_out = check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ rte_bbdev_info_get(tp->dev_id, &info);
+
+ TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
+ "NUM_OPS cannot exceed %u for this device",
+ info.drv.queue_size_lim);
+
+ bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
+
+ while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
+ rte_pause();
+
+ ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops_enq, num_ops);
+ TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops", num_ops);
+
+ /* For BLER tests we need to enable early termination */
+ if (!check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
+ ref_op->ldpc_dec.op_flags +=
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
+ ref_op->ldpc_dec.iter_max = get_iter_max();
+ ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_ldpc_dec_op(ops_enq, num_ops, 0, bufs->inputs,
+ bufs->hard_outputs, bufs->soft_outputs,
+ bufs->harq_inputs, bufs->harq_outputs, ref_op);
+ generate_llr_input(num_ops, bufs->inputs, ref_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < num_ops; ++j)
+ ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
+
+ for (i = 0; i < 1; ++i) { /* Could add more iterations */
+ for (j = 0; j < num_ops; ++j) {
+ if (!loopback)
+ mbuf_reset(
+ ops_enq[j]->ldpc_dec.hard_output.data);
+ if (hc_out || loopback)
+ mbuf_reset(
+ ops_enq[j]->ldpc_dec.harq_combined_output.data);
+ }
+ if (extDdr) {
+ bool preload = i == (TEST_REPETITIONS - 1);
+ preload_harq_ddr(tp->dev_id, queue_id, ops_enq,
+ num_ops, preload);
+ }
+ start_time = rte_rdtsc_precise();
+
+ for (enq = 0, deq = 0; enq < num_ops;) {
+ num_to_enq = burst_sz;
+
+ if (unlikely(num_ops - enq < num_to_enq))
+ num_to_enq = num_ops - enq;
+
+ enq += rte_bbdev_enqueue_ldpc_dec_ops(tp->dev_id,
+ queue_id, &ops_enq[enq], num_to_enq);
+
+ deq += rte_bbdev_dequeue_ldpc_dec_ops(tp->dev_id,
+ queue_id, &ops_deq[deq], enq - deq);
+ }
+
+ /* dequeue the remaining */
+ while (deq < enq) {
+ deq += rte_bbdev_dequeue_ldpc_dec_ops(tp->dev_id,
+ queue_id, &ops_deq[deq], enq - deq);
+ }
+
+ total_time += rte_rdtsc_precise() - start_time;
+ }
+
+ tp->iter_count = 0;
+ tp->iter_average = 0;
+ /* get the max of iter_count for all dequeued ops */
+ for (i = 0; i < num_ops; ++i) {
+ tp->iter_count = RTE_MAX(ops_enq[i]->ldpc_dec.iter_count,
+ tp->iter_count);
+ tp->iter_average += (double) ops_enq[i]->ldpc_dec.iter_count;
+ if (ops_enq[i]->status & (1 << RTE_BBDEV_SYNDROME_ERROR))
+ parity_bler += 1.0;
+ }
+
+ parity_bler /= num_ops; /* This one is based on SYND */
+ tp->iter_average /= num_ops;
+ tp->bler = (double) validate_ldpc_bler(ops_deq, num_ops) / num_ops;
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE
+ && tp->bler == 0
+ && parity_bler == 0
+ && !hc_out) {
+ ret = validate_ldpc_dec_op(ops_deq, num_ops, ref_op,
+ tp->op_params->vector_mask);
+ TEST_ASSERT_SUCCESS(ret, "Validation failed!");
+ }
+
+ rte_bbdev_dec_op_free_bulk(ops_enq, num_ops);
+
+ double tb_len_bits = calc_ldpc_dec_TB_size(ref_op);
+ tp->ops_per_sec = ((double)num_ops * 1) /
+ ((double)total_time / (double)rte_get_tsc_hz());
+ tp->mbps = (((double)(num_ops * 1 * tb_len_bits)) /
+ 1000000.0) / ((double)total_time /
+ (double)rte_get_tsc_hz());
+
+ return TEST_SUCCESS;
+}
+
+static int
+throughput_pmd_lcore_ldpc_dec(void *arg)
+{
+ struct thread_params *tp = arg;
+ uint16_t enq, deq;
+ uint64_t total_time = 0, start_time;
+ const uint16_t queue_id = tp->queue_id;
+ const uint16_t burst_sz = tp->op_params->burst_sz;
+ const uint16_t num_ops = tp->op_params->num_to_process;
+ struct rte_bbdev_dec_op *ops_enq[num_ops];
+ struct rte_bbdev_dec_op *ops_deq[num_ops];
+ struct rte_bbdev_dec_op *ref_op = tp->op_params->ref_dec_op;
+ struct test_buffers *bufs = NULL;
+ int i, j, ret;
+ struct rte_bbdev_info info;
+ uint16_t num_to_enq;
+ bool extDdr = check_bit(ldpc_cap_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE);
+ bool loopback = check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_LOOPBACK);
+ bool hc_out = check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_HQ_COMBINE_OUT_ENABLE);
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ rte_bbdev_info_get(tp->dev_id, &info);
+
+ TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
+ "NUM_OPS cannot exceed %u for this device",
+ info.drv.queue_size_lim);
+
+ bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
+
+ while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
+ rte_pause();
+
+ ret = rte_bbdev_dec_op_alloc_bulk(tp->op_params->mp, ops_enq, num_ops);
+ TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops", num_ops);
+
+ /* For throughput tests we need to disable early termination */
+ if (check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
+ ref_op->ldpc_dec.op_flags -=
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
+ ref_op->ldpc_dec.iter_max = get_iter_max();
+ ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_ldpc_dec_op(ops_enq, num_ops, 0, bufs->inputs,
+ bufs->hard_outputs, bufs->soft_outputs,
+ bufs->harq_inputs, bufs->harq_outputs, ref_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < num_ops; ++j)
+ ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
+
+ for (i = 0; i < TEST_REPETITIONS; ++i) {
+ for (j = 0; j < num_ops; ++j) {
+ if (!loopback)
+ mbuf_reset(
+ ops_enq[j]->ldpc_dec.hard_output.data);
+ if (hc_out || loopback)
+ mbuf_reset(
+ ops_enq[j]->ldpc_dec.harq_combined_output.data);
+ }
+ if (extDdr) {
+ bool preload = i == (TEST_REPETITIONS - 1);
+ preload_harq_ddr(tp->dev_id, queue_id, ops_enq,
+ num_ops, preload);
+ }
+ start_time = rte_rdtsc_precise();
+
+ for (enq = 0, deq = 0; enq < num_ops;) {
+ num_to_enq = burst_sz;
+
+ if (unlikely(num_ops - enq < num_to_enq))
+ num_to_enq = num_ops - enq;
+
+ enq += rte_bbdev_enqueue_ldpc_dec_ops(tp->dev_id,
+ queue_id, &ops_enq[enq], num_to_enq);
+
+ deq += rte_bbdev_dequeue_ldpc_dec_ops(tp->dev_id,
+ queue_id, &ops_deq[deq], enq - deq);
+ }
+
+ /* dequeue the remaining */
+ while (deq < enq) {
+ deq += rte_bbdev_dequeue_ldpc_dec_ops(tp->dev_id,
+ queue_id, &ops_deq[deq], enq - deq);
+ }
+
+ total_time += rte_rdtsc_precise() - start_time;
+ }
+
+ tp->iter_count = 0;
+ /* get the max of iter_count for all dequeued ops */
+ for (i = 0; i < num_ops; ++i) {
+ tp->iter_count = RTE_MAX(ops_enq[i]->ldpc_dec.iter_count,
+ tp->iter_count);
+ }
+ if (extDdr) {
+ /* Read loopback is not thread safe */
+ retrieve_harq_ddr(tp->dev_id, queue_id, ops_enq, num_ops);
+ }
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
+ ret = validate_ldpc_dec_op(ops_deq, num_ops, ref_op,
+ tp->op_params->vector_mask);
+ TEST_ASSERT_SUCCESS(ret, "Validation failed!");
+ }
+
+ rte_bbdev_dec_op_free_bulk(ops_enq, num_ops);
+
+ double tb_len_bits = calc_ldpc_dec_TB_size(ref_op);
+
+ tp->ops_per_sec = ((double)num_ops * TEST_REPETITIONS) /
+ ((double)total_time / (double)rte_get_tsc_hz());
+ tp->mbps = (((double)(num_ops * TEST_REPETITIONS * tb_len_bits)) /
+ 1000000.0) / ((double)total_time /
+ (double)rte_get_tsc_hz());
+
+ return TEST_SUCCESS;
+}
+
+static int
+throughput_pmd_lcore_enc(void *arg)
+{
+ struct thread_params *tp = arg;
+ uint16_t enq, deq;
+ uint64_t total_time = 0, start_time;
+ const uint16_t queue_id = tp->queue_id;
