summaryrefslogtreecommitdiffstats
path: root/src/spdk/isa-l/igzip/igzip_inflate.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
commit19fcec84d8d7d21e796c7624e521b60d28ee21ed (patch)
tree42d26aa27d1e3f7c0b8bd3fd14e7d7082f5008dc /src/spdk/isa-l/igzip/igzip_inflate.c
parentInitial commit. (diff)
downloadceph-upstream.tar.xz
ceph-upstream.zip
Adding upstream version 16.2.11+ds.upstream/16.2.11+dsupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/spdk/isa-l/igzip/igzip_inflate.c')
-rw-r--r--src/spdk/isa-l/igzip/igzip_inflate.c2437
1 files changed, 2437 insertions, 0 deletions
diff --git a/src/spdk/isa-l/igzip/igzip_inflate.c b/src/spdk/isa-l/igzip/igzip_inflate.c
new file mode 100644
index 000000000..775e8f33e
--- /dev/null
+++ b/src/spdk/isa-l/igzip/igzip_inflate.c
@@ -0,0 +1,2437 @@
+/**********************************************************************
+ Copyright(c) 2011-2016 Intel Corporation All rights reserved.
+
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+ * Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions and the following disclaimer in
+ the documentation and/or other materials provided with the
+ distribution.
+ * Neither the name of Intel Corporation nor the names of its
+ contributors may be used to endorse or promote products derived
+ from this software without specific prior written permission.
+
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+**********************************************************************/
+
+#include <stdint.h>
+#include "igzip_lib.h"
+#include "crc.h"
+#include "huff_codes.h"
+#include "igzip_checksums.h"
+#include "igzip_wrapper.h"
+#include "unaligned.h"
+
+#ifndef NO_STATIC_INFLATE_H
+#include "static_inflate.h"
+#endif
+
+#ifdef __FreeBSD__
+#include <sys/types.h>
+#include <sys/endian.h>
+# define bswap_32(x) bswap32(x)
+#elif defined (__APPLE__)
+#include <libkern/OSByteOrder.h>
+# define bswap_32(x) OSSwapInt32(x)
+#elif defined (__GNUC__) && !defined (__MINGW32__)
+# include <byteswap.h>
+#elif defined _WIN64
+# define bswap_32(x) _byteswap_ulong(x)
+#endif
+
+extern int decode_huffman_code_block_stateless(struct inflate_state *, uint8_t * start_out);
+
+#define LARGE_SHORT_SYM_LEN 25
+#define LARGE_SHORT_SYM_MASK ((1 << LARGE_SHORT_SYM_LEN) - 1)
+#define LARGE_LONG_SYM_LEN 10
+#define LARGE_LONG_SYM_MASK ((1 << LARGE_LONG_SYM_LEN) - 1)
+#define LARGE_SHORT_CODE_LEN_OFFSET 28
+#define LARGE_LONG_CODE_LEN_OFFSET 10
+#define LARGE_FLAG_BIT_OFFSET 25
+#define LARGE_FLAG_BIT (1 << LARGE_FLAG_BIT_OFFSET)
+#define LARGE_SYM_COUNT_OFFSET 26
+#define LARGE_SYM_COUNT_LEN 2
+#define LARGE_SYM_COUNT_MASK ((1 << LARGE_SYM_COUNT_LEN) - 1)
+#define LARGE_SHORT_MAX_LEN_OFFSET 26
+
+#define SMALL_SHORT_SYM_LEN 9
+#define SMALL_SHORT_SYM_MASK ((1 << SMALL_SHORT_SYM_LEN) - 1)
+#define SMALL_LONG_SYM_LEN 9
+#define SMALL_LONG_SYM_MASK ((1 << SMALL_LONG_SYM_LEN) - 1)
+#define SMALL_SHORT_CODE_LEN_OFFSET 11
+#define SMALL_LONG_CODE_LEN_OFFSET 10
+#define SMALL_FLAG_BIT_OFFSET 10
+#define SMALL_FLAG_BIT (1 << SMALL_FLAG_BIT_OFFSET)
+
+#define DIST_SYM_OFFSET 0
+#define DIST_SYM_LEN 5
+#define DIST_SYM_MASK ((1 << DIST_SYM_LEN) - 1)
+#define DIST_SYM_EXTRA_OFFSET 5
+#define DIST_SYM_EXTRA_LEN 4
+#define DIST_SYM_EXTRA_MASK ((1 << DIST_SYM_EXTRA_LEN) - 1)
+
+#define MAX_LIT_LEN_CODE_LEN 21
+#define MAX_LIT_LEN_COUNT (MAX_LIT_LEN_CODE_LEN + 2)
+#define MAX_LIT_LEN_SYM 512
+#define LIT_LEN_ELEMS 514
+
+#define INVALID_SYMBOL 0x1FFF
+#define INVALID_CODE 0xFFFFFF
+
+#define MIN_DEF_MATCH 3
+
+#define TRIPLE_SYM_FLAG 0
+#define DOUBLE_SYM_FLAG TRIPLE_SYM_FLAG + 1
+#define SINGLE_SYM_FLAG DOUBLE_SYM_FLAG + 1
+#define DEFAULT_SYM_FLAG TRIPLE_SYM_FLAG
+
+#define SINGLE_SYM_THRESH (2 * 1024)
+#define DOUBLE_SYM_THRESH (4 * 1024)
+
+/* structure contain lookup data based on RFC 1951 */
+struct rfc1951_tables {
+ uint8_t dist_extra_bit_count[32];
+ uint32_t dist_start[32];
+ uint8_t len_extra_bit_count[32];
+ uint16_t len_start[32];
+
+};
+
+/* The following tables are based on the tables in the deflate standard,
+ * RFC 1951 page 11. */
+static struct rfc1951_tables rfc_lookup_table = {
+ .dist_extra_bit_count = {
+ 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x02, 0x02,
+ 0x03, 0x03, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06,
+ 0x07, 0x07, 0x08, 0x08, 0x09, 0x09, 0x0a, 0x0a,
+ 0x0b, 0x0b, 0x0c, 0x0c, 0x0d, 0x0d, 0x00, 0x00},
+
+ .dist_start = {
+ 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0007, 0x0009, 0x000d,
+ 0x0011, 0x0019, 0x0021, 0x0031, 0x0041, 0x0061, 0x0081, 0x00c1,
+ 0x0101, 0x0181, 0x0201, 0x0301, 0x0401, 0x0601, 0x0801, 0x0c01,
+ 0x1001, 0x1801, 0x2001, 0x3001, 0x4001, 0x6001, 0x0000, 0x0000},
+
+ .len_extra_bit_count = {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x01, 0x01, 0x01, 0x01, 0x02, 0x02, 0x02, 0x02,
+ 0x03, 0x03, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04,
+ 0x05, 0x05, 0x05, 0x05, 0x00, 0x00, 0x00, 0x00},
+
+ .len_start = {
+ 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x0008, 0x0009, 0x000a,
+ 0x000b, 0x000d, 0x000f, 0x0011, 0x0013, 0x0017, 0x001b, 0x001f,
+ 0x0023, 0x002b, 0x0033, 0x003b, 0x0043, 0x0053, 0x0063, 0x0073,
+ 0x0083, 0x00a3, 0x00c3, 0x00e3, 0x0102, 0x0103, 0x0000, 0x0000}
+};
+
+struct slver {
+ uint16_t snum;
+ uint8_t ver;
+ uint8_t core;
+};
+
+/* Version info */
+struct slver isal_inflate_init_slver_00010088;
+struct slver isal_inflate_init_slver = { 0x0088, 0x01, 0x00 };
+
+struct slver isal_inflate_reset_slver_0001008f;
+struct slver isal_inflate_reset_slver = { 0x008f, 0x01, 0x00 };
+
+struct slver isal_inflate_stateless_slver_00010089;
+struct slver isal_inflate_stateless_slver = { 0x0089, 0x01, 0x00 };
+
+struct slver isal_inflate_slver_0001008a;
+struct slver isal_inflate_slver = { 0x008a, 0x01, 0x00 };
+
+struct slver isal_inflate_set_dict_slver_0001008d;
+struct slver isal_inflate_set_dict_slver = { 0x008d, 0x01, 0x00 };
+
+/*Performs a copy of length repeat_length data starting at dest -
+ * lookback_distance into dest. This copy copies data previously copied when the
+ * src buffer and the dest buffer overlap. */
+static void inline byte_copy(uint8_t * dest, uint64_t lookback_distance, int repeat_length)
+{
+ uint8_t *src = dest - lookback_distance;
+
+ for (; repeat_length > 0; repeat_length--)
+ *dest++ = *src++;
+}
+
+static void update_checksum(struct inflate_state *state, uint8_t * start_in, uint64_t length)
+{
+ switch (state->crc_flag) {
+ case ISAL_GZIP:
+ case ISAL_GZIP_NO_HDR:
+ case ISAL_GZIP_NO_HDR_VER:
+ state->crc = crc32_gzip_refl(state->crc, start_in, length);
+ break;
+ case ISAL_ZLIB:
+ case ISAL_ZLIB_NO_HDR:
+ case ISAL_ZLIB_NO_HDR_VER:
+ state->crc = isal_adler32_bam1(state->crc, start_in, length);
+ break;
+ }
+}
+
+static void finalize_adler32(struct inflate_state *state)
+{
+
+ state->crc = (state->crc & 0xffff0000) | (((state->crc & 0xffff) + 1) % ADLER_MOD);
+}
+
+static const uint8_t bitrev_table[] = {
+ 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
+ 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
+ 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
+ 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
+ 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
+ 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
+ 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
+ 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
+ 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
+ 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
+ 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
+ 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
+ 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
+ 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
+ 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
+ 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
+ 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
+ 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
+ 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
+ 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
+ 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
+ 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
+ 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
+ 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
+ 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
+ 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
+ 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
+ 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
+ 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
+ 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
+ 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
+ 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
+
+};
+
+/*
+ * Returns integer with first length bits reversed and all higher bits zeroed
+ */
+static uint32_t inline bit_reverse2(uint16_t bits, uint8_t length)
+{
+ uint32_t bitrev;
+ bitrev = bitrev_table[bits >> 8];
+ bitrev |= bitrev_table[bits & 0xFF] << 8;
+
+ return bitrev >> (16 - length);
+}
+
+/* Load data from the in_stream into a buffer to allow for handling unaligned data*/
+static void inline inflate_in_load(struct inflate_state *state, int min_required)
+{
