summaryrefslogtreecommitdiffstats
path: root/src/spdk/lib/nvme/nvme.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
commit19fcec84d8d7d21e796c7624e521b60d28ee21ed (patch)
tree42d26aa27d1e3f7c0b8bd3fd14e7d7082f5008dc /src/spdk/lib/nvme/nvme.c
parentInitial commit. (diff)
downloadceph-19fcec84d8d7d21e796c7624e521b60d28ee21ed.tar.xz
ceph-19fcec84d8d7d21e796c7624e521b60d28ee21ed.zip
Adding upstream version 16.2.11+ds.upstream/16.2.11+dsupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/spdk/lib/nvme/nvme.c')
-rw-r--r--src/spdk/lib/nvme/nvme.c1423
1 files changed, 1423 insertions, 0 deletions
diff --git a/src/spdk/lib/nvme/nvme.c b/src/spdk/lib/nvme/nvme.c
new file mode 100644
index 000000000..9393810a6
--- /dev/null
+++ b/src/spdk/lib/nvme/nvme.c
@@ -0,0 +1,1423 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright (c) Intel Corporation. All rights reserved.
+ * Copyright (c) 2020 Mellanox Technologies LTD. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "spdk/nvmf_spec.h"
+#include "spdk/string.h"
+#include "nvme_internal.h"
+#include "nvme_io_msg.h"
+#include "nvme_uevent.h"
+
+#define SPDK_NVME_DRIVER_NAME "spdk_nvme_driver"
+
+struct nvme_driver *g_spdk_nvme_driver;
+pid_t g_spdk_nvme_pid;
+
+/* gross timeout of 180 seconds in milliseconds */
+static int g_nvme_driver_timeout_ms = 3 * 60 * 1000;
+
+/* Per-process attached controller list */
+static TAILQ_HEAD(, spdk_nvme_ctrlr) g_nvme_attached_ctrlrs =
+ TAILQ_HEAD_INITIALIZER(g_nvme_attached_ctrlrs);
+
+/* Returns true if ctrlr should be stored on the multi-process shared_attached_ctrlrs list */
+static bool
+nvme_ctrlr_shared(const struct spdk_nvme_ctrlr *ctrlr)
+{
+ return ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE;
+}
+
+void
+nvme_ctrlr_connected(struct spdk_nvme_probe_ctx *probe_ctx,
+ struct spdk_nvme_ctrlr *ctrlr)
+{
+ TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
+}
+
+int
+spdk_nvme_detach(struct spdk_nvme_ctrlr *ctrlr)
+{
+ nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
+
+ nvme_ctrlr_proc_put_ref(ctrlr);
+
+ if (nvme_ctrlr_get_ref_count(ctrlr) == 0) {
+ nvme_io_msg_ctrlr_detach(ctrlr);
+ if (nvme_ctrlr_shared(ctrlr)) {
+ TAILQ_REMOVE(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
+ } else {
+ TAILQ_REMOVE(&g_nvme_attached_ctrlrs, ctrlr, tailq);
+ }
+ nvme_ctrlr_destruct(ctrlr);
+ }
+
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+ return 0;
+}
+
+void
+nvme_completion_poll_cb(void *arg, const struct spdk_nvme_cpl *cpl)
+{
+ struct nvme_completion_poll_status *status = arg;
+
+ if (status->timed_out) {
+ /* There is no routine waiting for the completion of this request, free allocated memory */
+ free(status);
+ return;
+ }
+
+ /*
+ * Copy status into the argument passed by the caller, so that
+ * the caller can check the status to determine if the
+ * the request passed or failed.
+ */
+ memcpy(&status->cpl, cpl, sizeof(*cpl));
+ status->done = true;
+}
+
+/**
+ * Poll qpair for completions until a command completes.
+ *
+ * \param qpair queue to poll
+ * \param status completion status. The user must fill this structure with zeroes before calling
+ * this function
+ * \param robust_mutex optional robust mutex to lock while polling qpair
+ *
+ * \return 0 if command completed without error,
+ * -EIO if command completed with error,
+ * -ECANCELED if command is not completed due to transport/device error
+ *
+ * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
+ * and status as the callback argument.
+ */
+int
+nvme_wait_for_completion_robust_lock(
+ struct spdk_nvme_qpair *qpair,
+ struct nvme_completion_poll_status *status,
+ pthread_mutex_t *robust_mutex)
+{
+ int rc;
+
+ while (status->done == false) {
+ if (robust_mutex) {
+ nvme_robust_mutex_lock(robust_mutex);
+ }
+
+ rc = spdk_nvme_qpair_process_completions(qpair, 0);
+
+ if (robust_mutex) {
+ nvme_robust_mutex_unlock(robust_mutex);
+ }
+
+ if (rc < 0) {
+ status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
+ status->cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
+ if (status->done == false) {
+ status->timed_out = true;
+ }
+ return -ECANCELED;
+ }
+ }
+
+ return spdk_nvme_cpl_is_error(&status->cpl) ? -EIO : 0;
+}
+
+int
+nvme_wait_for_completion(struct spdk_nvme_qpair *qpair,
+ struct nvme_completion_poll_status *status)
+{
+ return nvme_wait_for_completion_robust_lock(qpair, status, NULL);
+}
+
+/**
+ * Poll qpair for completions until a command completes.
+ *
+ * \param qpair queue to poll
+ * \param status completion status. The user must fill this structure with zeroes before calling
+ * this function
+ * \param timeout_in_secs optional timeout
+ *
+ * \return 0 if command completed without error,
+ * -EIO if command completed with error,
+ * -ECANCELED if command is not completed due to transport/device error or time expired
+ *
+ * The command to wait upon must be submitted with nvme_completion_poll_cb as the callback
+ * and status as the callback argument.