+ const uint16_t burst_sz = tp->op_params->burst_sz;
+ const uint16_t num_ops = tp->op_params->num_to_process;
+ struct rte_bbdev_enc_op *ops_enq[num_ops];
+ struct rte_bbdev_enc_op *ops_deq[num_ops];
+ struct rte_bbdev_enc_op *ref_op = tp->op_params->ref_enc_op;
+ struct test_buffers *bufs = NULL;
+ int i, j, ret;
+ struct rte_bbdev_info info;
+ uint16_t num_to_enq;
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ rte_bbdev_info_get(tp->dev_id, &info);
+
+ TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
+ "NUM_OPS cannot exceed %u for this device",
+ info.drv.queue_size_lim);
+
+ bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
+
+ while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
+ rte_pause();
+
+ ret = rte_bbdev_enc_op_alloc_bulk(tp->op_params->mp, ops_enq,
+ num_ops);
+ TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
+ num_ops);
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_enc_op(ops_enq, num_ops, 0, bufs->inputs,
+ bufs->hard_outputs, ref_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < num_ops; ++j)
+ ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
+
+ for (i = 0; i < TEST_REPETITIONS; ++i) {
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ for (j = 0; j < num_ops; ++j)
+ mbuf_reset(ops_enq[j]->turbo_enc.output.data);
+
+ start_time = rte_rdtsc_precise();
+
+ for (enq = 0, deq = 0; enq < num_ops;) {
+ num_to_enq = burst_sz;
+
+ if (unlikely(num_ops - enq < num_to_enq))
+ num_to_enq = num_ops - enq;
+
+ enq += rte_bbdev_enqueue_enc_ops(tp->dev_id,
+ queue_id, &ops_enq[enq], num_to_enq);
+
+ deq += rte_bbdev_dequeue_enc_ops(tp->dev_id,
+ queue_id, &ops_deq[deq], enq - deq);
+ }
+
+ /* dequeue the remaining */
+ while (deq < enq) {
+ deq += rte_bbdev_dequeue_enc_ops(tp->dev_id,
+ queue_id, &ops_deq[deq], enq - deq);
+ }
+
+ total_time += rte_rdtsc_precise() - start_time;
+ }
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
+ ret = validate_enc_op(ops_deq, num_ops, ref_op);
+ TEST_ASSERT_SUCCESS(ret, "Validation failed!");
+ }
+
+ rte_bbdev_enc_op_free_bulk(ops_enq, num_ops);
+
+ double tb_len_bits = calc_enc_TB_size(ref_op);
+
+ tp->ops_per_sec = ((double)num_ops * TEST_REPETITIONS) /
+ ((double)total_time / (double)rte_get_tsc_hz());
+ tp->mbps = (((double)(num_ops * TEST_REPETITIONS * tb_len_bits))
+ / 1000000.0) / ((double)total_time /
+ (double)rte_get_tsc_hz());
+
+ return TEST_SUCCESS;
+}
+
+static int
+throughput_pmd_lcore_ldpc_enc(void *arg)
+{
+ struct thread_params *tp = arg;
+ uint16_t enq, deq;
+ uint64_t total_time = 0, start_time;
+ const uint16_t queue_id = tp->queue_id;
+ const uint16_t burst_sz = tp->op_params->burst_sz;
+ const uint16_t num_ops = tp->op_params->num_to_process;
+ struct rte_bbdev_enc_op *ops_enq[num_ops];
+ struct rte_bbdev_enc_op *ops_deq[num_ops];
+ struct rte_bbdev_enc_op *ref_op = tp->op_params->ref_enc_op;
+ struct test_buffers *bufs = NULL;
+ int i, j, ret;
+ struct rte_bbdev_info info;
+ uint16_t num_to_enq;
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ rte_bbdev_info_get(tp->dev_id, &info);
+
+ TEST_ASSERT_SUCCESS((num_ops > info.drv.queue_size_lim),
+ "NUM_OPS cannot exceed %u for this device",
+ info.drv.queue_size_lim);
+
+ bufs = &tp->op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
+
+ while (rte_atomic16_read(&tp->op_params->sync) == SYNC_WAIT)
+ rte_pause();
+
+ ret = rte_bbdev_enc_op_alloc_bulk(tp->op_params->mp, ops_enq,
+ num_ops);
+ TEST_ASSERT_SUCCESS(ret, "Allocation failed for %d ops",
+ num_ops);
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_ldpc_enc_op(ops_enq, num_ops, 0, bufs->inputs,
+ bufs->hard_outputs, ref_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < num_ops; ++j)
+ ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
+
+ for (i = 0; i < TEST_REPETITIONS; ++i) {
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ for (j = 0; j < num_ops; ++j)
+ mbuf_reset(ops_enq[j]->turbo_enc.output.data);
+
+ start_time = rte_rdtsc_precise();
+
+ for (enq = 0, deq = 0; enq < num_ops;) {
+ num_to_enq = burst_sz;
+
+ if (unlikely(num_ops - enq < num_to_enq))
+ num_to_enq = num_ops - enq;
+
+ enq += rte_bbdev_enqueue_ldpc_enc_ops(tp->dev_id,
+ queue_id, &ops_enq[enq], num_to_enq);
+
+ deq += rte_bbdev_dequeue_ldpc_enc_ops(tp->dev_id,
+ queue_id, &ops_deq[deq], enq - deq);
+ }
+
+ /* dequeue the remaining */
+ while (deq < enq) {
+ deq += rte_bbdev_dequeue_ldpc_enc_ops(tp->dev_id,
+ queue_id, &ops_deq[deq], enq - deq);
+ }
+
+ total_time += rte_rdtsc_precise() - start_time;
+ }
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
+ ret = validate_ldpc_enc_op(ops_deq, num_ops, ref_op);
+ TEST_ASSERT_SUCCESS(ret, "Validation failed!");
+ }
+
+ rte_bbdev_enc_op_free_bulk(ops_enq, num_ops);
+
+ double tb_len_bits = calc_ldpc_enc_TB_size(ref_op);
+
+ tp->ops_per_sec = ((double)num_ops * TEST_REPETITIONS) /
+ ((double)total_time / (double)rte_get_tsc_hz());
+ tp->mbps = (((double)(num_ops * TEST_REPETITIONS * tb_len_bits))
+ / 1000000.0) / ((double)total_time /
+ (double)rte_get_tsc_hz());
+
+ return TEST_SUCCESS;
+}
+
+static void
+print_enc_throughput(struct thread_params *t_params, unsigned int used_cores)
+{
+ unsigned int iter = 0;
+ double total_mops = 0, total_mbps = 0;
+
+ for (iter = 0; iter < used_cores; iter++) {
+ printf(
+ "Throughput for core (%u): %.8lg Ops/s, %.8lg Mbps\n",
+ t_params[iter].lcore_id, t_params[iter].ops_per_sec,
+ t_params[iter].mbps);
+ total_mops += t_params[iter].ops_per_sec;
+ total_mbps += t_params[iter].mbps;
+ }
+ printf(
+ "\nTotal throughput for %u cores: %.8lg MOPS, %.8lg Mbps\n",
+ used_cores, total_mops, total_mbps);
+}
+
+/* Aggregate the performance results over the number of cores used */
+static void
+print_dec_throughput(struct thread_params *t_params, unsigned int used_cores)
+{
+ unsigned int core_idx = 0;
+ double total_mops = 0, total_mbps = 0;
+ uint8_t iter_count = 0;
+
+ for (core_idx = 0; core_idx < used_cores; core_idx++) {
+ printf(
+ "Throughput for core (%u): %.8lg Ops/s, %.8lg Mbps @ max %u iterations\n",
+ t_params[core_idx].lcore_id,
+ t_params[core_idx].ops_per_sec,
+ t_params[core_idx].mbps,
+ t_params[core_idx].iter_count);
+ total_mops += t_params[core_idx].ops_per_sec;
+ total_mbps += t_params[core_idx].mbps;
+ iter_count = RTE_MAX(iter_count,
+ t_params[core_idx].iter_count);
+ }
+ printf(
+ "\nTotal throughput for %u cores: %.8lg MOPS, %.8lg Mbps @ max %u iterations\n",
+ used_cores, total_mops, total_mbps, iter_count);
+}
+
+/* Aggregate the performance results over the number of cores used */
+static void
+print_dec_bler(struct thread_params *t_params, unsigned int used_cores)
+{
+ unsigned int core_idx = 0;
+ double total_mbps = 0, total_bler = 0, total_iter = 0;
+ double snr = get_snr();
+
+ for (core_idx = 0; core_idx < used_cores; core_idx++) {
+ printf("Core%u BLER %.1f %% - Iters %.1f - Tp %.1f Mbps %s\n",
+ t_params[core_idx].lcore_id,
+ t_params[core_idx].bler * 100,
+ t_params[core_idx].iter_average,
+ t_params[core_idx].mbps,
+ get_vector_filename());
+ total_mbps += t_params[core_idx].mbps;
+ total_bler += t_params[core_idx].bler;
+ total_iter += t_params[core_idx].iter_average;
+ }
+ total_bler /= used_cores;
+ total_iter /= used_cores;
+