+ uint64_t temp = 0;
+ uint8_t new_bytes;
+
+ if (state->read_in_length >= 64)
+ return;
+
+ if (state->avail_in >= 8) {
+ /* If there is enough space to load a 64 bits, load the data and use
+ * that to fill read_in */
+ new_bytes = 8 - (state->read_in_length + 7) / 8;
+ temp = load_u64(state->next_in);
+
+ state->read_in |= temp << state->read_in_length;
+ state->next_in += new_bytes;
+ state->avail_in -= new_bytes;
+ state->read_in_length += new_bytes * 8;
+
+ } else {
+ /* Else fill the read_in buffer 1 byte at a time */
+ while (state->read_in_length < 57 && state->avail_in > 0) {
+ temp = *state->next_in;
+ state->read_in |= temp << state->read_in_length;
+ state->next_in++;
+ state->avail_in--;
+ state->read_in_length += 8;
+
+ }
+ }
+}
+
+static uint64_t inline inflate_in_read_bits_unsafe(struct inflate_state *state,
+ uint8_t bit_count)
+{
+ uint64_t ret;
+
+ ret = (state->read_in) & ((1 << bit_count) - 1);
+ state->read_in >>= bit_count;
+ state->read_in_length -= bit_count;
+
+ return ret;
+}
+
+/* Returns the next bit_count bits from the in stream and shifts the stream over
+ * by bit-count bits */
+static uint64_t inline inflate_in_read_bits(struct inflate_state *state, uint8_t bit_count)
+{
+ /* Load inflate_in if not enough data is in the read_in buffer */
+ inflate_in_load(state, bit_count);
+ return inflate_in_read_bits_unsafe(state, bit_count);
+}
+
+static void inline write_huff_code(struct huff_code *huff_code, uint32_t code, uint32_t length)
+{
+ huff_code->code_and_length = code | length << 24;
+}
+
+static int inline set_codes(struct huff_code *huff_code_table, int table_length,
+ uint16_t * count)
+{
+ uint32_t max, code, length;
+ uint32_t next_code[MAX_HUFF_TREE_DEPTH + 1];
+ int i;
+ struct huff_code *table_end = huff_code_table + table_length;
+
+ /* Setup for calculating huffman codes */
+ next_code[0] = 0;
+ next_code[1] = 0;
+ for (i = 2; i < MAX_HUFF_TREE_DEPTH + 1; i++)
+ next_code[i] = (next_code[i - 1] + count[i - 1]) << 1;
+
+ max = (next_code[MAX_HUFF_TREE_DEPTH] + count[MAX_HUFF_TREE_DEPTH]);
+
+ if (max > (1 << MAX_HUFF_TREE_DEPTH))
+ return ISAL_INVALID_BLOCK;
+
+ /* Calculate code corresponding to a given symbol */
+ for (; huff_code_table < table_end; huff_code_table++) {
+ length = huff_code_table->length;
+ if (length == 0)
+ continue;
+
+ code = bit_reverse2(next_code[length], length);
+
+ write_huff_code(huff_code_table, code, length);
+ next_code[length] += 1;
+ }
+ return 0;
+}
+
+static int inline set_and_expand_lit_len_huffcode(struct huff_code *lit_len_huff,
+ uint32_t table_length,
+ uint16_t * count,
+ uint16_t * expand_count,
+ uint32_t * code_list)
+{
+ int len_sym, len_size, extra_count, extra;
+ uint32_t count_total, count_tmp;
+ uint32_t code, code_len, expand_len;
+ struct huff_code *expand_next = &lit_len_huff[ISAL_DEF_LIT_SYMBOLS];
+ struct huff_code tmp_table[LIT_LEN - ISAL_DEF_LIT_SYMBOLS];
+ uint32_t max;
+ uint32_t next_code[MAX_HUFF_TREE_DEPTH + 1];
+ int i;
+ struct huff_code *table_end;
+ struct huff_code *huff_code_table = lit_len_huff;
+ uint32_t insert_index;
+
+ /* Setup for calculating huffman codes */
+ count_total = 0;
+ count_tmp = expand_count[1];
+ next_code[0] = 0;
+ next_code[1] = 0;
+ expand_count[0] = 0;
+ expand_count[1] = 0;
+
+ for (i = 1; i < MAX_HUFF_TREE_DEPTH; i++) {
+ count_total = count[i] + count_tmp + count_total;
+ count_tmp = expand_count[i + 1];
+ expand_count[i + 1] = count_total;
+ next_code[i + 1] = (next_code[i] + count[i]) << 1;
+ }
+
+ count_tmp = count[i] + count_tmp;
+
+ for (; i < MAX_LIT_LEN_COUNT - 1; i++) {
+ count_total = count_tmp + count_total;
+ count_tmp = expand_count[i + 1];
+ expand_count[i + 1] = count_total;
+ }
+
+ /* Correct for extra symbols used by static header */
+ if (table_length > LIT_LEN)
+ count[8] -= 2;
+
+ max = (next_code[MAX_HUFF_TREE_DEPTH] + count[MAX_HUFF_TREE_DEPTH]);
+
+ if (max > (1 << MAX_HUFF_TREE_DEPTH))
+ return ISAL_INVALID_BLOCK;
+
+ memcpy(count, expand_count, sizeof(*count) * MAX_LIT_LEN_COUNT);
+
+ memcpy(tmp_table, &lit_len_huff[ISAL_DEF_LIT_SYMBOLS],
+ sizeof(*lit_len_huff) * (LIT_LEN - ISAL_DEF_LIT_SYMBOLS));
+ memset(&lit_len_huff[ISAL_DEF_LIT_SYMBOLS], 0,
+ sizeof(*lit_len_huff) * (LIT_LEN_ELEMS - ISAL_DEF_LIT_SYMBOLS));
+
+ /* Calculate code corresponding to a given literal symbol */
+ table_end = huff_code_table + ISAL_DEF_LIT_SYMBOLS;
+ for (; huff_code_table < table_end; huff_code_table++) {
+ code_len = huff_code_table->length;
+ if (code_len == 0)
+ continue;
+
+ code = bit_reverse2(next_code[code_len], code_len);
+
+ insert_index = expand_count[code_len];
+ code_list[insert_index] = huff_code_table - lit_len_huff;
+ expand_count[code_len]++;
+
+ write_huff_code(huff_code_table, code, code_len);
+ next_code[code_len] += 1;
+ }
+
+ /* Calculate code corresponding to a given len symbol */
+ for (len_sym = 0; len_sym < LIT_LEN - ISAL_DEF_LIT_SYMBOLS; len_sym++) {
+ extra_count = rfc_lookup_table.len_extra_bit_count[len_sym];
+ len_size = (1 << extra_count);
+
+ code_len = tmp_table[len_sym].length;
+ if (code_len == 0) {
+ expand_next += len_size;
+ continue;
+ }
+
+ code = bit_reverse2(next_code[code_len], code_len);
+ expand_len = code_len + extra_count;
+ next_code[code_len] += 1;
+ insert_index = expand_count[expand_len];
+ expand_count[expand_len] += len_size;
+
+ for (extra = 0; extra < len_size; extra++) {
+ code_list[insert_index] = expand_next - lit_len_huff;
+ write_huff_code(expand_next, code | (extra << code_len), expand_len);
+ insert_index++;
+ expand_next++;
+ }
+ }
+
+ return 0;
+}
+
+static int inline index_to_sym(int index)
+{
+ return (index != 513) ? index : 512;
+}
+
+/* Sets result to the inflate_huff_code corresponding to the huffcode defined by
+ * the lengths in huff_code_table,where count is a histogram of the appearance
+ * of each code length */
+static void make_inflate_huff_code_lit_len(struct inflate_huff_code_large *result,
+ struct huff_code *huff_code_table,
+ uint32_t table_length, uint16_t * count_total,
+ uint32_t * code_list, uint32_t multisym)
+{
+ int i, j;
+ uint16_t code = 0;
+ uint32_t *long_code_list;
+ uint32_t long_code_length = 0;
+ uint16_t temp_code_list[1 << (MAX_LIT_LEN_CODE_LEN - ISAL_DECODE_LONG_BITS)];
+ uint32_t temp_code_length;
+ uint32_t long_code_lookup_length = 0;
+ uint32_t max_length;
+ uint16_t first_bits;
+ uint32_t code_length;
+ uint16_t long_bits;
+ uint16_t min_increment;
+ uint32_t code_list_len;
+ uint32_t last_length, min_length;
+ uint32_t copy_size;
+ uint32_t *short_code_lookup = result->short_code_lookup;
+ int index1, index2, index3;
+ int sym1, sym2, sym3, sym1_index, sym2_index, sym3_index;
+ uint32_t sym1_code, sym2_code, sym3_code, sym1_len, sym2_len, sym3_len;
+
+ uint32_t max_symbol = MAX_LIT_LEN_SYM;
+
+ code_list_len = count_total[MAX_LIT_LEN_COUNT - 1];
+
+ if (code_list_len == 0) {
+ memset(result->short_code_lookup, 0, sizeof(result->short_code_lookup));
+ return;
+ }
+
+ /* Determine the length of the first code */
+ last_length = huff_code_table[code_list[0]].length;
+ if (last_length > ISAL_DECODE_LONG_BITS)
+ last_length = ISAL_DECODE_LONG_BITS + 1;
+ copy_size = (1 << (last_length - 1));
+
+ /* Initialize short_code_lookup, so invalid lookups process data */
+ memset(short_code_lookup, 0x00, copy_size * sizeof(*short_code_lookup));
+
+ min_length = last_length;
+ for (; last_length <= ISAL_DECODE_LONG_BITS; last_length++) {
+ /* Copy forward previosly set codes */
+ memcpy(short_code_lookup + copy_size, short_code_lookup,
+ sizeof(*short_code_lookup) * copy_size);
+ copy_size *= 2;
+
+ /* Encode code singletons */
+ for (index1 = count_total[last_length];
+ index1 < count_total[last_length + 1]; index1++) {
+ sym1_index = code_list[index1];
+ sym1 = index_to_sym(sym1_index);
+ sym1_len = huff_code_table[sym1_index].length;
+ sym1_code = huff_code_table[sym1_index].code;
+
+ if (sym1 > max_symbol)
+ continue;
+
+ /* Set new codes */
+ short_code_lookup[sym1_code] =
+ sym1 | sym1_len << LARGE_SHORT_CODE_LEN_OFFSET |
+ (1 << LARGE_SYM_COUNT_OFFSET);
+ }
+
+ /* Continue if no pairs are possible */
+ if (multisym >= SINGLE_SYM_FLAG || last_length < 2 * min_length)
+ continue;
+
+ /* Encode code pairs */
+ for (index1 = count_total[min_length];
+ index1 < count_total[last_length - min_length + 1]; index1++) {
+ sym1_index = code_list[index1];
+ sym1 = index_to_sym(sym1_index);
+ sym1_len = huff_code_table[sym1_index].length;
+ sym1_code = huff_code_table[sym1_index].code;
+
+ /*Check that sym1 is a literal */
+ if (sym1 >= 256) {
+ index1 = count_total[sym1_len + 1] - 1;
+ continue;
+ }
+
+ sym2_len = last_length - sym1_len;
+ for (index2 = count_total[sym2_len];
+ index2 < count_total[sym2_len + 1]; index2++) {
+ sym2_index = code_list[index2];
+ sym2 = index_to_sym(sym2_index);
+
+ /* Check that sym2 is an existing symbol */
+ if (sym2 > max_symbol)
+ break;
+
+ sym2_code = huff_code_table[sym2_index].code;
+ code = sym1_code | (sym2_code << sym1_len);
+ code_length = sym1_len + sym2_len;
+ short_code_lookup[code] =
+ sym1 | (sym2 << 8) |
+ (code_length << LARGE_SHORT_CODE_LEN_OFFSET)
+ | (2 << LARGE_SYM_COUNT_OFFSET);
+ }
+ }
+
+ /* Continue if no triples are possible */
