summaryrefslogtreecommitdiffstats
path: root/src/spdk/dpdk/lib/librte_compressdev/rte_comp.h
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
commit19fcec84d8d7d21e796c7624e521b60d28ee21ed (patch)
tree42d26aa27d1e3f7c0b8bd3fd14e7d7082f5008dc /src/spdk/dpdk/lib/librte_compressdev/rte_comp.h
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 16.2.11+ds.upstream/16.2.11+dsupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/spdk/dpdk/lib/librte_compressdev/rte_comp.h')
-rw-r--r--src/spdk/dpdk/lib/librte_compressdev/rte_comp.h511
1 files changed, 511 insertions, 0 deletions
diff --git a/src/spdk/dpdk/lib/librte_compressdev/rte_comp.h b/src/spdk/dpdk/lib/librte_compressdev/rte_comp.h
new file mode 100644
index 000000000..95306c5d0
--- /dev/null
+++ b/src/spdk/dpdk/lib/librte_compressdev/rte_comp.h
@@ -0,0 +1,511 @@
+/* SPDX-License-Identifier: BSD-3-Clause
+ * Copyright(c) 2017-2018 Intel Corporation
+ */
+
+#ifndef _RTE_COMP_H_
+#define _RTE_COMP_H_
+
+/**
+ * @file rte_comp.h
+ *
+ * RTE definitions for Data Compression Service
+ *
+ */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#include <rte_mempool.h>
+#include <rte_mbuf.h>
+
+/**
+ * compression service feature flags
+ *
+ * @note New features flags should be added to the end of the list
+ *
+ * Keep these flags synchronised with rte_comp_get_feature_name()
+ */
+#define RTE_COMP_FF_STATEFUL_COMPRESSION (1ULL << 0)
+/**< Stateful compression is supported */
+#define RTE_COMP_FF_STATEFUL_DECOMPRESSION (1ULL << 1)
+/**< Stateful decompression is supported */
+#define RTE_COMP_FF_OOP_SGL_IN_SGL_OUT (1ULL << 2)
+/**< Out-of-place Scatter-gather (SGL) buffers,
+ * with multiple segments, are supported in input and output
+ */
+#define RTE_COMP_FF_OOP_SGL_IN_LB_OUT (1ULL << 3)
+/**< Out-of-place Scatter-gather (SGL) buffers are supported
+ * in input, combined with linear buffers (LB), with a
+ * single segment, in output
+ */
+#define RTE_COMP_FF_OOP_LB_IN_SGL_OUT (1ULL << 4)
+/**< Out-of-place Scatter-gather (SGL) buffers are supported
+ * in output, combined with linear buffers (LB) in input
+ */
+#define RTE_COMP_FF_ADLER32_CHECKSUM (1ULL << 5)
+/**< Adler-32 Checksum is supported */
+#define RTE_COMP_FF_CRC32_CHECKSUM (1ULL << 6)
+/**< CRC32 Checksum is supported */
+#define RTE_COMP_FF_CRC32_ADLER32_CHECKSUM (1ULL << 7)
+/**< Adler-32/CRC32 Checksum is supported */
+#define RTE_COMP_FF_MULTI_PKT_CHECKSUM (1ULL << 8)
+/**< Generation of checksum across multiple stateless packets is supported */
+#define RTE_COMP_FF_SHA1_HASH (1ULL << 9)
+/**< SHA1 Hash is supported */
+#define RTE_COMP_FF_SHA2_SHA256_HASH (1ULL << 10)
+/**< SHA256 Hash of SHA2 family is supported */
+#define RTE_COMP_FF_NONCOMPRESSED_BLOCKS (1ULL << 11)
+/**< Creation of non-compressed blocks using RTE_COMP_LEVEL_NONE is supported */
+#define RTE_COMP_FF_SHAREABLE_PRIV_XFORM (1ULL << 12)
+/**< Private xforms created by the PMD can be shared
+ * across multiple stateless operations. If not set, then app needs
+ * to create as many priv_xforms as it expects to have stateless
+ * operations in-flight.