+ printf("SNR %.2f BLER %.1f %% - Iterations %.1f %d - Tp %.1f Mbps %s\n",
+ snr, total_bler * 100, total_iter, get_iter_max(),
+ total_mbps, get_vector_filename());
+}
+
+/*
+ * Test function that determines BLER wireless performance
+ */
+static int
+bler_test(struct active_device *ad,
+ struct test_op_params *op_params)
+{
+ int ret;
+ unsigned int lcore_id, used_cores = 0;
+ struct thread_params *t_params;
+ struct rte_bbdev_info info;
+ lcore_function_t *bler_function;
+ uint16_t num_lcores;
+ const char *op_type_str;
+
+ rte_bbdev_info_get(ad->dev_id, &info);
+
+ op_type_str = rte_bbdev_op_type_str(test_vector.op_type);
+ TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u",
+ test_vector.op_type);
+
+ printf("+ ------------------------------------------------------- +\n");
+ printf("== test: bler\ndev: %s, nb_queues: %u, burst size: %u, num ops: %u, num_lcores: %u, op type: %s, itr mode: %s, GHz: %lg\n",
+ info.dev_name, ad->nb_queues, op_params->burst_sz,
+ op_params->num_to_process, op_params->num_lcores,
+ op_type_str,
+ intr_enabled ? "Interrupt mode" : "PMD mode",
+ (double)rte_get_tsc_hz() / 1000000000.0);
+
+ /* Set number of lcores */
+ num_lcores = (ad->nb_queues < (op_params->num_lcores))
+ ? ad->nb_queues
+ : op_params->num_lcores;
+
+ /* Allocate memory for thread parameters structure */
+ t_params = rte_zmalloc(NULL, num_lcores * sizeof(struct thread_params),
+ RTE_CACHE_LINE_SIZE);
+ TEST_ASSERT_NOT_NULL(t_params, "Failed to alloc %zuB for t_params",
+ RTE_ALIGN(sizeof(struct thread_params) * num_lcores,
+ RTE_CACHE_LINE_SIZE));
+
+ if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
+ bler_function = bler_pmd_lcore_ldpc_dec;
+ else
+ return TEST_SKIPPED;
+
+ rte_atomic16_set(&op_params->sync, SYNC_WAIT);
+
+ /* Master core is set at first entry */
+ t_params[0].dev_id = ad->dev_id;
+ t_params[0].lcore_id = rte_lcore_id();
+ t_params[0].op_params = op_params;
+ t_params[0].queue_id = ad->queue_ids[used_cores++];
+ t_params[0].iter_count = 0;
+
+ RTE_LCORE_FOREACH_SLAVE(lcore_id) {
+ if (used_cores >= num_lcores)
+ break;
+
+ t_params[used_cores].dev_id = ad->dev_id;
+ t_params[used_cores].lcore_id = lcore_id;
+ t_params[used_cores].op_params = op_params;
+ t_params[used_cores].queue_id = ad->queue_ids[used_cores];
+ t_params[used_cores].iter_count = 0;
+
+ rte_eal_remote_launch(bler_function,
+ &t_params[used_cores++], lcore_id);
+ }
+
+ rte_atomic16_set(&op_params->sync, SYNC_START);
+ ret = bler_function(&t_params[0]);
+
+ /* Master core is always used */
+ for (used_cores = 1; used_cores < num_lcores; used_cores++)
+ ret |= rte_eal_wait_lcore(t_params[used_cores].lcore_id);
+
+ print_dec_bler(t_params, num_lcores);
+
+ /* Return if test failed */
+ if (ret) {
+ rte_free(t_params);
+ return ret;
+ }
+
+ /* Function to print something here*/
+ rte_free(t_params);
+ return ret;
+}
+
+/*
+ * Test function that determines how long an enqueue + dequeue of a burst
+ * takes on available lcores.
+ */
+static int
+throughput_test(struct active_device *ad,
+ struct test_op_params *op_params)
+{
+ int ret;
+ unsigned int lcore_id, used_cores = 0;
+ struct thread_params *t_params, *tp;
+ struct rte_bbdev_info info;
+ lcore_function_t *throughput_function;
+ uint16_t num_lcores;
+ const char *op_type_str;
+
+ rte_bbdev_info_get(ad->dev_id, &info);
+
+ op_type_str = rte_bbdev_op_type_str(test_vector.op_type);
+ TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u",
+ test_vector.op_type);
+
+ printf("+ ------------------------------------------------------- +\n");
+ printf("== test: throughput\ndev: %s, nb_queues: %u, burst size: %u, num ops: %u, num_lcores: %u, op type: %s, itr mode: %s, GHz: %lg\n",
+ info.dev_name, ad->nb_queues, op_params->burst_sz,
+ op_params->num_to_process, op_params->num_lcores,
+ op_type_str,
+ intr_enabled ? "Interrupt mode" : "PMD mode",
+ (double)rte_get_tsc_hz() / 1000000000.0);
+
+ /* Set number of lcores */
+ num_lcores = (ad->nb_queues < (op_params->num_lcores))
+ ? ad->nb_queues
+ : op_params->num_lcores;
+
+ /* Allocate memory for thread parameters structure */
+ t_params = rte_zmalloc(NULL, num_lcores * sizeof(struct thread_params),
+ RTE_CACHE_LINE_SIZE);
+ TEST_ASSERT_NOT_NULL(t_params, "Failed to alloc %zuB for t_params",
+ RTE_ALIGN(sizeof(struct thread_params) * num_lcores,
+ RTE_CACHE_LINE_SIZE));
+
+ if (intr_enabled) {
+ if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
+ throughput_function = throughput_intr_lcore_dec;
+ else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
+ throughput_function = throughput_intr_lcore_ldpc_dec;
+ else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC)
+ throughput_function = throughput_intr_lcore_enc;
+ else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC)
+ throughput_function = throughput_intr_lcore_ldpc_enc;
+ else
+ throughput_function = throughput_intr_lcore_enc;
+
+ /* Dequeue interrupt callback registration */
+ ret = rte_bbdev_callback_register(ad->dev_id,
+ RTE_BBDEV_EVENT_DEQUEUE, dequeue_event_callback,
+ t_params);
+ if (ret < 0) {
+ rte_free(t_params);
+ return ret;
+ }
+ } else {
+ if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC)
+ throughput_function = throughput_pmd_lcore_dec;
+ else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
+ throughput_function = throughput_pmd_lcore_ldpc_dec;
+ else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC)
+ throughput_function = throughput_pmd_lcore_enc;
+ else if (test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC)
+ throughput_function = throughput_pmd_lcore_ldpc_enc;
+ else
+ throughput_function = throughput_pmd_lcore_enc;
+ }
+
+ rte_atomic16_set(&op_params->sync, SYNC_WAIT);
+
+ /* Master core is set at first entry */
+ t_params[0].dev_id = ad->dev_id;
+ t_params[0].lcore_id = rte_lcore_id();
+ t_params[0].op_params = op_params;
+ t_params[0].queue_id = ad->queue_ids[used_cores++];
+ t_params[0].iter_count = 0;
+
+ RTE_LCORE_FOREACH_SLAVE(lcore_id) {
+ if (used_cores >= num_lcores)
+ break;
+
+ t_params[used_cores].dev_id = ad->dev_id;
+ t_params[used_cores].lcore_id = lcore_id;
+ t_params[used_cores].op_params = op_params;
+ t_params[used_cores].queue_id = ad->queue_ids[used_cores];
+ t_params[used_cores].iter_count = 0;
+
+ rte_eal_remote_launch(throughput_function,
+ &t_params[used_cores++], lcore_id);
+ }
+
+ rte_atomic16_set(&op_params->sync, SYNC_START);
+ ret = throughput_function(&t_params[0]);
+
+ /* Master core is always used */
+ for (used_cores = 1; used_cores < num_lcores; used_cores++)
+ ret |= rte_eal_wait_lcore(t_params[used_cores].lcore_id);
+
+ /* Return if test failed */
+ if (ret) {
+ rte_free(t_params);
+ return ret;
+ }
+
+ /* Print throughput if interrupts are disabled and test passed */
+ if (!intr_enabled) {
+ if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC ||
+ test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
+ print_dec_throughput(t_params, num_lcores);
+ else
+ print_enc_throughput(t_params, num_lcores);
+ rte_free(t_params);
+ return ret;
+ }
+
+ /* In interrupt TC we need to wait for the interrupt callback to deqeue
+ * all pending operations. Skip waiting for queues which reported an
+ * error using processing_status variable.
+ * Wait for master lcore operations.