+ if (multisym >= DOUBLE_SYM_FLAG || last_length < 3 * min_length)
+ continue;
+
+ /* Encode code triples */
+ for (index1 = count_total[min_length];
+ index1 < count_total[last_length - 2 * min_length + 1]; index1++) {
+ sym1_index = code_list[index1];
+ sym1 = index_to_sym(sym1_index);
+ sym1_len = huff_code_table[sym1_index].length;
+ sym1_code = huff_code_table[sym1_index].code;
+ /*Check that sym1 is a literal */
+ if (sym1 >= 256) {
+ index1 = count_total[sym1_len + 1] - 1;
+ continue;
+ }
+
+ if (last_length - sym1_len < 2 * min_length)
+ break;
+
+ for (index2 = count_total[min_length];
+ index2 < count_total[last_length - sym1_len - min_length + 1];
+ index2++) {
+ sym2_index = code_list[index2];
+ sym2 = index_to_sym(sym2_index);
+ sym2_len = huff_code_table[sym2_index].length;
+ sym2_code = huff_code_table[sym2_index].code;
+
+ /* Check that sym2 is a literal */
+ if (sym2 >= 256) {
+ index2 = count_total[sym2_len + 1] - 1;
+ continue;
+ }
+
+ sym3_len = last_length - sym1_len - sym2_len;
+ for (index3 = count_total[sym3_len];
+ index3 < count_total[sym3_len + 1]; index3++) {
+ sym3_index = code_list[index3];
+ sym3 = index_to_sym(sym3_index);
+ sym3_code = huff_code_table[sym3_index].code;
+
+ /* Check that sym3 is writable existing symbol */
+ if (sym3 > max_symbol - 1)
+ break;
+
+ code = sym1_code | (sym2_code << sym1_len) |
+ (sym3_code << (sym2_len + sym1_len));
+ code_length = sym1_len + sym2_len + sym3_len;
+ short_code_lookup[code] =
+ sym1 | (sym2 << 8) | sym3 << 16 |
+ (code_length << LARGE_SHORT_CODE_LEN_OFFSET)
+ | (3 << LARGE_SYM_COUNT_OFFSET);
+
+ }
+
+ }
+ }
+
+ }
+
+ index1 = count_total[ISAL_DECODE_LONG_BITS + 1];
+ long_code_length = code_list_len - index1;
+ long_code_list = &code_list[index1];
+ for (i = 0; i < long_code_length; i++) {
+ /*Set the look up table to point to a hint where the symbol can be found
+ * in the list of long codes and add the current symbol to the list of
+ * long codes. */
+ if (huff_code_table[long_code_list[i]].code_and_extra == INVALID_CODE)
+ continue;
+
+ max_length = huff_code_table[long_code_list[i]].length;
+ first_bits =
+ huff_code_table[long_code_list[i]].code_and_extra
+ & ((1 << ISAL_DECODE_LONG_BITS) - 1);
+
+ temp_code_list[0] = long_code_list[i];
+ temp_code_length = 1;
+
+ for (j = i + 1; j < long_code_length; j++) {
+ if ((huff_code_table[long_code_list[j]].code &
+ ((1 << ISAL_DECODE_LONG_BITS) - 1)) == first_bits) {
+ max_length = huff_code_table[long_code_list[j]].length;
+ temp_code_list[temp_code_length] = long_code_list[j];
+ temp_code_length++;
+ }
+ }
+
+ memset(&result->long_code_lookup[long_code_lookup_length], 0x00,
+ sizeof(*result->long_code_lookup) *
+ (1 << (max_length - ISAL_DECODE_LONG_BITS)));
+
+ for (j = 0; j < temp_code_length; j++) {
+ sym1_index = temp_code_list[j];
+ sym1 = index_to_sym(sym1_index);
+ sym1_len = huff_code_table[sym1_index].length;
+ sym1_code = huff_code_table[sym1_index].code_and_extra;
+
+ long_bits = sym1_code >> ISAL_DECODE_LONG_BITS;
+ min_increment = 1 << (sym1_len - ISAL_DECODE_LONG_BITS);
+
+ for (; long_bits < (1 << (max_length - ISAL_DECODE_LONG_BITS));
+ long_bits += min_increment) {
+ result->long_code_lookup[long_code_lookup_length + long_bits] =
+ sym1 | (sym1_len << LARGE_LONG_CODE_LEN_OFFSET);
+ }
+ huff_code_table[sym1_index].code_and_extra = INVALID_CODE;
+
+ }
+ result->short_code_lookup[first_bits] = long_code_lookup_length |
+ (max_length << LARGE_SHORT_MAX_LEN_OFFSET) | LARGE_FLAG_BIT;
+ long_code_lookup_length += 1 << (max_length - ISAL_DECODE_LONG_BITS);
+ }
+}
+
+static void inline make_inflate_huff_code_dist(struct inflate_huff_code_small *result,
+ struct huff_code *huff_code_table,
+ uint32_t table_length, uint16_t * count,
+ uint32_t max_symbol)
+{
+ int i, j, k;
+ uint32_t *long_code_list;
+ uint32_t long_code_length = 0;
+ uint16_t temp_code_list[1 << (15 - ISAL_DECODE_SHORT_BITS)];
+ uint32_t temp_code_length;
+ uint32_t long_code_lookup_length = 0;
+ uint32_t max_length;
+ uint16_t first_bits;
+ uint32_t code_length;
+ uint16_t long_bits;
+ uint16_t min_increment;
+ uint32_t code_list[DIST_LEN + 2]; /* The +2 is for the extra codes in the static header */
+ uint32_t code_list_len;
+ uint32_t count_total[17], count_total_tmp[17];
+ uint32_t insert_index;
+ uint32_t last_length;
+ uint32_t copy_size;
+ uint16_t *short_code_lookup = result->short_code_lookup;
+ uint32_t sym;
+
+ count_total[0] = 0;
+ count_total[1] = 0;
+ for (i = 2; i < 17; i++)
+ count_total[i] = count_total[i - 1] + count[i - 1];
+ memcpy(count_total_tmp, count_total, sizeof(count_total_tmp));
+
+ code_list_len = count_total[16];
+ if (code_list_len == 0) {
+ memset(result->short_code_lookup, 0, sizeof(result->short_code_lookup));
+ return;
+ }
+
+ for (i = 0; i < table_length; i++) {
+ code_length = huff_code_table[i].length;
+ if (code_length == 0)
+ continue;
+
+ insert_index = count_total_tmp[code_length];
+ code_list[insert_index] = i;
+ count_total_tmp[code_length]++;
+ }
+
+ last_length = huff_code_table[code_list[0]].length;
+ if (last_length > ISAL_DECODE_SHORT_BITS)
+ last_length = ISAL_DECODE_SHORT_BITS + 1;
+ copy_size = (1 << (last_length - 1));
+
+ /* Initialize short_code_lookup, so invalid lookups process data */
+ memset(short_code_lookup, 0x00, copy_size * sizeof(*short_code_lookup));
+
+ for (; last_length <= ISAL_DECODE_SHORT_BITS; last_length++) {
+ memcpy(short_code_lookup + copy_size, short_code_lookup,
+ sizeof(*short_code_lookup) * copy_size);
+ copy_size *= 2;
+
+ for (k = count_total[last_length]; k < count_total[last_length + 1]; k++) {
+ i = code_list[k];
+
+ if (i >= max_symbol) {
+ /* If the symbol is invalid, set code to be the
+ * length of the symbol and the code_length to 0
+ * to determine if there was enough input */
+ short_code_lookup[huff_code_table[i].code] =
+ huff_code_table[i].length;
+ continue;
+ }
+
+ /* Set lookup table to return the current symbol concatenated
+ * with the code length when the first DECODE_LENGTH bits of the
+ * address are the same as the code for the current symbol. The
+ * first 9 bits are the code, bits 14:10 are the code length,
+ * bit 15 is a flag representing this is a symbol*/
+ short_code_lookup[huff_code_table[i].code] = i |
+ rfc_lookup_table.dist_extra_bit_count[i] << DIST_SYM_EXTRA_OFFSET |
+ (huff_code_table[i].length) << SMALL_SHORT_CODE_LEN_OFFSET;
+ }
+ }
+
+ k = count_total[ISAL_DECODE_SHORT_BITS + 1];
+ long_code_list = &code_list[k];
+ long_code_length = code_list_len - k;
+ for (i = 0; i < long_code_length; i++) {
+ /*Set the look up table to point to a hint where the symbol can be found
+ * in the list of long codes and add the current symbol to the list of
+ * long codes. */
+ if (huff_code_table[long_code_list[i]].code == 0xFFFF)
+ continue;
+
+ max_length = huff_code_table[long_code_list[i]].length;
+ first_bits =
+ huff_code_table[long_code_list[i]].code
+ & ((1 << ISAL_DECODE_SHORT_BITS) - 1);
+
+ temp_code_list[0] = long_code_list[i];
+ temp_code_length = 1;
+
+ for (j = i + 1; j < long_code_length; j++) {
+ if ((huff_code_table[long_code_list[j]].code &
+ ((1 << ISAL_DECODE_SHORT_BITS) - 1)) == first_bits) {
+ max_length = huff_code_table[long_code_list[j]].length;
+ temp_code_list[temp_code_length] = long_code_list[j];
+ temp_code_length++;
+ }
+ }
+
+ memset(&result->long_code_lookup[long_code_lookup_length], 0x00,
+ 2 * (1 << (max_length - ISAL_DECODE_SHORT_BITS)));
+
+ for (j = 0; j < temp_code_length; j++) {
+ sym = temp_code_list[j];
+ code_length = huff_code_table[sym].length;
+ long_bits = huff_code_table[sym].code >> ISAL_DECODE_SHORT_BITS;
+ min_increment = 1 << (code_length - ISAL_DECODE_SHORT_BITS);
+ for (; long_bits < (1 << (max_length - ISAL_DECODE_SHORT_BITS));
+ long_bits += min_increment) {
+ if (sym >= max_symbol) {
+ /* If the symbol is invalid, set code to be the
+ * length of the symbol and the code_length to 0
+ * to determine if there was enough input */
+ result->long_code_lookup[long_code_lookup_length +
+ long_bits] = code_length;
+ continue;
+ }
+ result->long_code_lookup[long_code_lookup_length + long_bits] =
+ sym |
+ rfc_lookup_table.dist_extra_bit_count[sym] <<
+ DIST_SYM_EXTRA_OFFSET |
+ (code_length << SMALL_LONG_CODE_LEN_OFFSET);
+ }
+ huff_code_table[sym].code = 0xFFFF;
+ }
+ result->short_code_lookup[first_bits] = long_code_lookup_length |
+ (max_length << SMALL_SHORT_CODE_LEN_OFFSET) | SMALL_FLAG_BIT;
+ long_code_lookup_length += 1 << (max_length - ISAL_DECODE_SHORT_BITS);
+
+ }
+}
+
+static void inline make_inflate_huff_code_header(struct inflate_huff_code_small *result,
+ struct huff_code *huff_code_table,
+ uint32_t table_length, uint16_t * count,
+ uint32_t max_symbol)
+{
+ int i, j, k;
+ uint32_t *long_code_list;
+ uint32_t long_code_length = 0;
+ uint16_t temp_code_list[1 << (15 - ISAL_DECODE_SHORT_BITS)];
+ uint32_t temp_code_length;
+ uint32_t long_code_lookup_length = 0;
+ uint32_t max_length;
+ uint16_t first_bits;
+ uint32_t code_length;
+ uint16_t long_bits;
+ uint16_t min_increment;
+ uint32_t code_list[DIST_LEN + 2]; /* The +2 is for the extra codes in the static header */
+ uint32_t code_list_len;
+ uint32_t count_total[17], count_total_tmp[17];
+ uint32_t insert_index;