+ */
+int
+nvme_wait_for_completion_timeout(struct spdk_nvme_qpair *qpair,
+ struct nvme_completion_poll_status *status,
+ uint64_t timeout_in_secs)
+{
+ uint64_t timeout_tsc = 0;
+ int rc = 0;
+
+ if (timeout_in_secs) {
+ timeout_tsc = spdk_get_ticks() + timeout_in_secs * spdk_get_ticks_hz();
+ }
+
+ while (status->done == false) {
+ rc = spdk_nvme_qpair_process_completions(qpair, 0);
+
+ if (rc < 0) {
+ status->cpl.status.sct = SPDK_NVME_SCT_GENERIC;
+ status->cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
+ break;
+ }
+ if (timeout_tsc && spdk_get_ticks() > timeout_tsc) {
+ break;
+ }
+ }
+
+ if (status->done == false || rc < 0) {
+ if (status->done == false) {
+ status->timed_out = true;
+ }
+ return -ECANCELED;
+ }
+
+ return spdk_nvme_cpl_is_error(&status->cpl) ? -EIO : 0;
+}
+
+static void
+nvme_user_copy_cmd_complete(void *arg, const struct spdk_nvme_cpl *cpl)
+{
+ struct nvme_request *req = arg;
+ enum spdk_nvme_data_transfer xfer;
+
+ if (req->user_buffer && req->payload_size) {
+ /* Copy back to the user buffer and free the contig buffer */
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
+ xfer = spdk_nvme_opc_get_data_transfer(req->cmd.opc);
+ if (xfer == SPDK_NVME_DATA_CONTROLLER_TO_HOST ||
+ xfer == SPDK_NVME_DATA_BIDIRECTIONAL) {
+ assert(req->pid == getpid());
+ memcpy(req->user_buffer, req->payload.contig_or_cb_arg, req->payload_size);
+ }
+
+ spdk_free(req->payload.contig_or_cb_arg);
+ }
+
+ /* Call the user's original callback now that the buffer has been copied */
+ req->user_cb_fn(req->user_cb_arg, cpl);
+}
+
+/**
+ * Allocate a request as well as a DMA-capable buffer to copy to/from the user's buffer.
+ *
+ * This is intended for use in non-fast-path functions (admin commands, reservations, etc.)
+ * where the overhead of a copy is not a problem.
+ */
+struct nvme_request *
+nvme_allocate_request_user_copy(struct spdk_nvme_qpair *qpair,
+ void *buffer, uint32_t payload_size, spdk_nvme_cmd_cb cb_fn,
+ void *cb_arg, bool host_to_controller)
+{
+ struct nvme_request *req;
+ void *dma_buffer = NULL;
+
+ if (buffer && payload_size) {
+ dma_buffer = spdk_zmalloc(payload_size, 4096, NULL,
+ SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
+ if (!dma_buffer) {
+ return NULL;
+ }
+
+ if (host_to_controller) {
+ memcpy(dma_buffer, buffer, payload_size);
+ }
+ }
+
+ req = nvme_allocate_request_contig(qpair, dma_buffer, payload_size, nvme_user_copy_cmd_complete,
+ NULL);
+ if (!req) {
+ spdk_free(dma_buffer);
+ return NULL;
+ }
+
+ req->user_cb_fn = cb_fn;
+ req->user_cb_arg = cb_arg;
+ req->user_buffer = buffer;
+ req->cb_arg = req;
+
+ return req;
+}
+
+/**
+ * Check if a request has exceeded the controller timeout.
+ *
+ * \param req request to check for timeout.
+ * \param cid command ID for command submitted by req (will be passed to timeout_cb_fn)
+ * \param active_proc per-process data for the controller associated with req
+ * \param now_tick current time from spdk_get_ticks()
+ * \return 0 if requests submitted more recently than req should still be checked for timeouts, or
+ * 1 if requests newer than req need not be checked.
+ *
+ * The request's timeout callback will be called if needed; the caller is only responsible for
+ * calling this function on each outstanding request.
+ */
+int
+nvme_request_check_timeout(struct nvme_request *req, uint16_t cid,
+ struct spdk_nvme_ctrlr_process *active_proc,
+ uint64_t now_tick)
+{
+ struct spdk_nvme_qpair *qpair = req->qpair;
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+
+ assert(active_proc->timeout_cb_fn != NULL);
+
+ if (req->timed_out || req->submit_tick == 0) {
+ return 0;
+ }
+
+ if (req->pid != g_spdk_nvme_pid) {
+ return 0;
+ }
+
+ if (nvme_qpair_is_admin_queue(qpair) &&
+ req->cmd.opc == SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
+ return 0;
+ }
+
+ if (req->submit_tick + active_proc->timeout_ticks > now_tick) {
+ return 1;
+ }
+
+ req->timed_out = true;
+
+ /*
+ * We don't want to expose the admin queue to the user,
+ * so when we're timing out admin commands set the
+ * qpair to NULL.
+ */
+ active_proc->timeout_cb_fn(active_proc->timeout_cb_arg, ctrlr,
+ nvme_qpair_is_admin_queue(qpair) ? NULL : qpair,
+ cid);
+ return 0;
+}
+
+int
+nvme_robust_mutex_init_shared(pthread_mutex_t *mtx)
+{
+ int rc = 0;
+
+#ifdef __FreeBSD__
+ pthread_mutex_init(mtx, NULL);
+#else
+ pthread_mutexattr_t attr;
+
+ if (pthread_mutexattr_init(&attr)) {
+ return -1;
+ }
+ if (pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) ||
+ pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) ||
+ pthread_mutex_init(mtx, &attr)) {
+ rc = -1;
+ }
+ pthread_mutexattr_destroy(&attr);
+#endif
+
+ return rc;
+}
+
+int
+nvme_driver_init(void)
+{
+ static pthread_mutex_t g_init_mutex = PTHREAD_MUTEX_INITIALIZER;
+ int ret = 0;
+ /* Any socket ID */
+ int socket_id = -1;
+
+ /* Use a special process-private mutex to ensure the global
+ * nvme driver object (g_spdk_nvme_driver) gets initialized by
+ * only one thread. Once that object is established and its
+ * mutex is initialized, we can unlock this mutex and use that
+ * one instead.
+ */
+ pthread_mutex_lock(&g_init_mutex);
+
+ /* Each process needs its own pid. */
+ g_spdk_nvme_pid = getpid();
+
+ /*
+ * Only one thread from one process will do this driver init work.
+ * The primary process will reserve the shared memory and do the
+ * initialization.
+ * The secondary process will lookup the existing reserved memory.