+ */
+ tp = &t_params[0];
+ while ((rte_atomic16_read(&tp->nb_dequeued) <
+ op_params->num_to_process) &&
+ (rte_atomic16_read(&tp->processing_status) !=
+ TEST_FAILED))
+ rte_pause();
+
+ tp->ops_per_sec /= TEST_REPETITIONS;
+ tp->mbps /= TEST_REPETITIONS;
+ ret |= (int)rte_atomic16_read(&tp->processing_status);
+
+ /* Wait for slave lcores operations */
+ for (used_cores = 1; used_cores < num_lcores; used_cores++) {
+ tp = &t_params[used_cores];
+
+ while ((rte_atomic16_read(&tp->nb_dequeued) <
+ op_params->num_to_process) &&
+ (rte_atomic16_read(&tp->processing_status) !=
+ TEST_FAILED))
+ rte_pause();
+
+ tp->ops_per_sec /= TEST_REPETITIONS;
+ tp->mbps /= TEST_REPETITIONS;
+ ret |= (int)rte_atomic16_read(&tp->processing_status);
+ }
+
+ /* Print throughput if test passed */
+ if (!ret) {
+ if (test_vector.op_type == RTE_BBDEV_OP_TURBO_DEC ||
+ test_vector.op_type == RTE_BBDEV_OP_LDPC_DEC)
+ print_dec_throughput(t_params, num_lcores);
+ else if (test_vector.op_type == RTE_BBDEV_OP_TURBO_ENC ||
+ test_vector.op_type == RTE_BBDEV_OP_LDPC_ENC)
+ print_enc_throughput(t_params, num_lcores);
+ }
+
+ rte_free(t_params);
+ return ret;
+}
+
+static int
+latency_test_dec(struct rte_mempool *mempool,
+ struct test_buffers *bufs, struct rte_bbdev_dec_op *ref_op,
+ int vector_mask, uint16_t dev_id, uint16_t queue_id,
+ const uint16_t num_to_process, uint16_t burst_sz,
+ uint64_t *total_time, uint64_t *min_time, uint64_t *max_time)
+{
+ int ret = TEST_SUCCESS;
+ uint16_t i, j, dequeued;
+ struct rte_bbdev_dec_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
+ uint64_t start_time = 0, last_time = 0;
+
+ for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
+ uint16_t enq = 0, deq = 0;
+ bool first_time = true;
+ last_time = 0;
+
+ if (unlikely(num_to_process - dequeued < burst_sz))
+ burst_sz = num_to_process - dequeued;
+
+ ret = rte_bbdev_dec_op_alloc_bulk(mempool, ops_enq, burst_sz);
+ TEST_ASSERT_SUCCESS(ret,
+ "rte_bbdev_dec_op_alloc_bulk() failed");
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_dec_op(ops_enq, burst_sz, dequeued,
+ bufs->inputs,
+ bufs->hard_outputs,
+ bufs->soft_outputs,
+ ref_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < burst_sz; ++j)
+ ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
+
+ start_time = rte_rdtsc_precise();
+
+ enq = rte_bbdev_enqueue_dec_ops(dev_id, queue_id, &ops_enq[enq],
+ burst_sz);
+ TEST_ASSERT(enq == burst_sz,
+ "Error enqueueing burst, expected %u, got %u",
+ burst_sz, enq);
+
+ /* Dequeue */
+ do {
+ deq += rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
+ &ops_deq[deq], burst_sz - deq);
+ if (likely(first_time && (deq > 0))) {
+ last_time = rte_rdtsc_precise() - start_time;
+ first_time = false;
+ }
+ } while (unlikely(burst_sz != deq));
+
+ *max_time = RTE_MAX(*max_time, last_time);
+ *min_time = RTE_MIN(*min_time, last_time);
+ *total_time += last_time;
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
+ ret = validate_dec_op(ops_deq, burst_sz, ref_op,
+ vector_mask);
+ TEST_ASSERT_SUCCESS(ret, "Validation failed!");
+ }
+
+ rte_bbdev_dec_op_free_bulk(ops_enq, deq);
+ dequeued += deq;
+ }
+
+ return i;
+}
+
+static int
+latency_test_ldpc_dec(struct rte_mempool *mempool,
+ struct test_buffers *bufs, struct rte_bbdev_dec_op *ref_op,
+ int vector_mask, uint16_t dev_id, uint16_t queue_id,
+ const uint16_t num_to_process, uint16_t burst_sz,
+ uint64_t *total_time, uint64_t *min_time, uint64_t *max_time)
+{
+ int ret = TEST_SUCCESS;
+ uint16_t i, j, dequeued;
+ struct rte_bbdev_dec_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
+ uint64_t start_time = 0, last_time = 0;
+ bool extDdr = ldpc_cap_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
+
+ for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
+ uint16_t enq = 0, deq = 0;
+ bool first_time = true;
+ last_time = 0;
+
+ if (unlikely(num_to_process - dequeued < burst_sz))
+ burst_sz = num_to_process - dequeued;
+
+ ret = rte_bbdev_dec_op_alloc_bulk(mempool, ops_enq, burst_sz);
+ TEST_ASSERT_SUCCESS(ret,
+ "rte_bbdev_dec_op_alloc_bulk() failed");
+
+ /* For latency tests we need to disable early termination */
+ if (check_bit(ref_op->ldpc_dec.op_flags,
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE))
+ ref_op->ldpc_dec.op_flags -=
+ RTE_BBDEV_LDPC_ITERATION_STOP_ENABLE;
+ ref_op->ldpc_dec.iter_max = get_iter_max();
+ ref_op->ldpc_dec.iter_count = ref_op->ldpc_dec.iter_max;
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_ldpc_dec_op(ops_enq, burst_sz, dequeued,
+ bufs->inputs,
+ bufs->hard_outputs,
+ bufs->soft_outputs,
+ bufs->harq_inputs,
+ bufs->harq_outputs,
+ ref_op);
+
+ if (extDdr)
+ preload_harq_ddr(dev_id, queue_id, ops_enq,
+ burst_sz, true);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < burst_sz; ++j)
+ ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
+
+ start_time = rte_rdtsc_precise();
+
+ enq = rte_bbdev_enqueue_ldpc_dec_ops(dev_id, queue_id,
+ &ops_enq[enq], burst_sz);
+ TEST_ASSERT(enq == burst_sz,
+ "Error enqueueing burst, expected %u, got %u",
+ burst_sz, enq);
+
+ /* Dequeue */
+ do {
+ deq += rte_bbdev_dequeue_ldpc_dec_ops(dev_id, queue_id,
+ &ops_deq[deq], burst_sz - deq);
+ if (likely(first_time && (deq > 0))) {
+ last_time = rte_rdtsc_precise() - start_time;
+ first_time = false;
+ }
+ } while (unlikely(burst_sz != deq));
+
+ *max_time = RTE_MAX(*max_time, last_time);
+ *min_time = RTE_MIN(*min_time, last_time);
+ *total_time += last_time;
+
+ if (extDdr)
+ retrieve_harq_ddr(dev_id, queue_id, ops_enq, burst_sz);
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
+ ret = validate_ldpc_dec_op(ops_deq, burst_sz, ref_op,
+ vector_mask);
+ TEST_ASSERT_SUCCESS(ret, "Validation failed!");
+ }
+
+ rte_bbdev_dec_op_free_bulk(ops_enq, deq);
+ dequeued += deq;
+ }
+ return i;
+}
+
+static int
+latency_test_enc(struct rte_mempool *mempool,
+ struct test_buffers *bufs, struct rte_bbdev_enc_op *ref_op,
+ uint16_t dev_id, uint16_t queue_id,
+ const uint16_t num_to_process, uint16_t burst_sz,
+ uint64_t *total_time, uint64_t *min_time, uint64_t *max_time)
+{
+ int ret = TEST_SUCCESS;
+ uint16_t i, j, dequeued;
+ struct rte_bbdev_enc_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
+ uint64_t start_time = 0, last_time = 0;
+
+ for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
+ uint16_t enq = 0, deq = 0;
+ bool first_time = true;
+ last_time = 0;
+
+ if (unlikely(num_to_process - dequeued < burst_sz))
+ burst_sz = num_to_process - dequeued;
+
+ ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
+ TEST_ASSERT_SUCCESS(ret,
+ "rte_bbdev_enc_op_alloc_bulk() failed");
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_enc_op(ops_enq, burst_sz, dequeued,
+ bufs->inputs,
+ bufs->hard_outputs,
+ ref_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < burst_sz; ++j)
+ ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
+
+ start_time = rte_rdtsc_precise();
+
+ enq = rte_bbdev_enqueue_enc_ops(dev_id, queue_id, &ops_enq[enq],
+ burst_sz);