+ uint32_t last_length;
+ uint32_t copy_size;
+ uint16_t *short_code_lookup = result->short_code_lookup;
+
+ count_total[0] = 0;
+ count_total[1] = 0;
+ for (i = 2; i < 17; i++)
+ count_total[i] = count_total[i - 1] + count[i - 1];
+
+ memcpy(count_total_tmp, count_total, sizeof(count_total_tmp));
+
+ code_list_len = count_total[16];
+ if (code_list_len == 0) {
+ memset(result->short_code_lookup, 0, sizeof(result->short_code_lookup));
+ return;
+ }
+
+ for (i = 0; i < table_length; i++) {
+ code_length = huff_code_table[i].length;
+ if (code_length == 0)
+ continue;
+
+ insert_index = count_total_tmp[code_length];
+ code_list[insert_index] = i;
+ count_total_tmp[code_length]++;
+ }
+
+ last_length = huff_code_table[code_list[0]].length;
+ if (last_length > ISAL_DECODE_SHORT_BITS)
+ last_length = ISAL_DECODE_SHORT_BITS + 1;
+ copy_size = (1 << (last_length - 1));
+
+ /* Initialize short_code_lookup, so invalid lookups process data */
+ memset(short_code_lookup, 0x00, copy_size * sizeof(*short_code_lookup));
+
+ for (; last_length <= ISAL_DECODE_SHORT_BITS; last_length++) {
+ memcpy(short_code_lookup + copy_size, short_code_lookup,
+ sizeof(*short_code_lookup) * copy_size);
+ copy_size *= 2;
+
+ for (k = count_total[last_length]; k < count_total[last_length + 1]; k++) {
+ i = code_list[k];
+
+ if (i >= max_symbol)
+ continue;
+
+ /* Set lookup table to return the current symbol concatenated
+ * with the code length when the first DECODE_LENGTH bits of the
+ * address are the same as the code for the current symbol. The
+ * first 9 bits are the code, bits 14:10 are the code length,
+ * bit 15 is a flag representing this is a symbol*/
+ short_code_lookup[huff_code_table[i].code] =
+ i | (huff_code_table[i].length) << SMALL_SHORT_CODE_LEN_OFFSET;
+ }
+ }
+
+ k = count_total[ISAL_DECODE_SHORT_BITS + 1];
+ long_code_list = &code_list[k];
+ long_code_length = code_list_len - k;
+ for (i = 0; i < long_code_length; i++) {
+ /*Set the look up table to point to a hint where the symbol can be found
+ * in the list of long codes and add the current symbol to the list of
+ * long codes. */
+ if (huff_code_table[long_code_list[i]].code == 0xFFFF)
+ continue;
+
+ max_length = huff_code_table[long_code_list[i]].length;
+ first_bits =
+ huff_code_table[long_code_list[i]].code
+ & ((1 << ISAL_DECODE_SHORT_BITS) - 1);
+
+ temp_code_list[0] = long_code_list[i];
+ temp_code_length = 1;
+
+ for (j = i + 1; j < long_code_length; j++) {
+ if ((huff_code_table[long_code_list[j]].code &
+ ((1 << ISAL_DECODE_SHORT_BITS) - 1)) == first_bits) {
+ if (max_length < huff_code_table[long_code_list[j]].length)
+ max_length = huff_code_table[long_code_list[j]].length;
+ temp_code_list[temp_code_length] = long_code_list[j];
+ temp_code_length++;
+ }
+ }
+
+ memset(&result->long_code_lookup[long_code_lookup_length], 0x00,
+ 2 * (1 << (max_length - ISAL_DECODE_SHORT_BITS)));
+
+ for (j = 0; j < temp_code_length; j++) {
+ code_length = huff_code_table[temp_code_list[j]].length;
+ long_bits =
+ huff_code_table[temp_code_list[j]].code >> ISAL_DECODE_SHORT_BITS;
+ min_increment = 1 << (code_length - ISAL_DECODE_SHORT_BITS);
+ for (; long_bits < (1 << (max_length - ISAL_DECODE_SHORT_BITS));
+ long_bits += min_increment) {
+ result->long_code_lookup[long_code_lookup_length + long_bits] =
+ temp_code_list[j] |
+ (code_length << SMALL_LONG_CODE_LEN_OFFSET);
+ }
+ huff_code_table[temp_code_list[j]].code = 0xFFFF;
+ }
+ result->short_code_lookup[first_bits] = long_code_lookup_length |
+ (max_length << SMALL_SHORT_CODE_LEN_OFFSET) | SMALL_FLAG_BIT;
+ long_code_lookup_length += 1 << (max_length - ISAL_DECODE_SHORT_BITS);
+
+ }
+}
+
+/* Sets the inflate_huff_codes in state to be the huffcodes corresponding to the
+ * deflate static header */
+static int inline setup_static_header(struct inflate_state *state)
+{
+#ifdef ISAL_STATIC_INFLATE_TABLE
+ memcpy(&state->lit_huff_code, &static_lit_huff_code, sizeof(static_lit_huff_code));
+ memcpy(&state->dist_huff_code, &static_dist_huff_code, sizeof(static_dist_huff_code));
+#else
+
+#ifndef NO_STATIC_INFLATE_H
+# warning "Defaulting to static inflate table fallback."
+# warning "For best performance, run generate_static_inflate, replace static_inflate.h, and recompile"
+#endif
+ int i;
+ struct huff_code lit_code[LIT_LEN_ELEMS];
+ struct huff_code dist_code[DIST_LEN + 2];
+ uint32_t multisym = SINGLE_SYM_FLAG, max_dist = DIST_LEN;
+ /* These tables are based on the static huffman tree described in RFC
+ * 1951 */
+ uint16_t lit_count[MAX_LIT_LEN_COUNT] = {
+ 0, 0, 0, 0, 0, 0, 0, 24, 152, 112, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ };
+
+ uint16_t lit_expand_count[MAX_LIT_LEN_COUNT] = {
+ 0, 0, 0, 0, 0, 0, 0, -15, 1, 16, 32, 48, 16, 128, 0, 0, 0, 0, 0, 0, 0, 0
+ };
+ uint16_t dist_count[16] = {
+ 0, 0, 0, 0, 0, 32, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+ };
+ uint32_t code_list[LIT_LEN_ELEMS + 2]; /* The +2 is for the extra codes in the static header */
+ /* These for loops set the code lengths for the static literal/length
+ * and distance codes defined in the deflate standard RFC 1951 */
+ for (i = 0; i < 144; i++)
+ lit_code[i].length = 8;
+
+ for (i = 144; i < 256; i++)
+ lit_code[i].length = 9;
+
+ for (i = 256; i < 280; i++)
+ lit_code[i].length = 7;
+
+ for (i = 280; i < LIT_LEN + 2; i++)
+ lit_code[i].length = 8;
+
+ for (i = 0; i < DIST_LEN + 2; i++)
+ dist_code[i].length = 5;
+
+ set_and_expand_lit_len_huffcode(lit_code, LIT_LEN + 2, lit_count, lit_expand_count,
+ code_list);
+
+ set_codes(dist_code, DIST_LEN + 2, dist_count);
+
+ make_inflate_huff_code_lit_len(&state->lit_huff_code, lit_code, LIT_LEN_ELEMS,
+ lit_count, code_list, multisym);
+
+ if (state->hist_bits && state->hist_bits < 15)
+ max_dist = 2 * state->hist_bits;
+
+ make_inflate_huff_code_dist(&state->dist_huff_code, dist_code, DIST_LEN + 2,
+ dist_count, max_dist);
+#endif
+ state->block_state = ISAL_BLOCK_CODED;
+
+ return 0;
+}
+
+/* Decodes the next symbol symbol in in_buffer using the huff code defined by
+ * huff_code and returns the value in next_lits and sym_count */
+static void inline decode_next_lit_len(uint32_t * next_lits, uint32_t * sym_count,
+ struct inflate_state *state,
+ struct inflate_huff_code_large *huff_code)
+{
+ uint32_t next_bits;
+ uint32_t next_sym;
+ uint32_t bit_count;
+ uint32_t bit_mask;
+
+ if (state->read_in_length <= ISAL_DEF_MAX_CODE_LEN)
+ inflate_in_load(state, 0);
+
+ next_bits = state->read_in & ((1 << ISAL_DECODE_LONG_BITS) - 1);
+
+ /* next_sym is a possible symbol decoded from next_bits. If bit 15 is 0,
+ * next_code is a symbol. Bits 9:0 represent the symbol, and bits 14:10
+ * represent the length of that symbols huffman code. If next_sym is not
+ * a symbol, it provides a hint of where the large symbols containin
+ * this code are located. Note the hint is at largest the location the
+ * first actual symbol in the long code list.*/
+ next_sym = huff_code->short_code_lookup[next_bits];
+
+ if ((next_sym & LARGE_FLAG_BIT) == 0) {
+ /* Return symbol found if next_code is a complete huffman code
+ * and shift in buffer over by the length of the next_code */
+ bit_count = next_sym >> LARGE_SHORT_CODE_LEN_OFFSET;
+ state->read_in >>= bit_count;
+ state->read_in_length -= bit_count;
+
+ if (bit_count == 0)
+ next_sym = INVALID_SYMBOL;
+
+ *sym_count = (next_sym >> LARGE_SYM_COUNT_OFFSET) & LARGE_SYM_COUNT_MASK;
+ *next_lits = next_sym & LARGE_SHORT_SYM_MASK;
+
+ } else {
+ /* If a symbol is not found, do a lookup in the long code
+ * list starting from the hint in next_sym */
+ bit_mask = next_sym >> LARGE_SHORT_MAX_LEN_OFFSET;
+ bit_mask = (1 << bit_mask) - 1;
+ next_bits = state->read_in & bit_mask;
+ next_sym =
+ huff_code->long_code_lookup[(next_sym & LARGE_SHORT_SYM_MASK) +
+ (next_bits >> ISAL_DECODE_LONG_BITS)];
+ bit_count = next_sym >> LARGE_LONG_CODE_LEN_OFFSET;
+ state->read_in >>= bit_count;
+ state->read_in_length -= bit_count;
+
+ if (bit_count == 0)
+ next_sym = INVALID_SYMBOL;
+
+ *sym_count = 1;
+ *next_lits = next_sym & LARGE_LONG_SYM_MASK;
+ }
+}
+
+static uint16_t inline decode_next_dist(struct inflate_state *state,
+ struct inflate_huff_code_small *huff_code)
+{
+ uint16_t next_bits;
+ uint16_t next_sym;
+ uint32_t bit_count;
+ uint32_t bit_mask;
+
+ if (state->read_in_length <= ISAL_DEF_MAX_CODE_LEN)
+ inflate_in_load(state, 0);
+
+ next_bits = state->read_in & ((1 << ISAL_DECODE_SHORT_BITS) - 1);
+
+ /* next_sym is a possible symbol decoded from next_bits. If bit 15 is 0,
+ * next_code is a symbol. Bits 9:0 represent the symbol, and bits 14:10
+ * represent the length of that symbols huffman code. If next_sym is not
+ * a symbol, it provides a hint of where the large symbols containin
+ * this code are located. Note the hint is at largest the location the
+ * first actual symbol in the long code list.*/
+ next_sym = huff_code->short_code_lookup[next_bits];
+
+ if ((next_sym & SMALL_FLAG_BIT) == 0) {
+ /* Return symbol found if next_code is a complete huffman code
+ * and shift in buffer over by the length of the next_code */
+ bit_count = next_sym >> SMALL_SHORT_CODE_LEN_OFFSET;
+ state->read_in >>= bit_count;
+ state->read_in_length -= bit_count;
+