+ */
+ if (spdk_process_is_primary()) {
+ /* The unique named memzone already reserved. */
+ if (g_spdk_nvme_driver != NULL) {
+ pthread_mutex_unlock(&g_init_mutex);
+ return 0;
+ } else {
+ g_spdk_nvme_driver = spdk_memzone_reserve(SPDK_NVME_DRIVER_NAME,
+ sizeof(struct nvme_driver), socket_id,
+ SPDK_MEMZONE_NO_IOVA_CONTIG);
+ }
+
+ if (g_spdk_nvme_driver == NULL) {
+ SPDK_ERRLOG("primary process failed to reserve memory\n");
+ pthread_mutex_unlock(&g_init_mutex);
+ return -1;
+ }
+ } else {
+ g_spdk_nvme_driver = spdk_memzone_lookup(SPDK_NVME_DRIVER_NAME);
+
+ /* The unique named memzone already reserved by the primary process. */
+ if (g_spdk_nvme_driver != NULL) {
+ int ms_waited = 0;
+
+ /* Wait the nvme driver to get initialized. */
+ while ((g_spdk_nvme_driver->initialized == false) &&
+ (ms_waited < g_nvme_driver_timeout_ms)) {
+ ms_waited++;
+ nvme_delay(1000); /* delay 1ms */
+ }
+ if (g_spdk_nvme_driver->initialized == false) {
+ SPDK_ERRLOG("timeout waiting for primary process to init\n");
+ pthread_mutex_unlock(&g_init_mutex);
+ return -1;
+ }
+ } else {
+ SPDK_ERRLOG("primary process is not started yet\n");
+ pthread_mutex_unlock(&g_init_mutex);
+ return -1;
+ }
+
+ pthread_mutex_unlock(&g_init_mutex);
+ return 0;
+ }
+
+ /*
+ * At this moment, only one thread from the primary process will do
+ * the g_spdk_nvme_driver initialization
+ */
+ assert(spdk_process_is_primary());
+
+ ret = nvme_robust_mutex_init_shared(&g_spdk_nvme_driver->lock);
+ if (ret != 0) {
+ SPDK_ERRLOG("failed to initialize mutex\n");
+ spdk_memzone_free(SPDK_NVME_DRIVER_NAME);
+ pthread_mutex_unlock(&g_init_mutex);
+ return ret;
+ }
+
+ /* The lock in the shared g_spdk_nvme_driver object is now ready to
+ * be used - so we can unlock the g_init_mutex here.
+ */
+ pthread_mutex_unlock(&g_init_mutex);
+ nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
+
+ g_spdk_nvme_driver->initialized = false;
+ g_spdk_nvme_driver->hotplug_fd = nvme_uevent_connect();
+ if (g_spdk_nvme_driver->hotplug_fd < 0) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "Failed to open uevent netlink socket\n");
+ }
+
+ TAILQ_INIT(&g_spdk_nvme_driver->shared_attached_ctrlrs);
+
+ spdk_uuid_generate(&g_spdk_nvme_driver->default_extended_host_id);
+
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+
+ return ret;
+}
+
+/* This function must only be called while holding g_spdk_nvme_driver->lock */
+int
+nvme_ctrlr_probe(const struct spdk_nvme_transport_id *trid,
+ struct spdk_nvme_probe_ctx *probe_ctx, void *devhandle)
+{
+ struct spdk_nvme_ctrlr *ctrlr;
+ struct spdk_nvme_ctrlr_opts opts;
+
+ assert(trid != NULL);
+
+ spdk_nvme_ctrlr_get_default_ctrlr_opts(&opts, sizeof(opts));
+
+ if (!probe_ctx->probe_cb || probe_ctx->probe_cb(probe_ctx->cb_ctx, trid, &opts)) {
+ ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid);
+ if (ctrlr) {
+ /* This ctrlr already exists.
+ * Increase the ref count before calling attach_cb() as the user may
+ * call nvme_detach() immediately. */
+ nvme_ctrlr_proc_get_ref(ctrlr);
+
+ if (probe_ctx->attach_cb) {
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+ probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
+ nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
+ }
+ return 0;
+ }
+
+ ctrlr = nvme_transport_ctrlr_construct(trid, &opts, devhandle);
+ if (ctrlr == NULL) {
+ SPDK_ERRLOG("Failed to construct NVMe controller for SSD: %s\n", trid->traddr);
+ return -1;
+ }
+ ctrlr->remove_cb = probe_ctx->remove_cb;
+ ctrlr->cb_ctx = probe_ctx->cb_ctx;
+
+ if (ctrlr->quirks & NVME_QUIRK_MINIMUM_IO_QUEUE_SIZE &&
+ ctrlr->opts.io_queue_size == DEFAULT_IO_QUEUE_SIZE) {
+ /* If the user specifically set an IO queue size different than the
+ * default, use that value. Otherwise overwrite with the quirked value.
+ * This allows this quirk to be overridden when necessary.
+ * However, cap.mqes still needs to be respected.
+ */
+ ctrlr->opts.io_queue_size = spdk_min(DEFAULT_IO_QUEUE_SIZE_FOR_QUIRK, ctrlr->cap.bits.mqes + 1u);
+ }
+
+ nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED);
+ TAILQ_INSERT_TAIL(&probe_ctx->init_ctrlrs, ctrlr, tailq);
+ return 0;
+ }
+
+ return 1;
+}
+
+static int
+nvme_ctrlr_poll_internal(struct spdk_nvme_ctrlr *ctrlr,
+ struct spdk_nvme_probe_ctx *probe_ctx)
+{
+ int rc = 0;
+
+ rc = nvme_ctrlr_process_init(ctrlr);
+
+ if (rc) {
+ /* Controller failed to initialize. */
+ TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
+ SPDK_ERRLOG("Failed to initialize SSD: %s\n", ctrlr->trid.traddr);
+ nvme_ctrlr_fail(ctrlr, false);
+ nvme_ctrlr_destruct(ctrlr);
+ return rc;
+ }
+
+ if (ctrlr->state != NVME_CTRLR_STATE_READY) {
+ return 0;
+ }
+
+ STAILQ_INIT(&ctrlr->io_producers);
+
+ /*
+ * Controller has been initialized.
+ * Move it to the attached_ctrlrs list.