+ TEST_ASSERT(enq == burst_sz,
+ "Error enqueueing burst, expected %u, got %u",
+ burst_sz, enq);
+
+ /* Dequeue */
+ do {
+ deq += rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
+ &ops_deq[deq], burst_sz - deq);
+ if (likely(first_time && (deq > 0))) {
+ last_time += rte_rdtsc_precise() - start_time;
+ first_time = false;
+ }
+ } while (unlikely(burst_sz != deq));
+
+ *max_time = RTE_MAX(*max_time, last_time);
+ *min_time = RTE_MIN(*min_time, last_time);
+ *total_time += last_time;
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
+ ret = validate_enc_op(ops_deq, burst_sz, ref_op);
+ TEST_ASSERT_SUCCESS(ret, "Validation failed!");
+ }
+
+ rte_bbdev_enc_op_free_bulk(ops_enq, deq);
+ dequeued += deq;
+ }
+
+ return i;
+}
+
+static int
+latency_test_ldpc_enc(struct rte_mempool *mempool,
+ struct test_buffers *bufs, struct rte_bbdev_enc_op *ref_op,
+ uint16_t dev_id, uint16_t queue_id,
+ const uint16_t num_to_process, uint16_t burst_sz,
+ uint64_t *total_time, uint64_t *min_time, uint64_t *max_time)
+{
+ int ret = TEST_SUCCESS;
+ uint16_t i, j, dequeued;
+ struct rte_bbdev_enc_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
+ uint64_t start_time = 0, last_time = 0;
+
+ for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
+ uint16_t enq = 0, deq = 0;
+ bool first_time = true;
+ last_time = 0;
+
+ if (unlikely(num_to_process - dequeued < burst_sz))
+ burst_sz = num_to_process - dequeued;
+
+ ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
+ TEST_ASSERT_SUCCESS(ret,
+ "rte_bbdev_enc_op_alloc_bulk() failed");
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_ldpc_enc_op(ops_enq, burst_sz, dequeued,
+ bufs->inputs,
+ bufs->hard_outputs,
+ ref_op);
+
+ /* Set counter to validate the ordering */
+ for (j = 0; j < burst_sz; ++j)
+ ops_enq[j]->opaque_data = (void *)(uintptr_t)j;
+
+ start_time = rte_rdtsc_precise();
+
+ enq = rte_bbdev_enqueue_ldpc_enc_ops(dev_id, queue_id,
+ &ops_enq[enq], burst_sz);
+ TEST_ASSERT(enq == burst_sz,
+ "Error enqueueing burst, expected %u, got %u",
+ burst_sz, enq);
+
+ /* Dequeue */
+ do {
+ deq += rte_bbdev_dequeue_ldpc_enc_ops(dev_id, queue_id,
+ &ops_deq[deq], burst_sz - deq);
+ if (likely(first_time && (deq > 0))) {
+ last_time += rte_rdtsc_precise() - start_time;
+ first_time = false;
+ }
+ } while (unlikely(burst_sz != deq));
+
+ *max_time = RTE_MAX(*max_time, last_time);
+ *min_time = RTE_MIN(*min_time, last_time);
+ *total_time += last_time;
+
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE) {
+ ret = validate_enc_op(ops_deq, burst_sz, ref_op);
+ TEST_ASSERT_SUCCESS(ret, "Validation failed!");
+ }
+
+ rte_bbdev_enc_op_free_bulk(ops_enq, deq);
+ dequeued += deq;
+ }
+
+ return i;
+}
+
+static int
+latency_test(struct active_device *ad,
+ struct test_op_params *op_params)
+{
+ int iter;
+ uint16_t burst_sz = op_params->burst_sz;
+ const uint16_t num_to_process = op_params->num_to_process;
+ const enum rte_bbdev_op_type op_type = test_vector.op_type;
+ const uint16_t queue_id = ad->queue_ids[0];
+ struct test_buffers *bufs = NULL;
+ struct rte_bbdev_info info;
+ uint64_t total_time, min_time, max_time;
+ const char *op_type_str;
+
+ total_time = max_time = 0;
+ min_time = UINT64_MAX;
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ rte_bbdev_info_get(ad->dev_id, &info);
+ bufs = &op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
+
+ op_type_str = rte_bbdev_op_type_str(op_type);
+ TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u", op_type);
+
+ printf("+ ------------------------------------------------------- +\n");
+ printf("== test: validation/latency\ndev: %s, burst size: %u, num ops: %u, op type: %s\n",
+ info.dev_name, burst_sz, num_to_process, op_type_str);
+
+ if (op_type == RTE_BBDEV_OP_TURBO_DEC)
+ iter = latency_test_dec(op_params->mp, bufs,
+ op_params->ref_dec_op, op_params->vector_mask,
+ ad->dev_id, queue_id, num_to_process,
+ burst_sz, &total_time, &min_time, &max_time);
+ else if (op_type == RTE_BBDEV_OP_TURBO_ENC)
+ iter = latency_test_enc(op_params->mp, bufs,
+ op_params->ref_enc_op, ad->dev_id, queue_id,
+ num_to_process, burst_sz, &total_time,
+ &min_time, &max_time);
+ else if (op_type == RTE_BBDEV_OP_LDPC_ENC)
+ iter = latency_test_ldpc_enc(op_params->mp, bufs,
+ op_params->ref_enc_op, ad->dev_id, queue_id,
+ num_to_process, burst_sz, &total_time,
+ &min_time, &max_time);
+ else if (op_type == RTE_BBDEV_OP_LDPC_DEC)
+ iter = latency_test_ldpc_dec(op_params->mp, bufs,
+ op_params->ref_dec_op, op_params->vector_mask,
+ ad->dev_id, queue_id, num_to_process,
+ burst_sz, &total_time, &min_time, &max_time);
+ else
+ iter = latency_test_enc(op_params->mp, bufs,
+ op_params->ref_enc_op,
+ ad->dev_id, queue_id,
+ num_to_process, burst_sz, &total_time,
+ &min_time, &max_time);
+
+ if (iter <= 0)
+ return TEST_FAILED;
+
+ printf("Operation latency:\n"
+ "\tavg: %lg cycles, %lg us\n"
+ "\tmin: %lg cycles, %lg us\n"
+ "\tmax: %lg cycles, %lg us\n",
+ (double)total_time / (double)iter,
+ (double)(total_time * 1000000) / (double)iter /
+ (double)rte_get_tsc_hz(), (double)min_time,
+ (double)(min_time * 1000000) / (double)rte_get_tsc_hz(),
+ (double)max_time, (double)(max_time * 1000000) /
+ (double)rte_get_tsc_hz());
+
+ return TEST_SUCCESS;
+}
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+static int
+get_bbdev_queue_stats(uint16_t dev_id, uint16_t queue_id,
+ struct rte_bbdev_stats *stats)
+{
+ struct rte_bbdev *dev = &rte_bbdev_devices[dev_id];
+ struct rte_bbdev_stats *q_stats;
+
+ if (queue_id >= dev->data->num_queues)
+ return -1;
+
+ q_stats = &dev->data->queues[queue_id].queue_stats;
+
+ stats->enqueued_count = q_stats->enqueued_count;
+ stats->dequeued_count = q_stats->dequeued_count;
+ stats->enqueue_err_count = q_stats->enqueue_err_count;
+ stats->dequeue_err_count = q_stats->dequeue_err_count;
+ stats->acc_offload_cycles = q_stats->acc_offload_cycles;
+
+ return 0;
+}
+
+static int
+offload_latency_test_dec(struct rte_mempool *mempool, struct test_buffers *bufs,
+ struct rte_bbdev_dec_op *ref_op, uint16_t dev_id,
+ uint16_t queue_id, const uint16_t num_to_process,
+ uint16_t burst_sz, struct test_time_stats *time_st)
+{
+ int i, dequeued, ret;
+ struct rte_bbdev_dec_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
+ uint64_t enq_start_time, deq_start_time;
+ uint64_t enq_sw_last_time, deq_last_time;
+ struct rte_bbdev_stats stats;
+
+ for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
+ uint16_t enq = 0, deq = 0;
+
+ if (unlikely(num_to_process - dequeued < burst_sz))
+ burst_sz = num_to_process - dequeued;
+
+ rte_bbdev_dec_op_alloc_bulk(mempool, ops_enq, burst_sz);
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_dec_op(ops_enq, burst_sz, dequeued,
+ bufs->inputs,
+ bufs->hard_outputs,
+ bufs->soft_outputs,
+ ref_op);
+
+ /* Start time meas for enqueue function offload latency */
+ enq_start_time = rte_rdtsc_precise();
+ do {
+ enq += rte_bbdev_enqueue_dec_ops(dev_id, queue_id,
+ &ops_enq[enq], burst_sz - enq);