+ if (bit_count == 0) {
+ state->read_in_length -= next_sym;
+ next_sym = INVALID_SYMBOL;
+ }
+
+ return next_sym & DIST_SYM_MASK;
+
+ } else {
+ /* If a symbol is not found, perform a linear search of the long code
+ * list starting from the hint in next_sym */
+ bit_mask = (next_sym - SMALL_FLAG_BIT) >> SMALL_SHORT_CODE_LEN_OFFSET;
+ bit_mask = (1 << bit_mask) - 1;
+ next_bits = state->read_in & bit_mask;
+ next_sym =
+ huff_code->long_code_lookup[(next_sym & SMALL_SHORT_SYM_MASK) +
+ (next_bits >> ISAL_DECODE_SHORT_BITS)];
+ bit_count = next_sym >> SMALL_LONG_CODE_LEN_OFFSET;
+ state->read_in >>= bit_count;
+ state->read_in_length -= bit_count;
+
+ if (bit_count == 0) {
+ state->read_in_length -= next_sym;
+ next_sym = INVALID_SYMBOL;
+ }
+
+ return next_sym & DIST_SYM_MASK;
+ }
+}
+
+static uint16_t inline decode_next_header(struct inflate_state *state,
+ struct inflate_huff_code_small *huff_code)
+{
+ uint16_t next_bits;
+ uint16_t next_sym;
+ uint32_t bit_count;
+ uint32_t bit_mask;
+
+ if (state->read_in_length <= ISAL_DEF_MAX_CODE_LEN)
+ inflate_in_load(state, 0);
+
+ next_bits = state->read_in & ((1 << ISAL_DECODE_SHORT_BITS) - 1);
+
+ /* next_sym is a possible symbol decoded from next_bits. If bit 15 is 0,
+ * next_code is a symbol. Bits 9:0 represent the symbol, and bits 14:10
+ * represent the length of that symbols huffman code. If next_sym is not
+ * a symbol, it provides a hint of where the large symbols containin
+ * this code are located. Note the hint is at largest the location the
+ * first actual symbol in the long code list.*/
+ next_sym = huff_code->short_code_lookup[next_bits];
+
+ if ((next_sym & SMALL_FLAG_BIT) == 0) {
+ /* Return symbol found if next_code is a complete huffman code
+ * and shift in buffer over by the length of the next_code */
+ bit_count = next_sym >> SMALL_SHORT_CODE_LEN_OFFSET;
+ state->read_in >>= bit_count;
+ state->read_in_length -= bit_count;
+
+ if (bit_count == 0)
+ next_sym = INVALID_SYMBOL;
+
+ return next_sym & SMALL_SHORT_SYM_MASK;
+
+ } else {
+ /* If a symbol is not found, perform a linear search of the long code
+ * list starting from the hint in next_sym */
+ bit_mask = (next_sym - SMALL_FLAG_BIT) >> SMALL_SHORT_CODE_LEN_OFFSET;
+ bit_mask = (1 << bit_mask) - 1;
+ next_bits = state->read_in & bit_mask;
+ next_sym =
+ huff_code->long_code_lookup[(next_sym & SMALL_SHORT_SYM_MASK) +
+ (next_bits >> ISAL_DECODE_SHORT_BITS)];
+ bit_count = next_sym >> SMALL_LONG_CODE_LEN_OFFSET;
+ state->read_in >>= bit_count;
+ state->read_in_length -= bit_count;
+ return next_sym & SMALL_LONG_SYM_MASK;
+
+ }
+}
+
+/* Reads data from the in_buffer and sets the huff code corresponding to that
+ * data */
+static int inline setup_dynamic_header(struct inflate_state *state)
+{
+ int i, j;
+ struct huff_code code_huff[CODE_LEN_CODES];
+ struct huff_code lit_and_dist_huff[LIT_LEN_ELEMS];
+ struct huff_code *previous = NULL, *current, *end, rep_code;
+ struct inflate_huff_code_small inflate_code_huff;
+ uint64_t hclen, hdist, hlit;
+ uint16_t code_count[16], lit_count[MAX_LIT_LEN_COUNT],
+ lit_expand_count[MAX_LIT_LEN_COUNT], dist_count[16];
+ uint16_t *count;
+ uint16_t symbol;
+ uint32_t multisym = DEFAULT_SYM_FLAG, length, max_dist = DIST_LEN;
+ struct huff_code *code;
+ uint64_t flag = 0;
+
+ int extra_count;
+ uint32_t code_list[LIT_LEN_ELEMS + 2]; /* The +2 is for the extra codes in the static header */
+
+ /* This order is defined in RFC 1951 page 13 */
+ const uint8_t code_length_order[CODE_LEN_CODES] = {
+ 0x10, 0x11, 0x12, 0x00, 0x08, 0x07, 0x09, 0x06,
+ 0x0a, 0x05, 0x0b, 0x04, 0x0c, 0x03, 0x0d, 0x02, 0x0e, 0x01, 0x0f
+ };
+
+ if (state->bfinal && state->avail_in <= SINGLE_SYM_THRESH) {
+ multisym = SINGLE_SYM_FLAG;
+ } else if (state->bfinal && state->avail_in <= DOUBLE_SYM_THRESH) {
+ multisym = DOUBLE_SYM_FLAG;
+ }
+
+ memset(code_count, 0, sizeof(code_count));
+ memset(lit_count, 0, sizeof(lit_count));
+ memset(lit_expand_count, 0, sizeof(lit_expand_count));
+ memset(dist_count, 0, sizeof(dist_count));
+ memset(code_huff, 0, sizeof(code_huff));
+ memset(lit_and_dist_huff, 0, sizeof(lit_and_dist_huff));
+
+ /* These variables are defined in the deflate standard, RFC 1951 */
+ inflate_in_load(state, 0);
+ if (state->read_in_length < 14)
+ return ISAL_END_INPUT;
+
+ hlit = inflate_in_read_bits_unsafe(state, 5);
+ hdist = inflate_in_read_bits_unsafe(state, 5);
+ hclen = inflate_in_read_bits_unsafe(state, 4);
+
+ if (hlit > 29 || hdist > 29 || hclen > 15)
+ return ISAL_INVALID_BLOCK;
+
+ /* Create the code huffman code for decoding the lit/len and dist huffman codes */
+ for (i = 0; i < 4; i++) {
+ code = &code_huff[code_length_order[i]];
+ length = inflate_in_read_bits_unsafe(state, 3);
+ write_huff_code(code, 0, length);
+ code_count[length] += 1;
+ flag |= length;
+ }
+
+ inflate_in_load(state, 0);
+
+ for (i = 4; i < hclen + 4; i++) {
+ code = &code_huff[code_length_order[i]];
+ length = inflate_in_read_bits_unsafe(state, 3);
+ write_huff_code(code, 0, length);
+ code_count[length] += 1;
+ flag |= length;
+ }
+
+ if (state->read_in_length < 0)
+ return ISAL_END_INPUT;
+
+ if (!flag || set_codes(code_huff, CODE_LEN_CODES, code_count))
+ return ISAL_INVALID_BLOCK;
+
+ make_inflate_huff_code_header(&inflate_code_huff, code_huff, CODE_LEN_CODES,
+ code_count, CODE_LEN_CODES);
+
+ /* Decode the lit/len and dist huffman codes using the code huffman code */
+ count = lit_count;
+ current = lit_and_dist_huff;
+ end = lit_and_dist_huff + LIT_LEN + hdist + 1;
+
+ while (current < end) {
+ symbol = decode_next_header(state, &inflate_code_huff);
+
+ if (state->read_in_length < 0) {
+ if (current > &lit_and_dist_huff[256]
+ && lit_and_dist_huff[256].length <= 0)
+ return ISAL_INVALID_BLOCK;
+ return ISAL_END_INPUT;
+ }
+
+ if (symbol < 16) {
+ /* If a length is found, update the current lit/len/dist
+ * to have length symbol */
+ if (current == lit_and_dist_huff + LIT_TABLE_SIZE + hlit) {
+ /* Switch code upon completion of lit_len table */
+ current = lit_and_dist_huff + LIT_LEN;
+ count = dist_count;
+ }
+ count[symbol]++;
+ write_huff_code(current, 0, symbol);
+ previous = current;
+ current++;
+
+ if (symbol == 0 // No symbol
+ || (previous >= lit_and_dist_huff + LIT_TABLE_SIZE + hlit) // Dist table
+ || (previous < lit_and_dist_huff + 264)) // Lit/Len with no extra bits
+ continue;
+
+ extra_count =
+ rfc_lookup_table.len_extra_bit_count[previous - LIT_TABLE_SIZE -
+ lit_and_dist_huff];
+ lit_expand_count[symbol]--;
+ lit_expand_count[symbol + extra_count] += (1 << extra_count);
+
+ } else if (symbol == 16) {
+ /* If a repeat length is found, update the next repeat
+ * length lit/len/dist elements to have the value of the
+ * repeated length */
+
+ i = 3 + inflate_in_read_bits(state, 2);
+
+ if (current + i > end || previous == NULL)
+ return ISAL_INVALID_BLOCK;
+
+ rep_code = *previous;
+ for (j = 0; j < i; j++) {
+ if (current == lit_and_dist_huff + LIT_TABLE_SIZE + hlit) {
+ /* Switch code upon completion of lit_len table */
+ current = lit_and_dist_huff + LIT_LEN;
+ count = dist_count;
+ }
+
+ *current = rep_code;
+ count[rep_code.length]++;
+ previous = current;
+ current++;
+
+ if (rep_code.length == 0 // No symbol
+ || (previous >= lit_and_dist_huff + LIT_TABLE_SIZE + hlit) // Dist table
+ || (previous < lit_and_dist_huff + 264)) // Lit/Len with no extra
+ continue;
+
+ extra_count =
+ rfc_lookup_table.len_extra_bit_count
+ [previous - lit_and_dist_huff - LIT_TABLE_SIZE];
+ lit_expand_count[rep_code.length]--;
+ lit_expand_count[rep_code.length +
+ extra_count] += (1 << extra_count);
+
+ }
+ } else if (symbol == 17) {
+ /* If a repeat zeroes if found, update then next
+ * repeated zeroes length lit/len/dist elements to have
+ * length 0. */
+ i = 3 + inflate_in_read_bits(state, 3);
+
+ current = current + i;
+ previous = current - 1;
+
+ if (count != dist_count
+ && current > lit_and_dist_huff + LIT_TABLE_SIZE + hlit) {
+ /* Switch code upon completion of lit_len table */
+ current += LIT_LEN - LIT_TABLE_SIZE - hlit;
+ count = dist_count;
+ if (current > lit_and_dist_huff + LIT_LEN)
+ previous = current - 1;
+ }
+
+ } else if (symbol == 18) {
+ /* If a repeat zeroes if found, update then next
+ * repeated zeroes length lit/len/dist elements to have
+ * length 0. */
+ i = 11 + inflate_in_read_bits(state, 7);
+
+ current = current + i;
+ previous = current - 1;
+
+ if (count != dist_count
+ && current > lit_and_dist_huff + LIT_TABLE_SIZE + hlit) {
+ /* Switch code upon completion of lit_len table */
+ current += LIT_LEN - LIT_TABLE_SIZE - hlit;
+ count = dist_count;
+ if (current > lit_and_dist_huff + LIT_LEN)
+ previous = current - 1;
+ }
+
+ } else
+ return ISAL_INVALID_BLOCK;
+
+ }
+
+ if (current > end || lit_and_dist_huff[256].length <= 0)
+ return ISAL_INVALID_BLOCK;
+
+ if (state->read_in_length < 0)
+ return ISAL_END_INPUT;
+
+ if (set_codes(&lit_and_dist_huff[LIT_LEN], DIST_LEN, dist_count))
+ return ISAL_INVALID_BLOCK;
+
+ if (state->hist_bits && state->hist_bits < 15)
+ max_dist = 2 * state->hist_bits;
+
+ make_inflate_huff_code_dist(&state->dist_huff_code, &lit_and_dist_huff[LIT_LEN],
+ DIST_LEN, dist_count, max_dist);
+
+ if (set_and_expand_lit_len_huffcode