+ */
+ TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
+
+ nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
+ if (nvme_ctrlr_shared(ctrlr)) {
+ TAILQ_INSERT_TAIL(&g_spdk_nvme_driver->shared_attached_ctrlrs, ctrlr, tailq);
+ } else {
+ TAILQ_INSERT_TAIL(&g_nvme_attached_ctrlrs, ctrlr, tailq);
+ }
+
+ /*
+ * Increase the ref count before calling attach_cb() as the user may
+ * call nvme_detach() immediately.
+ */
+ nvme_ctrlr_proc_get_ref(ctrlr);
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+
+ if (probe_ctx->attach_cb) {
+ probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
+ return 0;
+ }
+
+ return 0;
+}
+
+static int
+nvme_init_controllers(struct spdk_nvme_probe_ctx *probe_ctx)
+{
+ int rc = 0;
+
+ while (true) {
+ rc = spdk_nvme_probe_poll_async(probe_ctx);
+ if (rc != -EAGAIN) {
+ return rc;
+ }
+ }
+
+ return rc;
+}
+
+/* This function must not be called while holding g_spdk_nvme_driver->lock */
+static struct spdk_nvme_ctrlr *
+nvme_get_ctrlr_by_trid(const struct spdk_nvme_transport_id *trid)
+{
+ struct spdk_nvme_ctrlr *ctrlr;
+
+ nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
+ ctrlr = nvme_get_ctrlr_by_trid_unsafe(trid);
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+
+ return ctrlr;
+}
+
+/* This function must be called while holding g_spdk_nvme_driver->lock */
+struct spdk_nvme_ctrlr *
+nvme_get_ctrlr_by_trid_unsafe(const struct spdk_nvme_transport_id *trid)
+{
+ struct spdk_nvme_ctrlr *ctrlr;
+
+ /* Search per-process list */
+ TAILQ_FOREACH(ctrlr, &g_nvme_attached_ctrlrs, tailq) {
+ if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
+ return ctrlr;
+ }
+ }
+
+ /* Search multi-process shared list */
+ TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
+ if (spdk_nvme_transport_id_compare(&ctrlr->trid, trid) == 0) {
+ return ctrlr;
+ }
+ }
+
+ return NULL;
+}
+
+/* This function must only be called while holding g_spdk_nvme_driver->lock */
+static int
+nvme_probe_internal(struct spdk_nvme_probe_ctx *probe_ctx,
+ bool direct_connect)
+{
+ int rc;
+ struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
+
+ spdk_nvme_trid_populate_transport(&probe_ctx->trid, probe_ctx->trid.trtype);
+ if (!spdk_nvme_transport_available_by_name(probe_ctx->trid.trstring)) {
+ SPDK_ERRLOG("NVMe trtype %u not available\n", probe_ctx->trid.trtype);
+ return -1;
+ }
+
+ nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
+
+ rc = nvme_transport_ctrlr_scan(probe_ctx, direct_connect);
+ if (rc != 0) {
+ SPDK_ERRLOG("NVMe ctrlr scan failed\n");
+ TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
+ TAILQ_REMOVE(&probe_ctx->init_ctrlrs, ctrlr, tailq);
+ nvme_transport_ctrlr_destruct(ctrlr);
+ }
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+ return -1;
+ }
+
+ /*
+ * Probe controllers on the shared_attached_ctrlrs list
+ */
+ if (!spdk_process_is_primary() && (probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE)) {
+ TAILQ_FOREACH(ctrlr, &g_spdk_nvme_driver->shared_attached_ctrlrs, tailq) {
+ /* Do not attach other ctrlrs if user specify a valid trid */
+ if ((strlen(probe_ctx->trid.traddr) != 0) &&
+ (spdk_nvme_transport_id_compare(&probe_ctx->trid, &ctrlr->trid))) {
+ continue;
+ }
+
+ /* Do not attach if we failed to initialize it in this process */
+ if (nvme_ctrlr_get_current_process(ctrlr) == NULL) {
+ continue;
+ }
+
+ nvme_ctrlr_proc_get_ref(ctrlr);
+
+ /*
+ * Unlock while calling attach_cb() so the user can call other functions
+ * that may take the driver lock, like nvme_detach().
+ */
+ if (probe_ctx->attach_cb) {
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+ probe_ctx->attach_cb(probe_ctx->cb_ctx, &ctrlr->trid, ctrlr, &ctrlr->opts);
+ nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
+ }
+ }
+ }
+
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+
+ return 0;
+}
+
+static void
+nvme_probe_ctx_init(struct spdk_nvme_probe_ctx *probe_ctx,
+ const struct spdk_nvme_transport_id *trid,
+ void *cb_ctx,
+ spdk_nvme_probe_cb probe_cb,
+ spdk_nvme_attach_cb attach_cb,
+ spdk_nvme_remove_cb remove_cb)
+{
+ probe_ctx->trid = *trid;
+ probe_ctx->cb_ctx = cb_ctx;
+ probe_ctx->probe_cb = probe_cb;
+ probe_ctx->attach_cb = attach_cb;
+ probe_ctx->remove_cb = remove_cb;
+ TAILQ_INIT(&probe_ctx->init_ctrlrs);
+}
+
+int
+spdk_nvme_probe(const struct spdk_nvme_transport_id *trid, void *cb_ctx,
+ spdk_nvme_probe_cb probe_cb, spdk_nvme_attach_cb attach_cb,
+ spdk_nvme_remove_cb remove_cb)
+{
+ struct spdk_nvme_transport_id trid_pcie;
+ struct spdk_nvme_probe_ctx *probe_ctx;
+
+ if (trid == NULL) {
+ memset(&trid_pcie, 0, sizeof(trid_pcie));
+ spdk_nvme_trid_populate_transport(&trid_pcie, SPDK_NVME_TRANSPORT_PCIE);
+ trid = &trid_pcie;
+ }
+
+ probe_ctx = spdk_nvme_probe_async(trid, cb_ctx, probe_cb,
+ attach_cb, remove_cb);
+ if (!probe_ctx) {
+ SPDK_ERRLOG("Create probe context failed\n");
+ return -1;
+ }
+
+ /*
+ * Keep going even if one or more nvme_attach() calls failed,
+ * but maintain the value of rc to signal errors when we return.