+ } while (unlikely(burst_sz != enq));
+
+ ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
+ TEST_ASSERT_SUCCESS(ret,
+ "Failed to get stats for queue (%u) of device (%u)",
+ queue_id, dev_id);
+
+ enq_sw_last_time = rte_rdtsc_precise() - enq_start_time -
+ stats.acc_offload_cycles;
+ time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
+ enq_sw_last_time);
+ time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,
+ enq_sw_last_time);
+ time_st->enq_sw_total_time += enq_sw_last_time;
+
+ time_st->enq_acc_max_time = RTE_MAX(time_st->enq_acc_max_time,
+ stats.acc_offload_cycles);
+ time_st->enq_acc_min_time = RTE_MIN(time_st->enq_acc_min_time,
+ stats.acc_offload_cycles);
+ time_st->enq_acc_total_time += stats.acc_offload_cycles;
+
+ /* give time for device to process ops */
+ rte_delay_us(200);
+
+ /* Start time meas for dequeue function offload latency */
+ deq_start_time = rte_rdtsc_precise();
+ /* Dequeue one operation */
+ do {
+ deq += rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
+ &ops_deq[deq], 1);
+ } while (unlikely(deq != 1));
+
+ deq_last_time = rte_rdtsc_precise() - deq_start_time;
+ time_st->deq_max_time = RTE_MAX(time_st->deq_max_time,
+ deq_last_time);
+ time_st->deq_min_time = RTE_MIN(time_st->deq_min_time,
+ deq_last_time);
+ time_st->deq_total_time += deq_last_time;
+
+ /* Dequeue remaining operations if needed*/
+ while (burst_sz != deq)
+ deq += rte_bbdev_dequeue_dec_ops(dev_id, queue_id,
+ &ops_deq[deq], burst_sz - deq);
+
+ rte_bbdev_dec_op_free_bulk(ops_enq, deq);
+ dequeued += deq;
+ }
+
+ return i;
+}
+
+static int
+offload_latency_test_ldpc_dec(struct rte_mempool *mempool,
+ struct test_buffers *bufs,
+ struct rte_bbdev_dec_op *ref_op, uint16_t dev_id,
+ uint16_t queue_id, const uint16_t num_to_process,
+ uint16_t burst_sz, struct test_time_stats *time_st)
+{
+ int i, dequeued, ret;
+ struct rte_bbdev_dec_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
+ uint64_t enq_start_time, deq_start_time;
+ uint64_t enq_sw_last_time, deq_last_time;
+ struct rte_bbdev_stats stats;
+ bool extDdr = ldpc_cap_flags &
+ RTE_BBDEV_LDPC_INTERNAL_HARQ_MEMORY_OUT_ENABLE;
+
+ for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
+ uint16_t enq = 0, deq = 0;
+
+ if (unlikely(num_to_process - dequeued < burst_sz))
+ burst_sz = num_to_process - dequeued;
+
+ rte_bbdev_dec_op_alloc_bulk(mempool, ops_enq, burst_sz);
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_ldpc_dec_op(ops_enq, burst_sz, dequeued,
+ bufs->inputs,
+ bufs->hard_outputs,
+ bufs->soft_outputs,
+ bufs->harq_inputs,
+ bufs->harq_outputs,
+ ref_op);
+
+ if (extDdr)
+ preload_harq_ddr(dev_id, queue_id, ops_enq,
+ burst_sz, true);
+
+ /* Start time meas for enqueue function offload latency */
+ enq_start_time = rte_rdtsc_precise();
+ do {
+ enq += rte_bbdev_enqueue_ldpc_dec_ops(dev_id, queue_id,
+ &ops_enq[enq], burst_sz - enq);
+ } while (unlikely(burst_sz != enq));
+
+ enq_sw_last_time = rte_rdtsc_precise() - enq_start_time;
+ ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
+ TEST_ASSERT_SUCCESS(ret,
+ "Failed to get stats for queue (%u) of device (%u)",
+ queue_id, dev_id);
+
+ enq_sw_last_time -= stats.acc_offload_cycles;
+ time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
+ enq_sw_last_time);
+ time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,
+ enq_sw_last_time);
+ time_st->enq_sw_total_time += enq_sw_last_time;
+
+ time_st->enq_acc_max_time = RTE_MAX(time_st->enq_acc_max_time,
+ stats.acc_offload_cycles);
+ time_st->enq_acc_min_time = RTE_MIN(time_st->enq_acc_min_time,
+ stats.acc_offload_cycles);
+ time_st->enq_acc_total_time += stats.acc_offload_cycles;
+
+ /* give time for device to process ops */
+ rte_delay_us(200);
+
+ /* Start time meas for dequeue function offload latency */
+ deq_start_time = rte_rdtsc_precise();
+ /* Dequeue one operation */
+ do {
+ deq += rte_bbdev_dequeue_ldpc_dec_ops(dev_id, queue_id,
+ &ops_deq[deq], 1);
+ } while (unlikely(deq != 1));
+
+ deq_last_time = rte_rdtsc_precise() - deq_start_time;
+ time_st->deq_max_time = RTE_MAX(time_st->deq_max_time,
+ deq_last_time);
+ time_st->deq_min_time = RTE_MIN(time_st->deq_min_time,
+ deq_last_time);
+ time_st->deq_total_time += deq_last_time;
+
+ /* Dequeue remaining operations if needed*/
+ while (burst_sz != deq)
+ deq += rte_bbdev_dequeue_ldpc_dec_ops(dev_id, queue_id,
+ &ops_deq[deq], burst_sz - deq);
+
+ if (extDdr) {
+ /* Read loopback is not thread safe */
+ retrieve_harq_ddr(dev_id, queue_id, ops_enq, burst_sz);
+ }
+
+ rte_bbdev_dec_op_free_bulk(ops_enq, deq);
+ dequeued += deq;
+ }
+
+ return i;
+}
+
+static int
+offload_latency_test_enc(struct rte_mempool *mempool, struct test_buffers *bufs,
+ struct rte_bbdev_enc_op *ref_op, uint16_t dev_id,
+ uint16_t queue_id, const uint16_t num_to_process,
+ uint16_t burst_sz, struct test_time_stats *time_st)
+{
+ int i, dequeued, ret;
+ struct rte_bbdev_enc_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
+ uint64_t enq_start_time, deq_start_time;
+ uint64_t enq_sw_last_time, deq_last_time;
+ struct rte_bbdev_stats stats;
+
+ for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
+ uint16_t enq = 0, deq = 0;
+
+ if (unlikely(num_to_process - dequeued < burst_sz))
+ burst_sz = num_to_process - dequeued;
+
+ ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
+ TEST_ASSERT_SUCCESS(ret,
+ "rte_bbdev_enc_op_alloc_bulk() failed");
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_enc_op(ops_enq, burst_sz, dequeued,
+ bufs->inputs,
+ bufs->hard_outputs,
+ ref_op);
+
+ /* Start time meas for enqueue function offload latency */
+ enq_start_time = rte_rdtsc_precise();
+ do {
+ enq += rte_bbdev_enqueue_enc_ops(dev_id, queue_id,
+ &ops_enq[enq], burst_sz - enq);
+ } while (unlikely(burst_sz != enq));
+
+ enq_sw_last_time = rte_rdtsc_precise() - enq_start_time;
+
+ ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
+ TEST_ASSERT_SUCCESS(ret,
+ "Failed to get stats for queue (%u) of device (%u)",
+ queue_id, dev_id);
+ enq_sw_last_time -= stats.acc_offload_cycles;
+ time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
+ enq_sw_last_time);
+ time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,
+ enq_sw_last_time);
+ time_st->enq_sw_total_time += enq_sw_last_time;
+
+ time_st->enq_acc_max_time = RTE_MAX(time_st->enq_acc_max_time,
+ stats.acc_offload_cycles);
+ time_st->enq_acc_min_time = RTE_MIN(time_st->enq_acc_min_time,
+ stats.acc_offload_cycles);
+ time_st->enq_acc_total_time += stats.acc_offload_cycles;
+
+ /* give time for device to process ops */
+ rte_delay_us(200);
+
+ /* Start time meas for dequeue function offload latency */
+ deq_start_time = rte_rdtsc_precise();
+ /* Dequeue one operation */
+ do {
+ deq += rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
+ &ops_deq[deq], 1);
+ } while (unlikely(deq != 1));
+
+ deq_last_time = rte_rdtsc_precise() - deq_start_time;
+ time_st->deq_max_time = RTE_MAX(time_st->deq_max_time,
+ deq_last_time);