+ (lit_and_dist_huff, LIT_LEN, lit_count, lit_expand_count, code_list))
+ return ISAL_INVALID_BLOCK;
+
+ make_inflate_huff_code_lit_len(&state->lit_huff_code, lit_and_dist_huff, LIT_LEN_ELEMS,
+ lit_count, code_list, multisym);
+
+ state->block_state = ISAL_BLOCK_CODED;
+
+ return 0;
+}
+
+/* Reads in the header pointed to by in_stream and sets up state to reflect that
+ * header information*/
+static int read_header(struct inflate_state *state)
+{
+ uint8_t bytes;
+ uint32_t btype;
+ uint16_t len, nlen;
+ int ret = 0;
+
+ /* btype and bfinal are defined in RFC 1951, bfinal represents whether
+ * the current block is the end of block, and btype represents the
+ * encoding method on the current block. */
+
+ state->bfinal = inflate_in_read_bits(state, 1);
+ btype = inflate_in_read_bits(state, 2);
+
+ if (state->read_in_length < 0)
+ ret = ISAL_END_INPUT;
+
+ else if (btype == 0) {
+ inflate_in_load(state, 40);
+ bytes = state->read_in_length / 8;
+
+ if (bytes < 4)
+ return ISAL_END_INPUT;
+
+ state->read_in >>= state->read_in_length % 8;
+ state->read_in_length = bytes * 8;
+
+ len = state->read_in & 0xFFFF;
+ state->read_in >>= 16;
+ nlen = state->read_in & 0xFFFF;
+ state->read_in >>= 16;
+ state->read_in_length -= 32;
+
+ /* Check if len and nlen match */
+ if (len != (~nlen & 0xffff))
+ return ISAL_INVALID_BLOCK;
+
+ state->type0_block_len = len;
+ state->block_state = ISAL_BLOCK_TYPE0;
+
+ ret = 0;
+
+ } else if (btype == 1)
+ ret = setup_static_header(state);
+
+ else if (btype == 2)
+ ret = setup_dynamic_header(state);
+
+ else
+ ret = ISAL_INVALID_BLOCK;
+
+ return ret;
+}
+
+/* Reads in the header pointed to by in_stream and sets up state to reflect that
+ * header information*/
+static int read_header_stateful(struct inflate_state *state)
+{
+ uint64_t read_in_start = state->read_in;
+ int32_t read_in_length_start = state->read_in_length;
+ uint8_t *next_in_start = state->next_in;
+ uint32_t avail_in_start = state->avail_in;
+ int block_state_start = state->block_state;
+ int ret;
+ int copy_size;
+ int bytes_read;
+
+ if (block_state_start == ISAL_BLOCK_HDR) {
+ /* Setup so read_header decodes data in tmp_in_buffer */
+ copy_size = ISAL_DEF_MAX_HDR_SIZE - state->tmp_in_size;
+ if (copy_size > state->avail_in)
+ copy_size = state->avail_in;
+
+ memcpy(&state->tmp_in_buffer[state->tmp_in_size], state->next_in, copy_size);
+ state->next_in = state->tmp_in_buffer;
+ state->avail_in = state->tmp_in_size + copy_size;
+ }
+
+ ret = read_header(state);
+
+ if (block_state_start == ISAL_BLOCK_HDR) {
+ /* Setup so state is restored to a valid state */
+ bytes_read = state->next_in - state->tmp_in_buffer - state->tmp_in_size;
+ if (bytes_read < 0)
+ bytes_read = 0;
+ state->next_in = next_in_start + bytes_read;
+ state->avail_in = avail_in_start - bytes_read;
+ }
+
+ if (ret == ISAL_END_INPUT) {
+ /* Save off data so header can be decoded again with more data */
+ state->read_in = read_in_start;
+ state->read_in_length = read_in_length_start;
+ memcpy(&state->tmp_in_buffer[state->tmp_in_size], next_in_start,
+ avail_in_start);
+ state->tmp_in_size += avail_in_start;
+ state->avail_in = 0;
+ state->next_in = next_in_start + avail_in_start;
+ state->block_state = ISAL_BLOCK_HDR;
+ } else
+ state->tmp_in_size = 0;
+
+ return ret;
+
+}
+
+static int inline decode_literal_block(struct inflate_state *state)
+{
+ uint32_t len = state->type0_block_len;
+ uint32_t bytes = state->read_in_length / 8;
+ /* If the block is uncompressed, perform a memcopy while
+ * updating state data */
+ state->block_state = state->bfinal ? ISAL_BLOCK_INPUT_DONE : ISAL_BLOCK_NEW_HDR;
+
+ if (state->avail_out < len) {
+ len = state->avail_out;
+ state->block_state = ISAL_BLOCK_TYPE0;
+ }
+
+ if (state->avail_in + bytes < len) {
+ len = state->avail_in + bytes;
+ state->block_state = ISAL_BLOCK_TYPE0;
+ }
+ if (state->read_in_length) {
+ if (len >= bytes) {
+ memcpy(state->next_out, &state->read_in, bytes);
+
+ state->next_out += bytes;
+ state->avail_out -= bytes;
+ state->total_out += bytes;
+ state->type0_block_len -= bytes;
+
+ state->read_in = 0;
+ state->read_in_length = 0;
+ len -= bytes;
+ bytes = 0;
+
+ } else {
+ memcpy(state->next_out, &state->read_in, len);
+
+ state->next_out += len;
+ state->avail_out -= len;
+ state->total_out += len;
+ state->type0_block_len -= len;
+
+ state->read_in >>= 8 * len;
+ state->read_in_length -= 8 * len;
+ bytes -= len;
+ len = 0;
+ }
+ }
+ memcpy(state->next_out, state->next_in, len);
+
+ state->next_out += len;
+ state->avail_out -= len;
+ state->total_out += len;
+ state->next_in += len;
+ state->avail_in -= len;
+ state->type0_block_len -= len;
+
+ if (state->avail_in + bytes == 0 && state->block_state != ISAL_BLOCK_INPUT_DONE)
+ return ISAL_END_INPUT;
+
+ if (state->avail_out == 0 && state->type0_block_len > 0)
+ return ISAL_OUT_OVERFLOW;
+
+ return 0;
+
+}
+
+/* Decodes the next block if it was encoded using a huffman code */
+int decode_huffman_code_block_stateless_base(struct inflate_state *state, uint8_t * start_out)
+{
+ uint16_t next_lit;
+ uint8_t next_dist;
+ uint32_t repeat_length;
+ uint32_t look_back_dist;
+ uint64_t read_in_tmp;
+ int32_t read_in_length_tmp;
+ uint8_t *next_in_tmp, *next_out_tmp;
+ uint32_t avail_in_tmp, avail_out_tmp, total_out_tmp;
+ uint32_t next_lits, sym_count;
+ struct rfc1951_tables *rfc = &rfc_lookup_table;
+
+ state->copy_overflow_length = 0;
+ state->copy_overflow_distance = 0;
+
+ while (state->block_state == ISAL_BLOCK_CODED) {
+ /* While not at the end of block, decode the next
+ * symbol */
+ inflate_in_load(state, 0);
+
+ read_in_tmp = state->read_in;
+ read_in_length_tmp = state->read_in_length;
+ next_in_tmp = state->next_in;
+ avail_in_tmp = state->avail_in;
+ next_out_tmp = state->next_out;
+ avail_out_tmp = state->avail_out;
+ total_out_tmp = state->total_out;
+
+ decode_next_lit_len(&next_lits, &sym_count, state, &state->lit_huff_code);
+
+ if (sym_count == 0)
+ return ISAL_INVALID_SYMBOL;
+
+ if (state->read_in_length < 0) {
+ state->read_in = read_in_tmp;
+ state->read_in_length = read_in_length_tmp;
+ state->next_in = next_in_tmp;
+ state->avail_in = avail_in_tmp;
+ return ISAL_END_INPUT;
+ }
+
+ while (sym_count > 0) {
+ next_lit = next_lits & 0xffff;
+ if (next_lit < 256 || sym_count > 1) {
+ /* If the next symbol is a literal,
+ * write out the symbol and update state
+ * data accordingly. */
+ if (state->avail_out < 1) {
+ state->write_overflow_lits = next_lits;
+ state->write_overflow_len = sym_count;
+ next_lits = next_lits >> (8 * (sym_count - 1));
+ sym_count = 1;
+
+ if (next_lits < 256)
+ return ISAL_OUT_OVERFLOW;
+ else if (next_lits == 256) {
+ state->write_overflow_len -= 1;
+ state->block_state = state->bfinal ?
+ ISAL_BLOCK_INPUT_DONE : ISAL_BLOCK_NEW_HDR;
+ return ISAL_OUT_OVERFLOW;
+ } else {
+ state->write_overflow_len -= 1;
+ continue;
+ }
+ }
+
+ *state->next_out = next_lit;
+ state->next_out++;
+ state->avail_out--;
+ state->total_out++;
+
+ } else if (next_lit == 256) {
+ /* If the next symbol is the end of
+ * block, update the state data
+ * accordingly */
+ state->block_state = state->bfinal ?
+ ISAL_BLOCK_INPUT_DONE : ISAL_BLOCK_NEW_HDR;
+
+ } else if (next_lit <= MAX_LIT_LEN_SYM) {
+ /* Else if the next symbol is a repeat
+ * length, read in the length extra
+ * bits, the distance code, the distance
+ * extra bits. Then write out the
+ * corresponding data and update the
+ * state data accordingly*/
+ repeat_length = next_lit - 254;
+ next_dist = decode_next_dist(state, &state->dist_huff_code);
+
+ if (state->read_in_length >= 0) {
+ if (next_dist >= DIST_LEN)
+ return ISAL_INVALID_SYMBOL;
+
+ look_back_dist = rfc->dist_start[next_dist] +
+ inflate_in_read_bits(state,
+ rfc->dist_extra_bit_count
+ [next_dist]);
+ }
+
+ if (state->read_in_length < 0) {
+ state->read_in = read_in_tmp;
+ state->read_in_length = read_in_length_tmp;
+ state->next_in = next_in_tmp;
+ state->avail_in = avail_in_tmp;
+ state->next_out = next_out_tmp;
+ state->avail_out = avail_out_tmp;
+ state->total_out = total_out_tmp;
+ state->write_overflow_lits = 0;
+ state->write_overflow_len = 0;
+ return ISAL_END_INPUT;
+ }
+
+ if (state->next_out - look_back_dist < start_out)
+ return ISAL_INVALID_LOOKBACK;
+
+ if (state->avail_out < repeat_length) {
+ state->copy_overflow_length =
+ repeat_length - state->avail_out;
+ state->copy_overflow_distance = look_back_dist;
+ repeat_length = state->avail_out;
+ }
+
+ if (look_back_dist > repeat_length)
+ memcpy(state->next_out,
+ state->next_out - look_back_dist,
+ repeat_length);
+ else
+ byte_copy(state->next_out, look_back_dist,
+ repeat_length);
+
+ state->next_out += repeat_length;
+ state->avail_out -= repeat_length;
+ state->total_out += repeat_length;
+
+ if (state->copy_overflow_length > 0)
+ return ISAL_OUT_OVERFLOW;
+ } else
+ /* Else the read in bits do not
+ * correspond to any valid symbol */
+ return ISAL_INVALID_SYMBOL;
+
+ next_lits >>= 8;
+ sym_count--;
+ }
+
+ }
+ return 0;
+}
+
+void isal_inflate_init(struct inflate_state *state)
+{
+
+ state->read_in = 0;
+ state->read_in_length = 0;
+ state->next_in = NULL;
+ state->avail_in = 0;
+ state->next_out = NULL;
+ state->avail_out = 0;
+ state->total_out = 0;