+ */
+ return nvme_init_controllers(probe_ctx);
+}
+
+static bool
+nvme_connect_probe_cb(void *cb_ctx, const struct spdk_nvme_transport_id *trid,
+ struct spdk_nvme_ctrlr_opts *opts)
+{
+ struct spdk_nvme_ctrlr_opts *requested_opts = cb_ctx;
+
+ assert(requested_opts);
+ memcpy(opts, requested_opts, sizeof(*opts));
+
+ return true;
+}
+
+static void
+nvme_ctrlr_opts_init(struct spdk_nvme_ctrlr_opts *opts,
+ const struct spdk_nvme_ctrlr_opts *opts_user,
+ size_t opts_size_user)
+{
+ assert(opts);
+ assert(opts_user);
+
+ spdk_nvme_ctrlr_get_default_ctrlr_opts(opts, opts_size_user);
+
+#define FIELD_OK(field) \
+ offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= (opts->opts_size)
+
+ if (FIELD_OK(num_io_queues)) {
+ opts->num_io_queues = opts_user->num_io_queues;
+ }
+
+ if (FIELD_OK(use_cmb_sqs)) {
+ opts->use_cmb_sqs = opts_user->use_cmb_sqs;
+ }
+
+ if (FIELD_OK(no_shn_notification)) {
+ opts->no_shn_notification = opts_user->no_shn_notification;
+ }
+
+ if (FIELD_OK(arb_mechanism)) {
+ opts->arb_mechanism = opts_user->arb_mechanism;
+ }
+
+ if (FIELD_OK(arbitration_burst)) {
+ opts->arbitration_burst = opts_user->arbitration_burst;
+ }
+
+ if (FIELD_OK(low_priority_weight)) {
+ opts->low_priority_weight = opts_user->low_priority_weight;
+ }
+
+ if (FIELD_OK(medium_priority_weight)) {
+ opts->medium_priority_weight = opts_user->medium_priority_weight;
+ }
+
+ if (FIELD_OK(high_priority_weight)) {
+ opts->high_priority_weight = opts_user->high_priority_weight;
+ }
+
+ if (FIELD_OK(keep_alive_timeout_ms)) {
+ opts->keep_alive_timeout_ms = opts_user->keep_alive_timeout_ms;
+ }
+
+ if (FIELD_OK(transport_retry_count)) {
+ opts->transport_retry_count = opts_user->transport_retry_count;
+ }
+
+ if (FIELD_OK(io_queue_size)) {
+ opts->io_queue_size = opts_user->io_queue_size;
+ }
+
+ if (FIELD_OK(hostnqn)) {
+ memcpy(opts->hostnqn, opts_user->hostnqn, sizeof(opts_user->hostnqn));
+ }
+
+ if (FIELD_OK(io_queue_requests)) {
+ opts->io_queue_requests = opts_user->io_queue_requests;
+ }
+
+ if (FIELD_OK(src_addr)) {
+ memcpy(opts->src_addr, opts_user->src_addr, sizeof(opts_user->src_addr));
+ }
+
+ if (FIELD_OK(src_svcid)) {
+ memcpy(opts->src_svcid, opts_user->src_svcid, sizeof(opts_user->src_svcid));
+ }
+
+ if (FIELD_OK(host_id)) {
+ memcpy(opts->host_id, opts_user->host_id, sizeof(opts_user->host_id));
+ }
+ if (FIELD_OK(extended_host_id)) {
+ memcpy(opts->extended_host_id, opts_user->extended_host_id,
+ sizeof(opts_user->extended_host_id));
+ }
+
+ if (FIELD_OK(command_set)) {
+ opts->command_set = opts_user->command_set;
+ }
+
+ if (FIELD_OK(admin_timeout_ms)) {
+ opts->admin_timeout_ms = opts_user->admin_timeout_ms;
+ }
+
+ if (FIELD_OK(header_digest)) {
+ opts->header_digest = opts_user->header_digest;
+ }
+
+ if (FIELD_OK(data_digest)) {
+ opts->data_digest = opts_user->data_digest;
+ }
+
+ if (FIELD_OK(disable_error_logging)) {
+ opts->disable_error_logging = opts_user->disable_error_logging;
+ }
+
+ if (FIELD_OK(transport_ack_timeout)) {
+ opts->transport_ack_timeout = opts_user->transport_ack_timeout;
+ }
+
+ if (FIELD_OK(admin_queue_size)) {
+ opts->admin_queue_size = opts_user->admin_queue_size;
+ }
+#undef FIELD_OK
+}
+
+struct spdk_nvme_ctrlr *
+spdk_nvme_connect(const struct spdk_nvme_transport_id *trid,
+ const struct spdk_nvme_ctrlr_opts *opts, size_t opts_size)
+{
+ int rc;
+ struct spdk_nvme_ctrlr *ctrlr = NULL;
+ struct spdk_nvme_probe_ctx *probe_ctx;
+ struct spdk_nvme_ctrlr_opts *opts_local_p = NULL;
+ struct spdk_nvme_ctrlr_opts opts_local;
+
+ if (trid == NULL) {
+ SPDK_ERRLOG("No transport ID specified\n");
+ return NULL;
+ }
+
+ if (opts) {
+ opts_local_p = &opts_local;
+ nvme_ctrlr_opts_init(opts_local_p, opts, opts_size);
+ }
+
+ probe_ctx = spdk_nvme_connect_async(trid, opts_local_p, NULL);
+ if (!probe_ctx) {
+ SPDK_ERRLOG("Create probe context failed\n");
+ return NULL;
+ }
+
+ rc = nvme_init_controllers(probe_ctx);
+ if (rc != 0) {
+ return NULL;
+ }
+
+ ctrlr = nvme_get_ctrlr_by_trid(trid);
+
+ return ctrlr;
+}
+
+void
+spdk_nvme_trid_populate_transport(struct spdk_nvme_transport_id *trid,
+ enum spdk_nvme_transport_type trtype)
+{
+ const char *trstring = "";
+
+ trid->trtype = trtype;
+ switch (trtype) {
+ case SPDK_NVME_TRANSPORT_FC:
+ trstring = SPDK_NVME_TRANSPORT_NAME_FC;
+ break;
+ case SPDK_NVME_TRANSPORT_PCIE:
+ trstring = SPDK_NVME_TRANSPORT_NAME_PCIE;
+ break;
+ case SPDK_NVME_TRANSPORT_RDMA:
+ trstring = SPDK_NVME_TRANSPORT_NAME_RDMA;
+ break;
+ case SPDK_NVME_TRANSPORT_TCP:
+ trstring = SPDK_NVME_TRANSPORT_NAME_TCP;
+ break;
+ case SPDK_NVME_TRANSPORT_CUSTOM:
+ default:
+ SPDK_ERRLOG("don't use this for custom transports\n");
+ assert(0);
+ return;
+ }
+ snprintf(trid->trstring, SPDK_NVMF_TRSTRING_MAX_LEN, "%s", trstring);
+}
+
+int
+spdk_nvme_transport_id_populate_trstring(struct spdk_nvme_transport_id *trid, const char *trstring)
+{
+ int len, i, rc;
+
+ if (trstring == NULL) {
+ return -EINVAL;
+ }
+
+ len = strnlen(trstring, SPDK_NVMF_TRSTRING_MAX_LEN);
+ if (len == SPDK_NVMF_TRSTRING_MAX_LEN) {
+ return -EINVAL;
+ }
+
+ rc = snprintf(trid->trstring, SPDK_NVMF_TRSTRING_MAX_LEN, "%s", trstring);
+ if (rc < 0) {
+ return rc;
+ }
+
+ /* cast official trstring to uppercase version of input. */
+ for (i = 0; i < len; i++) {
+ trid->trstring[i] = toupper(trid->trstring[i]);
+ }
+ return 0;
+}
+
+int
+spdk_nvme_transport_id_parse_trtype(enum spdk_nvme_transport_type *trtype, const char *str)
+{
+ if (trtype == NULL || str == NULL) {
+ return -EINVAL;
+ }
+
+ if (strcasecmp(str, "PCIe") == 0) {
+ *trtype = SPDK_NVME_TRANSPORT_PCIE;
+ } else if (strcasecmp(str, "RDMA") == 0) {
+ *trtype = SPDK_NVME_TRANSPORT_RDMA;
+ } else if (strcasecmp(str, "FC") == 0) {
+ *trtype = SPDK_NVME_TRANSPORT_FC;
+ } else if (strcasecmp(str, "TCP") == 0) {
+ *trtype = SPDK_NVME_TRANSPORT_TCP;
+ } else {
+ *trtype = SPDK_NVME_TRANSPORT_CUSTOM;
+ }
+ return 0;
+}
+
+const char *
+spdk_nvme_transport_id_trtype_str(enum spdk_nvme_transport_type trtype)
+{
+ switch (trtype) {
+ case SPDK_NVME_TRANSPORT_PCIE:
+ return "PCIe";
+ case SPDK_NVME_TRANSPORT_RDMA:
+ return "RDMA";
+ case SPDK_NVME_TRANSPORT_FC:
+ return "FC";
+ case SPDK_NVME_TRANSPORT_TCP:
+ return "TCP";
+ case SPDK_NVME_TRANSPORT_CUSTOM:
+ return "CUSTOM";
+ default:
+ return NULL;
+ }
+}
+
+int
+spdk_nvme_transport_id_parse_adrfam(enum spdk_nvmf_adrfam *adrfam, const char *str)
+{
+ if (adrfam == NULL || str == NULL) {
+ return -EINVAL;
+ }
+
+ if (strcasecmp(str, "IPv4") == 0) {
+ *adrfam = SPDK_NVMF_ADRFAM_IPV4;
+ } else if (strcasecmp(str, "IPv6") == 0) {
+ *adrfam = SPDK_NVMF_ADRFAM_IPV6;
+ } else if (strcasecmp(str, "IB") == 0) {
+ *adrfam = SPDK_NVMF_ADRFAM_IB;
+ } else if (strcasecmp(str, "FC") == 0) {
+ *adrfam = SPDK_NVMF_ADRFAM_FC;
+ } else {
+ return -ENOENT;
+ }
+ return 0;
+}
+
+const char *
+spdk_nvme_transport_id_adrfam_str(enum spdk_nvmf_adrfam adrfam)
+{
+ switch (adrfam) {
+ case SPDK_NVMF_ADRFAM_IPV4:
+ return "IPv4";
+ case SPDK_NVMF_ADRFAM_IPV6:
+ return "IPv6";
+ case SPDK_NVMF_ADRFAM_IB:
+ return "IB";
+ case SPDK_NVMF_ADRFAM_FC:
+ return "FC";
+ default:
+ return NULL;
+ }
+}
+
+static size_t
+parse_next_key(const char **str, char *key, char *val, size_t key_buf_size, size_t val_buf_size)
+{
+
+ const char *sep, *sep1;
+ const char *whitespace = " \t\n";
+ size_t key_len, val_len;
+
+ *str += strspn(*str, whitespace);
+
+ sep = strchr(*str, ':');
+ if (!sep) {
+ sep = strchr(*str, '=');
+ if (!sep) {
+ SPDK_ERRLOG("Key without ':' or '=' separator\n");
+ return 0;
+ }
+ } else {
+ sep1 = strchr(*str, '=');
+ if ((sep1 != NULL) && (sep1 < sep)) {
+ sep = sep1;
+ }
+ }
+
+ key_len = sep - *str;
+ if (key_len >= key_buf_size) {
+ SPDK_ERRLOG("Key length %zu greater than maximum allowed %zu\n",
+ key_len, key_buf_size - 1);
+ return 0;
+ }
+
+ memcpy(key, *str, key_len);
+ key[key_len] = '\0';
+
+ *str += key_len + 1; /* Skip key: */
+ val_len = strcspn(*str, whitespace);
+ if (val_len == 0) {
+ SPDK_ERRLOG("Key without value\n");
+ return 0;
+ }
+
+ if (val_len >= val_buf_size) {
+ SPDK_ERRLOG("Value length %zu greater than maximum allowed %zu\n",
+ val_len, val_buf_size - 1);
+ return 0;
+ }
+
+ memcpy(val, *str, val_len);
+ val[val_len] = '\0';
+
+ *str += val_len;
+
+ return val_len;
+}
+
+int
+spdk_nvme_transport_id_parse(struct spdk_nvme_transport_id *trid, const char *str)
+{
+ size_t val_len;
+ char key[32];
+ char val[1024];
+
+ if (trid == NULL || str == NULL) {
+ return -EINVAL;
+ }
+
+ while (*str != '\0') {
+