+ time_st->deq_min_time = RTE_MIN(time_st->deq_min_time,
+ deq_last_time);
+ time_st->deq_total_time += deq_last_time;
+
+ while (burst_sz != deq)
+ deq += rte_bbdev_dequeue_enc_ops(dev_id, queue_id,
+ &ops_deq[deq], burst_sz - deq);
+
+ rte_bbdev_enc_op_free_bulk(ops_enq, deq);
+ dequeued += deq;
+ }
+
+ return i;
+}
+
+static int
+offload_latency_test_ldpc_enc(struct rte_mempool *mempool,
+ struct test_buffers *bufs,
+ struct rte_bbdev_enc_op *ref_op, uint16_t dev_id,
+ uint16_t queue_id, const uint16_t num_to_process,
+ uint16_t burst_sz, struct test_time_stats *time_st)
+{
+ int i, dequeued, ret;
+ struct rte_bbdev_enc_op *ops_enq[MAX_BURST], *ops_deq[MAX_BURST];
+ uint64_t enq_start_time, deq_start_time;
+ uint64_t enq_sw_last_time, deq_last_time;
+ struct rte_bbdev_stats stats;
+
+ for (i = 0, dequeued = 0; dequeued < num_to_process; ++i) {
+ uint16_t enq = 0, deq = 0;
+
+ if (unlikely(num_to_process - dequeued < burst_sz))
+ burst_sz = num_to_process - dequeued;
+
+ ret = rte_bbdev_enc_op_alloc_bulk(mempool, ops_enq, burst_sz);
+ TEST_ASSERT_SUCCESS(ret,
+ "rte_bbdev_enc_op_alloc_bulk() failed");
+ if (test_vector.op_type != RTE_BBDEV_OP_NONE)
+ copy_reference_ldpc_enc_op(ops_enq, burst_sz, dequeued,
+ bufs->inputs,
+ bufs->hard_outputs,
+ ref_op);
+
+ /* Start time meas for enqueue function offload latency */
+ enq_start_time = rte_rdtsc_precise();
+ do {
+ enq += rte_bbdev_enqueue_ldpc_enc_ops(dev_id, queue_id,
+ &ops_enq[enq], burst_sz - enq);
+ } while (unlikely(burst_sz != enq));
+
+ enq_sw_last_time = rte_rdtsc_precise() - enq_start_time;
+ ret = get_bbdev_queue_stats(dev_id, queue_id, &stats);
+ TEST_ASSERT_SUCCESS(ret,
+ "Failed to get stats for queue (%u) of device (%u)",
+ queue_id, dev_id);
+
+ enq_sw_last_time -= stats.acc_offload_cycles;
+ time_st->enq_sw_max_time = RTE_MAX(time_st->enq_sw_max_time,
+ enq_sw_last_time);
+ time_st->enq_sw_min_time = RTE_MIN(time_st->enq_sw_min_time,
+ enq_sw_last_time);
+ time_st->enq_sw_total_time += enq_sw_last_time;
+
+ time_st->enq_acc_max_time = RTE_MAX(time_st->enq_acc_max_time,
+ stats.acc_offload_cycles);
+ time_st->enq_acc_min_time = RTE_MIN(time_st->enq_acc_min_time,
+ stats.acc_offload_cycles);
+ time_st->enq_acc_total_time += stats.acc_offload_cycles;
+
+ /* give time for device to process ops */
+ rte_delay_us(200);
+
+ /* Start time meas for dequeue function offload latency */
+ deq_start_time = rte_rdtsc_precise();
+ /* Dequeue one operation */
+ do {
+ deq += rte_bbdev_dequeue_ldpc_enc_ops(dev_id, queue_id,
+ &ops_deq[deq], 1);
+ } while (unlikely(deq != 1));
+
+ deq_last_time = rte_rdtsc_precise() - deq_start_time;
+ time_st->deq_max_time = RTE_MAX(time_st->deq_max_time,
+ deq_last_time);
+ time_st->deq_min_time = RTE_MIN(time_st->deq_min_time,
+ deq_last_time);
+ time_st->deq_total_time += deq_last_time;
+
+ while (burst_sz != deq)
+ deq += rte_bbdev_dequeue_ldpc_enc_ops(dev_id, queue_id,
+ &ops_deq[deq], burst_sz - deq);
+
+ rte_bbdev_enc_op_free_bulk(ops_enq, deq);
+ dequeued += deq;
+ }
+
+ return i;
+}
+#endif
+
+static int
+offload_cost_test(struct active_device *ad,
+ struct test_op_params *op_params)
+{
+#ifndef RTE_BBDEV_OFFLOAD_COST
+ RTE_SET_USED(ad);
+ RTE_SET_USED(op_params);
+ printf("Offload latency test is disabled.\n");
+ printf("Set RTE_BBDEV_OFFLOAD_COST to 'y' to turn the test on.\n");
+ return TEST_SKIPPED;
+#else
+ int iter;
+ uint16_t burst_sz = op_params->burst_sz;
+ const uint16_t num_to_process = op_params->num_to_process;
+ const enum rte_bbdev_op_type op_type = test_vector.op_type;
+ const uint16_t queue_id = ad->queue_ids[0];
+ struct test_buffers *bufs = NULL;
+ struct rte_bbdev_info info;
+ const char *op_type_str;
+ struct test_time_stats time_st;
+
+ memset(&time_st, 0, sizeof(struct test_time_stats));
+ time_st.enq_sw_min_time = UINT64_MAX;
+ time_st.enq_acc_min_time = UINT64_MAX;
+ time_st.deq_min_time = UINT64_MAX;
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ rte_bbdev_info_get(ad->dev_id, &info);
+ bufs = &op_params->q_bufs[GET_SOCKET(info.socket_id)][queue_id];
+
+ op_type_str = rte_bbdev_op_type_str(op_type);
+ TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u", op_type);
+
+ printf("+ ------------------------------------------------------- +\n");
+ printf("== test: offload latency test\ndev: %s, burst size: %u, num ops: %u, op type: %s\n",
+ info.dev_name, burst_sz, num_to_process, op_type_str);
+
+ if (op_type == RTE_BBDEV_OP_TURBO_DEC)
+ iter = offload_latency_test_dec(op_params->mp, bufs,
+ op_params->ref_dec_op, ad->dev_id, queue_id,
+ num_to_process, burst_sz, &time_st);
+ else if (op_type == RTE_BBDEV_OP_TURBO_ENC)
+ iter = offload_latency_test_enc(op_params->mp, bufs,
+ op_params->ref_enc_op, ad->dev_id, queue_id,
+ num_to_process, burst_sz, &time_st);
+ else if (op_type == RTE_BBDEV_OP_LDPC_ENC)
+ iter = offload_latency_test_ldpc_enc(op_params->mp, bufs,
+ op_params->ref_enc_op, ad->dev_id, queue_id,
+ num_to_process, burst_sz, &time_st);
+ else if (op_type == RTE_BBDEV_OP_LDPC_DEC)
+ iter = offload_latency_test_ldpc_dec(op_params->mp, bufs,
+ op_params->ref_dec_op, ad->dev_id, queue_id,
+ num_to_process, burst_sz, &time_st);
+ else
+ iter = offload_latency_test_enc(op_params->mp, bufs,
+ op_params->ref_enc_op, ad->dev_id, queue_id,
+ num_to_process, burst_sz, &time_st);
+
+ if (iter <= 0)
+ return TEST_FAILED;
+
+ printf("Enqueue driver offload cost latency:\n"
+ "\tavg: %lg cycles, %lg us\n"
+ "\tmin: %lg cycles, %lg us\n"
+ "\tmax: %lg cycles, %lg us\n"
+ "Enqueue accelerator offload cost latency:\n"
+ "\tavg: %lg cycles, %lg us\n"
+ "\tmin: %lg cycles, %lg us\n"
+ "\tmax: %lg cycles, %lg us\n",
+ (double)time_st.enq_sw_total_time / (double)iter,
+ (double)(time_st.enq_sw_total_time * 1000000) /
+ (double)iter / (double)rte_get_tsc_hz(),
+ (double)time_st.enq_sw_min_time,
+ (double)(time_st.enq_sw_min_time * 1000000) /
+ rte_get_tsc_hz(), (double)time_st.enq_sw_max_time,
+ (double)(time_st.enq_sw_max_time * 1000000) /
+ rte_get_tsc_hz(), (double)time_st.enq_acc_total_time /
+ (double)iter,
+ (double)(time_st.enq_acc_total_time * 1000000) /
+ (double)iter / (double)rte_get_tsc_hz(),
+ (double)time_st.enq_acc_min_time,
+ (double)(time_st.enq_acc_min_time * 1000000) /
+ rte_get_tsc_hz(), (double)time_st.enq_acc_max_time,
+ (double)(time_st.enq_acc_max_time * 1000000) /
+ rte_get_tsc_hz());
+
+ printf("Dequeue offload cost latency - one op:\n"
+ "\tavg: %lg cycles, %lg us\n"
+ "\tmin: %lg cycles, %lg us\n"
+ "\tmax: %lg cycles, %lg us\n",
+ (double)time_st.deq_total_time / (double)iter,
+ (double)(time_st.deq_total_time * 1000000) /
+ (double)iter / (double)rte_get_tsc_hz(),
+ (double)time_st.deq_min_time,
+ (double)(time_st.deq_min_time * 1000000) /
+ rte_get_tsc_hz(), (double)time_st.deq_max_time,
+ (double)(time_st.deq_max_time * 1000000) /
+ rte_get_tsc_hz());
+
+ return TEST_SUCCESS;
+#endif
+}
+
+#ifdef RTE_BBDEV_OFFLOAD_COST
+static int
+offload_latency_empty_q_test_dec(uint16_t dev_id, uint16_t queue_id,