+ state->dict_length = 0;
+ state->block_state = ISAL_BLOCK_NEW_HDR;
+ state->bfinal = 0;
+ state->crc_flag = 0;
+ state->crc = 0;
+ state->hist_bits = 0;
+ state->type0_block_len = 0;
+ state->write_overflow_lits = 0;
+ state->write_overflow_len = 0;
+ state->copy_overflow_length = 0;
+ state->copy_overflow_distance = 0;
+ state->wrapper_flag = 0;
+ state->tmp_in_size = 0;
+ state->tmp_out_processed = 0;
+ state->tmp_out_valid = 0;
+}
+
+void isal_inflate_reset(struct inflate_state *state)
+{
+ state->read_in = 0;
+ state->read_in_length = 0;
+ state->total_out = 0;
+ state->dict_length = 0;
+ state->block_state = ISAL_BLOCK_NEW_HDR;
+ state->bfinal = 0;
+ state->crc = 0;
+ state->type0_block_len = 0;
+ state->write_overflow_lits = 0;
+ state->write_overflow_len = 0;
+ state->copy_overflow_length = 0;
+ state->copy_overflow_distance = 0;
+ state->tmp_in_size = 0;
+ state->tmp_out_processed = 0;
+ state->tmp_out_valid = 0;
+}
+
+static inline uint32_t fixed_size_read(struct inflate_state *state,
+ uint8_t ** read_buf, int read_size)
+{
+ uint32_t tmp_in_size = state->tmp_in_size;
+
+ if (state->avail_in + tmp_in_size < read_size) {
+ memcpy(state->tmp_in_buffer + tmp_in_size, state->next_in, state->avail_in);
+ tmp_in_size += state->avail_in;
+ state->tmp_in_size = tmp_in_size;
+ state->next_in += state->avail_in;
+ state->avail_in = 0;
+
+ return ISAL_END_INPUT;
+ }
+
+ *read_buf = state->next_in;
+ if (tmp_in_size) {
+ memcpy(state->tmp_in_buffer + tmp_in_size, state->next_in,
+ read_size - tmp_in_size);
+ *read_buf = state->tmp_in_buffer;
+ state->tmp_in_size = 0;
+ }
+
+ state->next_in += read_size - tmp_in_size;
+ state->avail_in -= read_size - tmp_in_size;
+ tmp_in_size = 0;
+
+ return 0;
+
+}
+
+static inline uint32_t buffer_header_copy(struct inflate_state *state, uint32_t in_len,
+ uint8_t * buf, uint32_t buf_len, uint32_t buf_error)
+{
+ uint32_t len = in_len;
+ if (len > state->avail_in)
+ len = state->avail_in;
+
+ if (buf != NULL && buf_len < len) {
+ memcpy(buf, state->next_in, buf_len);
+ state->next_in += buf_len;
+ state->avail_in -= buf_len;
+ state->count = in_len - buf_len;
+ return buf_error;
+ } else {
+ if (buf != NULL)
+ memcpy(buf, state->next_in, len);
+ state->next_in += len;
+ state->avail_in -= len;
+ state->count = in_len - len;
+
+ if (len == in_len)
+ return 0;
+ else
+ return ISAL_END_INPUT;
+ }
+}
+
+static inline uint32_t string_header_copy(struct inflate_state *state,
+ char *str_buf, uint32_t str_len, uint32_t str_error)
+{
+ uint32_t len, max_len = str_len;
+
+ if (max_len > state->avail_in || str_buf == NULL)
+ max_len = state->avail_in;
+
+ len = strnlen((char *)state->next_in, max_len);
+
+ if (str_buf != NULL)
+ memcpy(str_buf, state->next_in, len);
+
+ state->next_in += len;
+ state->avail_in -= len;
+ state->count += len;
+
+ if (str_buf != NULL && len == str_len)
+ return str_error;
+ else if (state->avail_in <= 0)
+ return ISAL_END_INPUT;
+ else {
+ state->next_in++;
+ state->avail_in--;
+ state->count = 0;
+ if (str_buf != NULL)
+ str_buf[len] = 0;
+ }
+
+ return 0;
+}
+
+static int check_gzip_checksum(struct inflate_state *state)
+{
+ uint64_t trailer, crc, total_out;
+ uint8_t *next_in;
+ uint32_t byte_count, offset, tmp_in_size = state->tmp_in_size;
+ int ret;
+
+ if (state->read_in_length >= 8 * GZIP_TRAILER_LEN) {
+ /* The following is unecessary as state->read_in_length == 64 */
+ /* bit_count = state->read_in_length % 8; */
+ /* state->read_in >>= bit_count; */
+ /* state->read_in_length -= bit_count; */
+
+ trailer = state->read_in;
+ state->read_in_length = 0;
+ state->read_in = 0;
+ } else {
+ if (state->read_in_length >= 8) {
+ byte_count = state->read_in_length / 8;
+ offset = state->read_in_length % 8;
+
+ store_u64(state->tmp_in_buffer + tmp_in_size,
+ state->read_in >> offset);
+ state->read_in = 0;
+ state->read_in_length = 0;
+
+ tmp_in_size += byte_count;
+ state->tmp_in_size = tmp_in_size;
+ }
+
+ ret = fixed_size_read(state, &next_in, GZIP_TRAILER_LEN);
+ if (ret) {
+ state->block_state = ISAL_CHECKSUM_CHECK;
+ return ret;
+ }
+
+ trailer = load_u64(next_in);
+ }
+
+ state->block_state = ISAL_BLOCK_FINISH;
+
+ crc = state->crc;
+ total_out = state->total_out;
+
+ if (trailer != (crc | (total_out << 32)))
+ return ISAL_INCORRECT_CHECKSUM;
+ else
+ return ISAL_DECOMP_OK;
+}
+
+static int check_zlib_checksum(struct inflate_state *state)
+{
+
+ uint32_t trailer;
+ uint8_t *next_in;
+ uint32_t byte_count, offset, tmp_in_size = state->tmp_in_size;
+ int ret, bit_count;
+
+ if (state->read_in_length >= 8 * ZLIB_TRAILER_LEN) {
+ bit_count = state->read_in_length % 8;
+ state->read_in >>= bit_count;
+ state->read_in_length -= bit_count;
+
+ trailer = state->read_in;
+
+ state->read_in_length -= 8 * ZLIB_TRAILER_LEN;
+ state->read_in >>= 8 * ZLIB_TRAILER_LEN;
+ } else {
+ if (state->read_in_length >= 8) {
+ byte_count = state->read_in_length / 8;
+ offset = state->read_in_length % 8;
+
+ store_u64(state->tmp_in_buffer + tmp_in_size,
+ state->read_in >> offset);
+ state->read_in = 0;
+ state->read_in_length = 0;
+
+ tmp_in_size += byte_count;
+ state->tmp_in_size = tmp_in_size;
+ }
+
+ ret = fixed_size_read(state, &next_in, ZLIB_TRAILER_LEN);
+ if (ret) {
+ state->block_state = ISAL_CHECKSUM_CHECK;
+ return ret;
+ }
+
+ trailer = load_u32(next_in);
+ }
+
+ state->block_state = ISAL_BLOCK_FINISH;
+
+ if (bswap_32(trailer) != state->crc)
+ return ISAL_INCORRECT_CHECKSUM;
+ else
+ return ISAL_DECOMP_OK;
+}
+
+int isal_read_gzip_header(struct inflate_state *state, struct isal_gzip_header *gz_hdr)
+{
+ int cm, flags = gz_hdr->flags, id1, id2;
+ uint16_t xlen = gz_hdr->extra_len;
+ uint32_t block_state = state->block_state;
+ uint8_t *start_in = state->next_in, *next_in;
+ uint32_t tmp_in_size = state->tmp_in_size;
+ uint32_t count = state->count, offset;
+ uint32_t hcrc = gz_hdr->hcrc;
+ int ret = 0;
+
+ /* This switch is a jump table into the function so that decoding the
+ * header can continue where it stopped on the last call */
+ switch (block_state) {
+ case ISAL_BLOCK_NEW_HDR:
+ state->count = 0;
+ flags = UNDEFINED_FLAG;
+ if (tmp_in_size == 0)
+ hcrc = 0;
+
+ ret = fixed_size_read(state, &next_in, GZIP_HDR_BASE);
+ if (ret)
+ break;
+
+ id1 = next_in[0];
+ id2 = next_in[1];
+ cm = next_in[2];
+ flags = next_in[3];
+ gz_hdr->time = load_u32(next_in + 4);
+ gz_hdr->xflags = *(next_in + 8);
+ gz_hdr->os = *(next_in + 9);
+
+ if (id1 != 0x1f || id2 != 0x8b)
+ return ISAL_INVALID_WRAPPER;
+
+ if (cm != DEFLATE_METHOD)
+ return ISAL_UNSUPPORTED_METHOD;
+
+ gz_hdr->text = 0;
+ if (flags & TEXT_FLAG)
+ gz_hdr->text = 1;
+
+ gz_hdr->flags = flags;
+
+ if (flags & EXTRA_FLAG) {
+ case ISAL_GZIP_EXTRA_LEN:
+ ret = fixed_size_read(state, &next_in, GZIP_EXTRA_LEN);
+ if (ret) {
+ state->block_state = ISAL_GZIP_EXTRA_LEN;
+ break;
+ }
+
+ xlen = load_u16(next_in);
+ count = xlen;
+
+ gz_hdr->extra_len = xlen;
+
+ case ISAL_GZIP_EXTRA:
+ offset = gz_hdr->extra_len - count;
+ ret =
+ buffer_header_copy(state, count, gz_hdr->extra + offset,
+ gz_hdr->extra_buf_len - offset,
+ ISAL_EXTRA_OVERFLOW);
+
+ if (ret) {
+ state->block_state = ISAL_GZIP_EXTRA;
+ break;
+ }
+ } else {
+ gz_hdr->extra_len = 0;
+ }
+
+ if (flags & NAME_FLAG) {
+ case ISAL_GZIP_NAME:
+ offset = state->count;
+ ret = string_header_copy(state, gz_hdr->name + offset,
+ gz_hdr->name_buf_len - offset,
+ ISAL_NAME_OVERFLOW);
+ if (ret) {
+ state->block_state = ISAL_GZIP_NAME;
+ break;
+ }
+ }
+
+ if (flags & COMMENT_FLAG) {
+ case ISAL_GZIP_COMMENT:
+ offset = state->count;
+ ret = string_header_copy(state, gz_hdr->comment + offset,
+ gz_hdr->comment_buf_len - offset,
+ ISAL_COMMENT_OVERFLOW);
+ if (ret) {
+ state->block_state = ISAL_GZIP_COMMENT;
+ break;
+ }
+ }
+
+ if (flags & HCRC_FLAG) {
+ hcrc = crc32_gzip_refl(hcrc, start_in, state->next_in - start_in);
+ gz_hdr->hcrc = hcrc;
+
+ case ISAL_GZIP_HCRC:
+ ret = fixed_size_read(state, &next_in, GZIP_HCRC_LEN);
+ if (ret) {
+ state->block_state = ISAL_GZIP_HCRC;
+ return ret;
+ }
+
+ if ((hcrc & 0xffff) != load_u16(next_in))
+ return ISAL_INCORRECT_CHECKSUM;
+ }
+
+ state->wrapper_flag = 1;
+ state->block_state = ISAL_BLOCK_NEW_HDR;
+ return ISAL_DECOMP_OK;
+ }
+
+ if (flags & HCRC_FLAG)
+ gz_hdr->hcrc = crc32_gzip_refl(hcrc, start_in, state->next_in - start_in);
+
+ return ret;
+}
+
+int isal_read_zlib_header(struct inflate_state *state, struct isal_zlib_header *zlib_hdr)
+{
+ int cmf, method, flags;
+ uint32_t block_state = state->block_state;
+ uint8_t *next_in;
+ int ret = 0;
+
+ switch (block_state) {
+ case ISAL_BLOCK_NEW_HDR:
+ zlib_hdr->dict_flag = 0;
+ ret = fixed_size_read(state, &next_in, ZLIB_HDR_BASE);
+ if (ret)
+ break;
+
+ cmf = *next_in;
+ method = cmf & 0xf;
+ flags = *(next_in + 1);
+
+ zlib_hdr->info = cmf >> ZLIB_INFO_OFFSET;
+ zlib_hdr->dict_flag = (flags & ZLIB_DICT_FLAG) ? 1 : 0;
+ zlib_hdr->level = flags >> ZLIB_LEVEL_OFFSET;
+
+ if (method != DEFLATE_METHOD)
+ return ISAL_UNSUPPORTED_METHOD;
+
+ if ((256 * cmf + flags) % 31 != 0)
+ return ISAL_INCORRECT_CHECKSUM;
+
+ if (zlib_hdr->dict_flag) {
+ case ISAL_ZLIB_DICT:
+ ret = fixed_size_read(state, &next_in, ZLIB_DICT_LEN);
+ if (ret) {
+ state->block_state = ISAL_ZLIB_DICT;