+ */
+#define RTE_COMP_FF_HUFFMAN_FIXED (1ULL << 13)
+/**< Fixed huffman encoding is supported */
+#define RTE_COMP_FF_HUFFMAN_DYNAMIC (1ULL << 14)
+/**< Dynamic huffman encoding is supported */
+
+/** Status of comp operation */
+enum rte_comp_op_status {
+ RTE_COMP_OP_STATUS_SUCCESS = 0,
+ /**< Operation completed successfully */
+ RTE_COMP_OP_STATUS_NOT_PROCESSED,
+ /**< Operation has not yet been processed by the device */
+ RTE_COMP_OP_STATUS_INVALID_ARGS,
+ /**< Operation failed due to invalid arguments in request */
+ RTE_COMP_OP_STATUS_ERROR,
+ /**< Error handling operation */
+ RTE_COMP_OP_STATUS_INVALID_STATE,
+ /**< Operation is invoked in invalid state */
+ RTE_COMP_OP_STATUS_OUT_OF_SPACE_TERMINATED,
+ /**< Output buffer ran out of space before operation completed.
+ * Error case. Application must resubmit all data with a larger
+ * output buffer.
+ */
+ RTE_COMP_OP_STATUS_OUT_OF_SPACE_RECOVERABLE,
+ /**< Output buffer ran out of space before operation completed, but this
+ * is not an error case. Output data up to op.produced can be used and
+ * next op in the stream should continue on from op.consumed+1.
+ */
+};
+
+/** Compression Algorithms */
+enum rte_comp_algorithm {
+ RTE_COMP_ALGO_UNSPECIFIED = 0,
+ /** No Compression algorithm */
+ RTE_COMP_ALGO_NULL,
+ /**< No compression.
+ * Pass-through, data is copied unchanged from source buffer to
+ * destination buffer.
+ */
+ RTE_COMP_ALGO_DEFLATE,
+ /**< DEFLATE compression algorithm
+ * https://tools.ietf.org/html/rfc1951
+ */
+ RTE_COMP_ALGO_LZS,
+ /**< LZS compression algorithm
+ * https://tools.ietf.org/html/rfc2395
+ */
+ RTE_COMP_ALGO_LIST_END
+};
+
+/** Compression Hash Algorithms */
+enum rte_comp_hash_algorithm {
+ RTE_COMP_HASH_ALGO_NONE = 0,
+ /**< No hash */
+ RTE_COMP_HASH_ALGO_SHA1,
+ /**< SHA1 hash algorithm */
+ RTE_COMP_HASH_ALGO_SHA2_256,
+ /**< SHA256 hash algorithm of SHA2 family */
+ RTE_COMP_HASH_ALGO_LIST_END
+};
+
+/**< Compression Level.
+ * The number is interpreted by each PMD differently. However, lower numbers
+ * give fastest compression, at the expense of compression ratio while
+ * higher numbers may give better compression ratios but are likely slower.
+ */
+#define RTE_COMP_LEVEL_PMD_DEFAULT (-1)
+/** Use PMD Default */
+#define RTE_COMP_LEVEL_NONE (0)
+/** Output uncompressed blocks if supported by the specified algorithm */
+#define RTE_COMP_LEVEL_MIN (1)
+/** Use minimum compression level supported by the PMD */
+#define RTE_COMP_LEVEL_MAX (9)
+/** Use maximum compression level supported by the PMD */
+
+/** Compression checksum types */
+enum rte_comp_checksum_type {
+ RTE_COMP_CHECKSUM_NONE,
+ /**< No checksum generated */
+ RTE_COMP_CHECKSUM_CRC32,
+ /**< Generates a CRC32 checksum, as used by gzip */
+ RTE_COMP_CHECKSUM_ADLER32,
+ /**< Generates an Adler-32 checksum, as used by zlib */
+ RTE_COMP_CHECKSUM_CRC32_ADLER32,
+ /**< Generates both Adler-32 and CRC32 checksums, concatenated.
+ * CRC32 is in the lower 32bits, Adler-32 in the upper 32 bits.