+ val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
+
+ if (val_len == 0) {
+ SPDK_ERRLOG("Failed to parse transport ID\n");
+ return -EINVAL;
+ }
+
+ if (strcasecmp(key, "trtype") == 0) {
+ if (spdk_nvme_transport_id_populate_trstring(trid, val) != 0) {
+ SPDK_ERRLOG("invalid transport '%s'\n", val);
+ return -EINVAL;
+ }
+ if (spdk_nvme_transport_id_parse_trtype(&trid->trtype, val) != 0) {
+ SPDK_ERRLOG("Unknown trtype '%s'\n", val);
+ return -EINVAL;
+ }
+ } else if (strcasecmp(key, "adrfam") == 0) {
+ if (spdk_nvme_transport_id_parse_adrfam(&trid->adrfam, val) != 0) {
+ SPDK_ERRLOG("Unknown adrfam '%s'\n", val);
+ return -EINVAL;
+ }
+ } else if (strcasecmp(key, "traddr") == 0) {
+ if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
+ SPDK_ERRLOG("traddr length %zu greater than maximum allowed %u\n",
+ val_len, SPDK_NVMF_TRADDR_MAX_LEN);
+ return -EINVAL;
+ }
+ memcpy(trid->traddr, val, val_len + 1);
+ } else if (strcasecmp(key, "trsvcid") == 0) {
+ if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
+ SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
+ val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
+ return -EINVAL;
+ }
+ memcpy(trid->trsvcid, val, val_len + 1);
+ } else if (strcasecmp(key, "priority") == 0) {
+ if (val_len > SPDK_NVMF_PRIORITY_MAX_LEN) {
+ SPDK_ERRLOG("priority length %zu greater than maximum allowed %u\n",
+ val_len, SPDK_NVMF_PRIORITY_MAX_LEN);
+ return -EINVAL;
+ }
+ trid->priority = spdk_strtol(val, 10);
+ } else if (strcasecmp(key, "subnqn") == 0) {
+ if (val_len > SPDK_NVMF_NQN_MAX_LEN) {
+ SPDK_ERRLOG("subnqn length %zu greater than maximum allowed %u\n",
+ val_len, SPDK_NVMF_NQN_MAX_LEN);
+ return -EINVAL;
+ }
+ memcpy(trid->subnqn, val, val_len + 1);
+ } else if (strcasecmp(key, "hostaddr") == 0) {
+ continue;
+ } else if (strcasecmp(key, "hostsvcid") == 0) {
+ continue;
+ } else if (strcasecmp(key, "ns") == 0) {
+ /*
+ * Special case. The namespace id parameter may
+ * optionally be passed in the transport id string
+ * for an SPDK application (e.g. nvme/perf)
+ * and additionally parsed therein to limit
+ * targeting a specific namespace. For this
+ * scenario, just silently ignore this key
+ * rather than letting it default to logging
+ * it as an invalid key.
+ */
+ continue;
+ } else if (strcasecmp(key, "alt_traddr") == 0) {
+ /*
+ * Used by applications for enabling transport ID failover.
+ * Please see the case above for more information on custom parameters.
+ */
+ continue;
+ } else {
+ SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
+ }
+ }
+
+ return 0;
+}
+
+int
+spdk_nvme_host_id_parse(struct spdk_nvme_host_id *hostid, const char *str)
+{
+
+ size_t key_size = 32;
+ size_t val_size = 1024;
+ size_t val_len;
+ char key[key_size];
+ char val[val_size];
+
+ if (hostid == NULL || str == NULL) {
+ return -EINVAL;
+ }
+
+ while (*str != '\0') {
+
+ val_len = parse_next_key(&str, key, val, key_size, val_size);
+
+ if (val_len == 0) {
+ SPDK_ERRLOG("Failed to parse host ID\n");
+ return val_len;
+ }
+
+ /* Ignore the rest of the options from the transport ID. */
+ if (strcasecmp(key, "trtype") == 0) {
+ continue;
+ } else if (strcasecmp(key, "adrfam") == 0) {
+ continue;
+ } else if (strcasecmp(key, "traddr") == 0) {
+ continue;
+ } else if (strcasecmp(key, "trsvcid") == 0) {
+ continue;
+ } else if (strcasecmp(key, "subnqn") == 0) {
+ continue;
+ } else if (strcasecmp(key, "priority") == 0) {
+ continue;
+ } else if (strcasecmp(key, "ns") == 0) {
+ continue;
+ } else if (strcasecmp(key, "hostaddr") == 0) {
+ if (val_len > SPDK_NVMF_TRADDR_MAX_LEN) {
+ SPDK_ERRLOG("hostaddr length %zu greater than maximum allowed %u\n",
+ val_len, SPDK_NVMF_TRADDR_MAX_LEN);
+ return -EINVAL;
+ }
+ memcpy(hostid->hostaddr, val, val_len + 1);
+
+ } else if (strcasecmp(key, "hostsvcid") == 0) {
+ if (val_len > SPDK_NVMF_TRSVCID_MAX_LEN) {
+ SPDK_ERRLOG("trsvcid length %zu greater than maximum allowed %u\n",
+ val_len, SPDK_NVMF_TRSVCID_MAX_LEN);
+ return -EINVAL;
+ }
+ memcpy(hostid->hostsvcid, val, val_len + 1);
+ } else {
+ SPDK_ERRLOG("Unknown transport ID key '%s'\n", key);
+ }
+ }
+
+ return 0;
+}
+
+static int
+cmp_int(int a, int b)
+{
+ return a - b;
+}
+
+int
+spdk_nvme_transport_id_compare(const struct spdk_nvme_transport_id *trid1,