+ const uint16_t num_to_process, uint16_t burst_sz,
+ uint64_t *deq_total_time, uint64_t *deq_min_time,
+ uint64_t *deq_max_time, const enum rte_bbdev_op_type op_type)
+{
+ int i, deq_total;
+ struct rte_bbdev_dec_op *ops[MAX_BURST];
+ uint64_t deq_start_time, deq_last_time;
+
+ /* Test deq offload latency from an empty queue */
+
+ for (i = 0, deq_total = 0; deq_total < num_to_process;
+ ++i, deq_total += burst_sz) {
+ deq_start_time = rte_rdtsc_precise();
+
+ if (unlikely(num_to_process - deq_total < burst_sz))
+ burst_sz = num_to_process - deq_total;
+ if (op_type == RTE_BBDEV_OP_LDPC_DEC)
+ rte_bbdev_dequeue_ldpc_dec_ops(dev_id, queue_id, ops,
+ burst_sz);
+ else
+ rte_bbdev_dequeue_dec_ops(dev_id, queue_id, ops,
+ burst_sz);
+
+ deq_last_time = rte_rdtsc_precise() - deq_start_time;
+ *deq_max_time = RTE_MAX(*deq_max_time, deq_last_time);
+ *deq_min_time = RTE_MIN(*deq_min_time, deq_last_time);
+ *deq_total_time += deq_last_time;
+ }
+
+ return i;
+}
+
+static int
+offload_latency_empty_q_test_enc(uint16_t dev_id, uint16_t queue_id,
+ const uint16_t num_to_process, uint16_t burst_sz,
+ uint64_t *deq_total_time, uint64_t *deq_min_time,
+ uint64_t *deq_max_time, const enum rte_bbdev_op_type op_type)
+{
+ int i, deq_total;
+ struct rte_bbdev_enc_op *ops[MAX_BURST];
+ uint64_t deq_start_time, deq_last_time;
+
+ /* Test deq offload latency from an empty queue */
+ for (i = 0, deq_total = 0; deq_total < num_to_process;
+ ++i, deq_total += burst_sz) {
+ deq_start_time = rte_rdtsc_precise();
+
+ if (unlikely(num_to_process - deq_total < burst_sz))
+ burst_sz = num_to_process - deq_total;
+ if (op_type == RTE_BBDEV_OP_LDPC_ENC)
+ rte_bbdev_dequeue_ldpc_enc_ops(dev_id, queue_id, ops,
+ burst_sz);
+ else
+ rte_bbdev_dequeue_enc_ops(dev_id, queue_id, ops,
+ burst_sz);
+
+ deq_last_time = rte_rdtsc_precise() - deq_start_time;
+ *deq_max_time = RTE_MAX(*deq_max_time, deq_last_time);
+ *deq_min_time = RTE_MIN(*deq_min_time, deq_last_time);
+ *deq_total_time += deq_last_time;
+ }
+
+ return i;
+}
+
+#endif
+
+static int
+offload_latency_empty_q_test(struct active_device *ad,
+ struct test_op_params *op_params)
+{
+#ifndef RTE_BBDEV_OFFLOAD_COST
+ RTE_SET_USED(ad);
+ RTE_SET_USED(op_params);
+ printf("Offload latency empty dequeue test is disabled.\n");
+ printf("Set RTE_BBDEV_OFFLOAD_COST to 'y' to turn the test on.\n");
+ return TEST_SKIPPED;
+#else
+ int iter;
+ uint64_t deq_total_time, deq_min_time, deq_max_time;
+ uint16_t burst_sz = op_params->burst_sz;
+ const uint16_t num_to_process = op_params->num_to_process;
+ const enum rte_bbdev_op_type op_type = test_vector.op_type;
+ const uint16_t queue_id = ad->queue_ids[0];
+ struct rte_bbdev_info info;
+ const char *op_type_str;
+
+ deq_total_time = deq_max_time = 0;
+ deq_min_time = UINT64_MAX;
+
+ TEST_ASSERT_SUCCESS((burst_sz > MAX_BURST),
+ "BURST_SIZE should be <= %u", MAX_BURST);
+
+ rte_bbdev_info_get(ad->dev_id, &info);
+
+ op_type_str = rte_bbdev_op_type_str(op_type);
+ TEST_ASSERT_NOT_NULL(op_type_str, "Invalid op type: %u", op_type);
+
+ printf("+ ------------------------------------------------------- +\n");
+ printf("== test: offload latency empty dequeue\ndev: %s, burst size: %u, num ops: %u, op type: %s\n",
+ info.dev_name, burst_sz, num_to_process, op_type_str);
+
+ if (op_type == RTE_BBDEV_OP_TURBO_DEC ||
+ op_type == RTE_BBDEV_OP_LDPC_DEC)
+ iter = offload_latency_empty_q_test_dec(ad->dev_id, queue_id,
+ num_to_process, burst_sz, &deq_total_time,
+ &deq_min_time, &deq_max_time, op_type);
+ else
+ iter = offload_latency_empty_q_test_enc(ad->dev_id, queue_id,
+ num_to_process, burst_sz, &deq_total_time,
+ &deq_min_time, &deq_max_time, op_type);
+
+ if (iter <= 0)
+ return TEST_FAILED;
+
+ printf("Empty dequeue offload:\n"
+ "\tavg: %lg cycles, %lg us\n"
+ "\tmin: %lg cycles, %lg us\n"
+ "\tmax: %lg cycles, %lg us\n",
+ (double)deq_total_time / (double)iter,
+ (double)(deq_total_time * 1000000) / (double)iter /
+ (double)rte_get_tsc_hz(), (double)deq_min_time,
+ (double)(deq_min_time * 1000000) / rte_get_tsc_hz(),
+ (double)deq_max_time, (double)(deq_max_time * 1000000) /
+ rte_get_tsc_hz());
+
+ return TEST_SUCCESS;
+#endif
+}
+
+static int
+bler_tc(void)
+{
+ return run_test_case(bler_test);
+}
+
+static int
+throughput_tc(void)
+{
+ return run_test_case(throughput_test);
+}
+
+static int
+offload_cost_tc(void)
+{
+ return run_test_case(offload_cost_test);
+}
+
+static int
+offload_latency_empty_q_tc(void)
+{
+ return run_test_case(offload_latency_empty_q_test);
+}
+
+static int
+latency_tc(void)
+{
+ return run_test_case(latency_test);
+}
+
+static int
+interrupt_tc(void)
+{
+ return run_test_case(throughput_test);
+}
+
+static struct unit_test_suite bbdev_bler_testsuite = {
+ .suite_name = "BBdev BLER Tests",
+ .setup = testsuite_setup,
+ .teardown = testsuite_teardown,
+ .unit_test_cases = {
+ TEST_CASE_ST(ut_setup, ut_teardown, bler_tc),
+ TEST_CASES_END() /**< NULL terminate unit test array */
+ }
+};
+
+static struct unit_test_suite bbdev_throughput_testsuite = {
+ .suite_name = "BBdev Throughput Tests",
+ .setup = testsuite_setup,
+ .teardown = testsuite_teardown,
+ .unit_test_cases = {
+ TEST_CASE_ST(ut_setup, ut_teardown, throughput_tc),
+ TEST_CASES_END() /**< NULL terminate unit test array */
+ }
+};
+
+static struct unit_test_suite bbdev_validation_testsuite = {
+ .suite_name = "BBdev Validation Tests",
+ .setup = testsuite_setup,
+ .teardown = testsuite_teardown,
+ .unit_test_cases = {
+ TEST_CASE_ST(ut_setup, ut_teardown, latency_tc),
+ TEST_CASES_END() /**< NULL terminate unit test array */
+ }
+};
+
+static struct unit_test_suite bbdev_latency_testsuite = {
+ .suite_name = "BBdev Latency Tests",
+ .setup = testsuite_setup,
+ .teardown = testsuite_teardown,
+ .unit_test_cases = {
+ TEST_CASE_ST(ut_setup, ut_teardown, latency_tc),
+ TEST_CASES_END() /**< NULL terminate unit test array */
+ }
+};
+
+static struct unit_test_suite bbdev_offload_cost_testsuite = {
+ .suite_name = "BBdev Offload Cost Tests",
+ .setup = testsuite_setup,
+ .teardown = testsuite_teardown,
+ .unit_test_cases = {
+ TEST_CASE_ST(ut_setup, ut_teardown, offload_cost_tc),
+ TEST_CASE_ST(ut_setup, ut_teardown, offload_latency_empty_q_tc),
+ TEST_CASES_END() /**< NULL terminate unit test array */
+ }
+};
+
+static struct unit_test_suite bbdev_interrupt_testsuite = {
+ .suite_name = "BBdev Interrupt Tests",
+ .setup = interrupt_testsuite_setup,
+ .teardown = testsuite_teardown,
+ .unit_test_cases = {
+ TEST_CASE_ST(ut_setup, ut_teardown, interrupt_tc),
+ TEST_CASES_END() /**< NULL terminate unit test array */
+ }
+};
+
+REGISTER_TEST_COMMAND(bler, bbdev_bler_testsuite);
+REGISTER_TEST_COMMAND(throughput, bbdev_throughput_testsuite);
+REGISTER_TEST_COMMAND(validation, bbdev_validation_testsuite);
+REGISTER_TEST_COMMAND(latency, bbdev_latency_testsuite);
+REGISTER_TEST_COMMAND(offload, bbdev_offload_cost_testsuite);
+REGISTER_TEST_COMMAND(interrupt, bbdev_interrupt_testsuite);