+ */
+};
+
+
+/** Compression Huffman Type - used by DEFLATE algorithm */
+enum rte_comp_huffman {
+ RTE_COMP_HUFFMAN_DEFAULT,
+ /**< PMD may choose which Huffman codes to use */
+ RTE_COMP_HUFFMAN_FIXED,
+ /**< Use Fixed Huffman codes */
+ RTE_COMP_HUFFMAN_DYNAMIC,
+ /**< Use Dynamic Huffman codes */
+};
+
+/** Compression flush flags */
+enum rte_comp_flush_flag {
+ RTE_COMP_FLUSH_NONE,
+ /**< Data is not flushed. Output may remain in the compressor and be
+ * processed during a following op. It may not be possible to decompress
+ * output until a later op with some other flush flag has been sent.
+ */
+ RTE_COMP_FLUSH_SYNC,
+ /**< All data should be flushed to output buffer. Output data can be
+ * decompressed. However state and history is not cleared, so future
+ * operations may use history from this operation.
+ */
+ RTE_COMP_FLUSH_FULL,
+ /**< All data should be flushed to output buffer. Output data can be
+ * decompressed. State and history data is cleared, so future
+ * ops will be independent of ops processed before this.
+ */
+ RTE_COMP_FLUSH_FINAL
+ /**< Same as RTE_COMP_FLUSH_FULL but if op.algo is RTE_COMP_ALGO_DEFLATE
+ * then bfinal bit is set in the last block.
+ */
+};
+
+/** Compression transform types */
+enum rte_comp_xform_type {
+ RTE_COMP_COMPRESS,
+ /**< Compression service - compress */
+ RTE_COMP_DECOMPRESS,
+ /**< Compression service - decompress */
+};
+
+/** Compression operation type */
+enum rte_comp_op_type {
+ RTE_COMP_OP_STATELESS,
+ /**< All data to be processed is submitted in the op, no state or
+ * history from previous ops is used and none will be stored for future
+ * ops. Flush flag must be set to either FLUSH_FULL or FLUSH_FINAL.
+ */
+ RTE_COMP_OP_STATEFUL
+ /**< There may be more data to be processed after this op, it's part of
+ * a stream of data. State and history from previous ops can be used
+ * and resulting state and history can be stored for future ops,
+ * depending on flush flag.
+ */
+};
+
+
+/** Parameters specific to the deflate algorithm */
+struct rte_comp_deflate_params {
+ enum rte_comp_huffman huffman;
+ /**< Compression huffman encoding type */
+};
+
+/** Setup Data for compression */
+struct rte_comp_compress_xform {
+ enum rte_comp_algorithm algo;
+ /**< Algorithm to use for compress operation */
+ union {
+ struct rte_comp_deflate_params deflate;
+ /**< Parameters specific to the deflate algorithm */
+ }; /**< Algorithm specific parameters */
+ int level;
+ /**< Compression level */
+ uint8_t window_size;
+ /**< Base two log value of sliding window to be used. If window size
+ * can't be supported by the PMD then it may fall back to a smaller
+ * size. This is likely to result in a worse compression ratio.
+ */
+ enum rte_comp_checksum_type chksum;
+ /**< Type of checksum to generate on the uncompressed data */
+ enum rte_comp_hash_algorithm hash_algo;
+ /**< Hash algorithm to be used with compress operation. Hash is always
+ * done on plaintext.
+ */
+};
+
+/**
+ * Setup Data for decompression.
+ */
+struct rte_comp_decompress_xform {
+ enum rte_comp_algorithm algo;
+ /**< Algorithm to use for decompression */
+ enum rte_comp_checksum_type chksum;
+ /**< Type of checksum to generate on the decompressed data */
+ uint8_t window_size;
+ /**< Base two log value of sliding window which was used to generate
+ * compressed data. If window size can't be supported by the PMD then
+ * setup of stream or private_xform should fail.
+ */
+ enum rte_comp_hash_algorithm hash_algo;
+ /**< Hash algorithm to be used with decompress operation. Hash is always
+ * done on plaintext.
+ */
+};
+
+/**
+ * Compression transform structure.
+ *
+ * This is used to specify the compression transforms required.
+ * Each transform structure can hold a single transform, the type field is
+ * used to specify which transform is contained within the union.