+ const struct spdk_nvme_transport_id *trid2)
+{
+ int cmp;
+
+ if (trid1->trtype == SPDK_NVME_TRANSPORT_CUSTOM) {
+ cmp = strcasecmp(trid1->trstring, trid2->trstring);
+ } else {
+ cmp = cmp_int(trid1->trtype, trid2->trtype);
+ }
+
+ if (cmp) {
+ return cmp;
+ }
+
+ if (trid1->trtype == SPDK_NVME_TRANSPORT_PCIE) {
+ struct spdk_pci_addr pci_addr1 = {};
+ struct spdk_pci_addr pci_addr2 = {};
+
+ /* Normalize PCI addresses before comparing */
+ if (spdk_pci_addr_parse(&pci_addr1, trid1->traddr) < 0 ||
+ spdk_pci_addr_parse(&pci_addr2, trid2->traddr) < 0) {
+ return -1;
+ }
+
+ /* PCIe transport ID only uses trtype and traddr */
+ return spdk_pci_addr_compare(&pci_addr1, &pci_addr2);
+ }
+
+ cmp = strcasecmp(trid1->traddr, trid2->traddr);
+ if (cmp) {
+ return cmp;
+ }
+
+ cmp = cmp_int(trid1->adrfam, trid2->adrfam);
+ if (cmp) {
+ return cmp;
+ }
+
+ cmp = strcasecmp(trid1->trsvcid, trid2->trsvcid);
+ if (cmp) {
+ return cmp;
+ }
+
+ cmp = strcmp(trid1->subnqn, trid2->subnqn);
+ if (cmp) {
+ return cmp;
+ }
+
+ return 0;
+}
+
+int
+spdk_nvme_prchk_flags_parse(uint32_t *prchk_flags, const char *str)
+{
+ size_t val_len;
+ char key[32];
+ char val[1024];
+
+ if (prchk_flags == NULL || str == NULL) {
+ return -EINVAL;
+ }
+
+ while (*str != '\0') {
+ val_len = parse_next_key(&str, key, val, sizeof(key), sizeof(val));
+
+ if (val_len == 0) {
+ SPDK_ERRLOG("Failed to parse prchk\n");
+ return -EINVAL;
+ }
+
+ if (strcasecmp(key, "prchk") == 0) {
+ if (strcasestr(val, "reftag") != NULL) {
+ *prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_REFTAG;
+ }
+ if (strcasestr(val, "guard") != NULL) {
+ *prchk_flags |= SPDK_NVME_IO_FLAGS_PRCHK_GUARD;
+ }
+ } else {
+ SPDK_ERRLOG("Unknown key '%s'\n", key);
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+const char *
+spdk_nvme_prchk_flags_str(uint32_t prchk_flags)
+{
+ if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_REFTAG) {
+ if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
+ return "prchk:reftag|guard";
+ } else {
+ return "prchk:reftag";
+ }
+ } else {
+ if (prchk_flags & SPDK_NVME_IO_FLAGS_PRCHK_GUARD) {
+ return "prchk:guard";
+ } else {
+ return NULL;
+ }
+ }
+}
+
+struct spdk_nvme_probe_ctx *
+spdk_nvme_probe_async(const struct spdk_nvme_transport_id *trid,
+ void *cb_ctx,
+ spdk_nvme_probe_cb probe_cb,
+ spdk_nvme_attach_cb attach_cb,
+ spdk_nvme_remove_cb remove_cb)
+{
+ int rc;
+ struct spdk_nvme_probe_ctx *probe_ctx;
+
+ rc = nvme_driver_init();
+ if (rc != 0) {
+ return NULL;
+ }
+
+ probe_ctx = calloc(1, sizeof(*probe_ctx));
+ if (!probe_ctx) {
+ return NULL;
+ }
+
+ nvme_probe_ctx_init(probe_ctx, trid, cb_ctx, probe_cb, attach_cb, remove_cb);
+ rc = nvme_probe_internal(probe_ctx, false);
+ if (rc != 0) {
+ free(probe_ctx);
+ return NULL;
+ }
+
+ return probe_ctx;
+}
+
+int
+spdk_nvme_probe_poll_async(struct spdk_nvme_probe_ctx *probe_ctx)
+{
+ int rc = 0;
+ struct spdk_nvme_ctrlr *ctrlr, *ctrlr_tmp;
+
+ if (!spdk_process_is_primary() && probe_ctx->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) {
+ free(probe_ctx);
+ return 0;
+ }
+
+ TAILQ_FOREACH_SAFE(ctrlr, &probe_ctx->init_ctrlrs, tailq, ctrlr_tmp) {
+ rc = nvme_ctrlr_poll_internal(ctrlr, probe_ctx);
+ if (rc != 0) {
+ rc = -EIO;
+ break;
+ }
+ }
+
+ if (rc != 0 || TAILQ_EMPTY(&probe_ctx->init_ctrlrs)) {
+ nvme_robust_mutex_lock(&g_spdk_nvme_driver->lock);
+ g_spdk_nvme_driver->initialized = true;
+ nvme_robust_mutex_unlock(&g_spdk_nvme_driver->lock);
+ free(probe_ctx);
+ return rc;
+ }
+
+ return -EAGAIN;
+}
+
+struct spdk_nvme_probe_ctx *
+spdk_nvme_connect_async(const struct spdk_nvme_transport_id *trid,
+ const struct spdk_nvme_ctrlr_opts *opts,
+ spdk_nvme_attach_cb attach_cb)
+{
+ int rc;
+ spdk_nvme_probe_cb probe_cb = NULL;
+ struct spdk_nvme_probe_ctx *probe_ctx;
+
+ rc = nvme_driver_init();
+ if (rc != 0) {
+ return NULL;
+ }
+
+ probe_ctx = calloc(1, sizeof(*probe_ctx));
+ if (!probe_ctx) {
+ return NULL;
+ }
+
+ if (opts) {
+ probe_cb = nvme_connect_probe_cb;
+ }
+
+ nvme_probe_ctx_init(probe_ctx, trid, (void *)opts, probe_cb, attach_cb, NULL);
+ rc = nvme_probe_internal(probe_ctx, true);
+ if (rc != 0) {
+ free(probe_ctx);
+ return NULL;
+ }
+
+ return probe_ctx;
+}
+
+SPDK_LOG_REGISTER_COMPONENT("nvme", SPDK_LOG_NVME)