+ break;
+ }
+
+ zlib_hdr->dict_id = load_u32(next_in);
+ }
+
+ state->wrapper_flag = 1;
+ state->block_state = ISAL_BLOCK_NEW_HDR;
+ }
+
+ return ret;
+}
+
+int isal_inflate_set_dict(struct inflate_state *state, uint8_t * dict, uint32_t dict_len)
+{
+
+ if (state->block_state != ISAL_BLOCK_NEW_HDR
+ || state->tmp_out_processed != state->tmp_out_valid)
+ return ISAL_INVALID_STATE;
+
+ if (dict_len > IGZIP_HIST_SIZE) {
+ dict = dict + dict_len - IGZIP_HIST_SIZE;
+ dict_len = IGZIP_HIST_SIZE;
+ }
+
+ memcpy(state->tmp_out_buffer, dict, dict_len);
+ state->tmp_out_processed = dict_len;
+ state->tmp_out_valid = dict_len;
+ state->dict_length = dict_len;
+
+ return COMP_OK;
+}
+
+int isal_inflate_stateless(struct inflate_state *state)
+{
+ uint32_t ret = 0;
+ uint8_t *start_out = state->next_out;
+
+ state->read_in = 0;
+ state->read_in_length = 0;
+ state->block_state = ISAL_BLOCK_NEW_HDR;
+ state->dict_length = 0;
+ state->bfinal = 0;
+ state->crc = 0;
+ state->total_out = 0;
+ state->hist_bits = 0;
+ state->tmp_in_size = 0;
+
+ if (state->crc_flag == IGZIP_GZIP) {
+ struct isal_gzip_header gz_hdr;
+ ret = isal_read_gzip_header(state, &gz_hdr);
+ if (ret)
+ return ret;
+ } else if (state->crc_flag == IGZIP_ZLIB) {
+ struct isal_zlib_header z_hdr;
+ ret = isal_read_zlib_header(state, &z_hdr);
+ if (ret)
+ return ret;
+ if (z_hdr.dict_flag)
+ return ISAL_NEED_DICT;
+
+ }
+
+ while (state->block_state != ISAL_BLOCK_FINISH) {
+ if (state->block_state == ISAL_BLOCK_NEW_HDR) {
+ ret = read_header(state);
+
+ if (ret)
+ break;
+ }
+
+ if (state->block_state == ISAL_BLOCK_TYPE0)
+ ret = decode_literal_block(state);
+ else
+ ret = decode_huffman_code_block_stateless(state, start_out);
+
+ if (ret)
+ break;
+ if (state->block_state == ISAL_BLOCK_INPUT_DONE)
+ state->block_state = ISAL_BLOCK_FINISH;
+ }
+
+ /* Undo count stuff of bytes read into the read buffer */
+ state->next_in -= state->read_in_length / 8;
+ state->avail_in += state->read_in_length / 8;
+ state->read_in_length = 0;
+ state->read_in = 0;
+
+ if (!ret && state->crc_flag) {
+ update_checksum(state, start_out, state->next_out - start_out);
+ switch (state->crc_flag) {
+ case ISAL_ZLIB:
+ case ISAL_ZLIB_NO_HDR_VER:
+ finalize_adler32(state);
+ ret = check_zlib_checksum(state);
+ break;
+
+ case ISAL_ZLIB_NO_HDR:
+ finalize_adler32(state);
+ break;
+
+ case ISAL_GZIP:
+ case ISAL_GZIP_NO_HDR_VER:
+ ret = check_gzip_checksum(state);
+ break;
+ }
+ }
+
+ return ret;
+}
+
+int isal_inflate(struct inflate_state *state)
+{
+
+ uint8_t *start_out = state->next_out;
+ uint32_t avail_out = state->avail_out;
+ uint32_t copy_size = 0;
+ int32_t shift_size = 0;
+ int ret = 0;
+
+ if (!state->wrapper_flag && state->crc_flag == IGZIP_GZIP) {
+ struct isal_gzip_header gz_hdr;
+ ret = isal_read_gzip_header(state, &gz_hdr);
+ if (ret < 0)
+ return ret;
+ else if (ret > 0)
+ return ISAL_DECOMP_OK;
+ } else if (!state->wrapper_flag && state->crc_flag == IGZIP_ZLIB) {
+ struct isal_zlib_header z_hdr;
+ ret = isal_read_zlib_header(state, &z_hdr);
+ if (ret < 0)
+ return ret;
+ else if (ret > 0)
+ return ISAL_DECOMP_OK;
+
+ if (z_hdr.dict_flag) {
+ state->dict_id = z_hdr.dict_id;
+ return ISAL_NEED_DICT;
+ }
+ } else if (state->block_state == ISAL_CHECKSUM_CHECK) {
+ switch (state->crc_flag) {
+ case ISAL_ZLIB:
+ case ISAL_ZLIB_NO_HDR_VER:
+ ret = check_zlib_checksum(state);
+ break;
+ case ISAL_GZIP:
+ case ISAL_GZIP_NO_HDR_VER:
+ ret = check_gzip_checksum(state);
+ break;
+ }
+
+ return (ret > 0) ? ISAL_DECOMP_OK : ret;
+ }
+
+ if (state->block_state != ISAL_BLOCK_FINISH) {
+ state->total_out += state->tmp_out_valid - state->tmp_out_processed;
+ /* If space in tmp_out buffer, decompress into the tmp_out_buffer */
+ if (state->tmp_out_valid < 2 * ISAL_DEF_HIST_SIZE) {
+ /* Setup to start decoding into temp buffer */
+ state->next_out = &state->tmp_out_buffer[state->tmp_out_valid];
+ state->avail_out =
+ sizeof(state->tmp_out_buffer) - ISAL_LOOK_AHEAD -
+ state->tmp_out_valid;
+
+ if ((int32_t) state->avail_out < 0)
+ state->avail_out = 0;
+
+ /* Decode into internal buffer until exit */
+ while (state->block_state != ISAL_BLOCK_INPUT_DONE) {
+ if (state->block_state == ISAL_BLOCK_NEW_HDR
+ || state->block_state == ISAL_BLOCK_HDR) {
+ ret = read_header_stateful(state);
+
+ if (ret)
+ break;
+ }
+
+ if (state->block_state == ISAL_BLOCK_TYPE0) {
+ ret = decode_literal_block(state);
+ } else {
+ uint8_t *tmp = state->tmp_out_buffer;
+ ret = decode_huffman_code_block_stateless(state, tmp);
+ }
+
+ if (ret)
+ break;
+ }
+
+ /* Copy valid data from internal buffer into out_buffer */
+ if (state->write_overflow_len != 0) {
+ store_u32(state->next_out, state->write_overflow_lits);
+ state->next_out += state->write_overflow_len;
+ state->total_out += state->write_overflow_len;
+ state->write_overflow_lits = 0;
+ state->write_overflow_len = 0;
+ }
+
+ if (state->copy_overflow_length != 0) {
+ byte_copy(state->next_out, state->copy_overflow_distance,
+ state->copy_overflow_length);
+ state->tmp_out_valid += state->copy_overflow_length;
+ state->next_out += state->copy_overflow_length;
+ state->total_out += state->copy_overflow_length;
+ state->copy_overflow_distance = 0;
+ state->copy_overflow_length = 0;
+ }
+
+ state->tmp_out_valid = state->next_out - state->tmp_out_buffer;
+
+ /* Setup state for decompressing into out_buffer */
+ state->next_out = start_out;
+ state->avail_out = avail_out;
+ }
+
+ /* Copy data from tmp_out buffer into out_buffer */
+ copy_size = state->tmp_out_valid - state->tmp_out_processed;
+ if (copy_size > avail_out)
+ copy_size = avail_out;
+
+ memcpy(state->next_out,
+ &state->tmp_out_buffer[state->tmp_out_processed], copy_size);
+
+ state->tmp_out_processed += copy_size;
+ state->avail_out -= copy_size;
+ state->next_out += copy_size;
+
+ if (ret == ISAL_INVALID_LOOKBACK || ret == ISAL_INVALID_BLOCK
+ || ret == ISAL_INVALID_SYMBOL) {
+ /* Set total_out to not count data in tmp_out_buffer */
+ state->total_out -= state->tmp_out_valid - state->tmp_out_processed;
+ if (state->crc_flag)
+ update_checksum(state, start_out, state->next_out - start_out);
+ return ret;
+ }
+
+ /* If all data from tmp_out buffer has been processed, start
+ * decompressing into the out buffer */
+ if (state->tmp_out_processed == state->tmp_out_valid) {
+ while (state->block_state != ISAL_BLOCK_INPUT_DONE) {
+ if (state->block_state == ISAL_BLOCK_NEW_HDR
+ || state->block_state == ISAL_BLOCK_HDR) {
+ ret = read_header_stateful(state);
+ if (ret)
+ break;
+ }
+
+ if (state->block_state == ISAL_BLOCK_TYPE0)
+ ret = decode_literal_block(state);
+ else
+ ret =
+ decode_huffman_code_block_stateless(state,
+ start_out);
+ if (ret)
+ break;
+ }
+ }
+
+ if (state->crc_flag)
+ update_checksum(state, start_out, state->next_out - start_out);
+
+ if (state->block_state != ISAL_BLOCK_INPUT_DONE
+ || state->copy_overflow_length + state->write_overflow_len +
+ state->tmp_out_valid > sizeof(state->tmp_out_buffer)) {
+ /* Save decompression history in tmp_out buffer */
+ if (state->tmp_out_valid == state->tmp_out_processed
+ && avail_out - state->avail_out >= ISAL_DEF_HIST_SIZE) {
+ memcpy(state->tmp_out_buffer,
+ state->next_out - ISAL_DEF_HIST_SIZE,
+ ISAL_DEF_HIST_SIZE);
+ state->tmp_out_valid = ISAL_DEF_HIST_SIZE;
+ state->tmp_out_processed = ISAL_DEF_HIST_SIZE;
+
+ } else if (state->tmp_out_processed >= ISAL_DEF_HIST_SIZE) {
+ shift_size = state->tmp_out_valid - ISAL_DEF_HIST_SIZE;
+ if (shift_size > state->tmp_out_processed)
+ shift_size = state->tmp_out_processed;
+
+ memmove(state->tmp_out_buffer,
+ &state->tmp_out_buffer[shift_size],
+ state->tmp_out_valid - shift_size);
+ state->tmp_out_valid -= shift_size;
+ state->tmp_out_processed -= shift_size;
+
+ }
+ }
+
+ /* Write overflow data into tmp buffer */
+ if (state->write_overflow_len != 0) {
+ store_u32(&state->tmp_out_buffer[state->tmp_out_valid],
+ state->write_overflow_lits);
+ state->tmp_out_valid += state->write_overflow_len;
+ state->total_out += state->write_overflow_len;
+ state->write_overflow_lits = 0;
+ state->write_overflow_len = 0;
+ }
+
+ if (state->copy_overflow_length != 0) {
+ byte_copy(&state->tmp_out_buffer[state->tmp_out_valid],
+ state->copy_overflow_distance, state->copy_overflow_length);
+ state->tmp_out_valid += state->copy_overflow_length;
+ state->total_out += state->copy_overflow_length;
+ state->copy_overflow_distance = 0;
+ state->copy_overflow_length = 0;
+ }
+
+ if (ret == ISAL_INVALID_LOOKBACK || ret == ISAL_INVALID_BLOCK
+ || ret == ISAL_INVALID_SYMBOL) {
+ state->total_out -= state->tmp_out_valid - state->tmp_out_processed;
+ return ret;
+ }
+
+ if (state->block_state == ISAL_BLOCK_INPUT_DONE
+ && state->tmp_out_valid == state->tmp_out_processed) {
+ state->block_state = ISAL_BLOCK_FINISH;
+
+ switch (state->crc_flag) {
+ case ISAL_ZLIB:
+ case ISAL_ZLIB_NO_HDR_VER:
+ finalize_adler32(state);
+ ret = check_zlib_checksum(state);
+ break;
+
+ case ISAL_ZLIB_NO_HDR:
+ finalize_adler32(state);
+ break;
+
+ case ISAL_GZIP:
+ case ISAL_GZIP_NO_HDR_VER:
+ ret = check_gzip_checksum(state);
+ break;
+ }
+ }
+
+ state->total_out -= state->tmp_out_valid - state->tmp_out_processed;
+ }
+
+ return (ret > 0) ? ISAL_DECOMP_OK : ret;
+}