+ */
+struct rte_comp_xform {
+ enum rte_comp_xform_type type;
+ /**< xform type */
+ union {
+ struct rte_comp_compress_xform compress;
+ /**< xform for compress operation */
+ struct rte_comp_decompress_xform decompress;
+ /**< decompress xform */
+ };
+};
+
+/**
+ * Compression Operation.
+ *
+ * This structure contains data relating to performing a compression
+ * operation on the referenced mbuf data buffers.
+ *
+ * Comp operations are enqueued and dequeued in comp PMDs using the
+ * rte_compressdev_enqueue_burst() / rte_compressdev_dequeue_burst() APIs
+ */
+struct rte_comp_op {
+ enum rte_comp_op_type op_type;
+ union {
+ void *private_xform;
+ /**< Stateless private PMD data derived from an rte_comp_xform.
+ * A handle returned by rte_compressdev_private_xform_create()
+ * must be attached to operations of op_type RTE_COMP_STATELESS.
+ */
+ void *stream;
+ /**< Private PMD data derived initially from an rte_comp_xform,
+ * which holds state and history data and evolves as operations
+ * are processed. rte_compressdev_stream_create() must be called
+ * on a device for all STATEFUL data streams and the resulting
+ * stream attached to the one or more operations associated
+ * with the data stream.
+ * All operations in a stream must be sent to the same device.
+ */
+ };
+
+ struct rte_mempool *mempool;
+ /**< Pool from which operation is allocated */
+ rte_iova_t iova_addr;
+ /**< IOVA address of this operation */
+ struct rte_mbuf *m_src;
+ /**< source mbuf
+ * The total size of the input buffer(s) can be retrieved using
+ * rte_pktmbuf_pkt_len(m_src). The max data size which can fit in a
+ * single mbuf is limited by the uint16_t rte_mbuf.data_len to 64k-1.
+ * If the input data is bigger than this it can be passed to the PMD in
+ * a chain of mbufs if the PMD's capabilities indicate it supports this.
+ */
+ struct rte_mbuf *m_dst;
+ /**< destination mbuf
+ * The total size of the output buffer(s) can be retrieved using
+ * rte_pktmbuf_pkt_len(m_dst). The max data size which can fit in a
+ * single mbuf is limited by the uint16_t rte_mbuf.data_len to 64k-1.
+ * If the output data is expected to be bigger than this a chain of
+ * mbufs can be passed to the PMD if the PMD's capabilities indicate
+ * it supports this.
+ *
+ * @note, if incompressible data is passed to an engine for compression
+ * using RTE_COMP_ALGO_DEFLATE, it's possible for the output data
+ * to be larger than the uncompressed data, due to the inclusion
+ * of the DEFLATE header blocks. The size of m_dst should accommodate
+ * this, else OUT_OF_SPACE errors can be expected in this case.
+ */
+
+ struct {
+ uint32_t offset;
+ /**< Starting point for compression or decompression,
+ * specified as number of bytes from start of packet in
+ * source buffer.
+ * This offset starts from the first segment
+ * of the buffer, in case the m_src is a chain of mbufs.
+ * Starting point for checksum generation in compress direction.
+ */
+ uint32_t length;
+ /**< The length, in bytes, of the data in source buffer
+ * to be compressed or decompressed.
+ * Also the length of the data over which the checksum
+ * should be generated in compress direction
+ */
+ } src;
+ struct {
+ uint32_t offset;
+ /**< Starting point for writing output data, specified as
+ * number of bytes from start of packet in dest
+ * buffer.
+ * This offset starts from the first segment
+ * of the buffer, in case the m_dst is a chain of mbufs.
+ * Starting point for checksum generation in
+ * decompress direction.
+ */
+ } dst;
+ struct {
+ uint8_t *digest;
+ /**< Output buffer to store hash output, if enabled in xform.
+ * Buffer would contain valid value only after an op with
+ * flush flag = RTE_COMP_FLUSH_FULL/FLUSH_FINAL is processed
+ * successfully.
+ *
+ * Length of buffer should be contiguous and large enough to
+ * accommodate digest produced by specific hash algo.
+ */
+ rte_iova_t iova_addr;
+ /**< IO address of the buffer */
+ } hash;
+ enum rte_comp_flush_flag flush_flag;
+ /**< Defines flush characteristics for the output data.
+ * Only applicable in compress direction
+ */
+ uint64_t input_chksum;
+ /**< An input checksum can be provided to generate a
+ * cumulative checksum across sequential blocks in a STATELESS stream.
+ * Checksum type is as specified in xform chksum_type
+ */
+ uint64_t output_chksum;
+ /**< If a checksum is generated it will be written in here.
+ * Checksum type is as specified in xform chksum_type.
+ */
+ uint32_t consumed;
+ /**< The number of bytes from the source buffer
+ * which were compressed/decompressed.
+ */
+ uint32_t produced;
+ /**< The number of bytes written to the destination buffer
+ * which were compressed/decompressed.
+ */
+ uint64_t debug_status;
+ /**<
+ * Status of the operation is returned in the status param.
+ * This field allows the PMD to pass back extra
+ * pmd-specific debug information. Value is not defined on the API.
+ */
+ uint8_t status;
+ /**<
+ * Operation status - use values from enum rte_comp_status.
+ * This is reset to
+ * RTE_COMP_OP_STATUS_NOT_PROCESSED on allocation from mempool and
+ * will be set to RTE_COMP_OP_STATUS_SUCCESS after operation
+ * is successfully processed by a PMD
+ */
+} __rte_cache_aligned;
+
+/**
+ * Creates an operation pool
+ *
+ * @param name
+ * Compress pool name
+ * @param nb_elts
+ * Number of elements in pool
+ * @param cache_size
+ * Number of elements to cache on lcore, see
+ * *rte_mempool_create* for further details about cache size
+ * @param user_size
+ * Size of private data to allocate for user with each operation
+ * @param socket_id
+ * Socket to identifier allocate memory on
+ * @return
+ * - On success pointer to mempool
+ * - On failure NULL
+ */
+__rte_experimental
+struct rte_mempool *
+rte_comp_op_pool_create(const char *name,
+ unsigned int nb_elts, unsigned int cache_size,
+ uint16_t user_size, int socket_id);
+
+/**
+ * Allocate an operation from a mempool with default parameters set
+ *
+ * @param mempool
+ * Compress operation mempool
+ *
+ * @return
+ * - On success returns a valid rte_comp_op structure
+ * - On failure returns NULL
+ */
+__rte_experimental
+struct rte_comp_op *
+rte_comp_op_alloc(struct rte_mempool *mempool);
+
+/**
+ * Bulk allocate operations from a mempool with default parameters set
+ *
+ * @param mempool
+ * Compress operation mempool
+ * @param ops
+ * Array to place allocated operations
+ * @param nb_ops
+ * Number of operations to allocate
+ * @return
+ * - nb_ops: Success, the nb_ops requested was allocated
+ * - 0: Not enough entries in the mempool; no ops are retrieved.
+ */
+__rte_experimental
+int
+rte_comp_op_bulk_alloc(struct rte_mempool *mempool,
+ struct rte_comp_op **ops, uint16_t nb_ops);
+
+/**
+ * Free operation structure
+ * If operation has been allocate from a rte_mempool, then the operation will
+ * be returned to the mempool.
+ *
+ * @param op
+ * Compress operation
+ */
+__rte_experimental
+void
+rte_comp_op_free(struct rte_comp_op *op);
+
+/**
+ * Bulk free operation structures
+ * If operations have been allocated from an rte_mempool, then the operations
+ * will be returned to the mempool.
+ * The array entry will be cleared.
+ *
+ * @param ops
+ * Array of Compress operations
+ * @param nb_ops
+ * Number of operations to free
+ */
+__rte_experimental
+void
+rte_comp_op_bulk_free(struct rte_comp_op **ops, uint16_t nb_ops);
+
+/**
+ * Get the name of a compress service feature flag
+ *
+ * @param flag
+ * The mask describing the flag
+ *
+ * @return
+ * The name of this flag, or NULL if it's not a valid feature flag.
+ */
+__rte_experimental
+const char *
+rte_comp_get_feature_name(uint64_t flag);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* _RTE_COMP_H_ */