diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:45:59 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-07 18:45:59 +0000 |
commit | 19fcec84d8d7d21e796c7624e521b60d28ee21ed (patch) | |
tree | 42d26aa27d1e3f7c0b8bd3fd14e7d7082f5008dc /src/spdk/lib/nvme/nvme_rdma.c | |
parent | Initial commit. (diff) | |
download | ceph-19fcec84d8d7d21e796c7624e521b60d28ee21ed.tar.xz ceph-19fcec84d8d7d21e796c7624e521b60d28ee21ed.zip |
Adding upstream version 16.2.11+ds.upstream/16.2.11+dsupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/spdk/lib/nvme/nvme_rdma.c')
-rw-r--r-- | src/spdk/lib/nvme/nvme_rdma.c | 2852 |
1 files changed, 2852 insertions, 0 deletions
diff --git a/src/spdk/lib/nvme/nvme_rdma.c b/src/spdk/lib/nvme/nvme_rdma.c new file mode 100644 index 000000000..84537c4a1 --- /dev/null +++ b/src/spdk/lib/nvme/nvme_rdma.c @@ -0,0 +1,2852 @@ +/*- + * BSD LICENSE + * + * Copyright (c) Intel Corporation. All rights reserved. + * Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +/* + * NVMe over RDMA transport + */ + +#include "spdk/stdinc.h" + +#include "spdk/assert.h" +#include "spdk/log.h" +#include "spdk/trace.h" +#include "spdk/queue.h" +#include "spdk/nvme.h" +#include "spdk/nvmf_spec.h" +#include "spdk/string.h" +#include "spdk/endian.h" +#include "spdk/likely.h" +#include "spdk/config.h" + +#include "nvme_internal.h" +#include "spdk_internal/rdma.h" + +#define NVME_RDMA_TIME_OUT_IN_MS 2000 +#define NVME_RDMA_RW_BUFFER_SIZE 131072 + +/* + * NVME RDMA qpair Resource Defaults + */ +#define NVME_RDMA_DEFAULT_TX_SGE 2 +#define NVME_RDMA_DEFAULT_RX_SGE 1 + +/* Max number of NVMe-oF SGL descriptors supported by the host */ +#define NVME_RDMA_MAX_SGL_DESCRIPTORS 16 + +/* number of STAILQ entries for holding pending RDMA CM events. */ +#define NVME_RDMA_NUM_CM_EVENTS 256 + +/* CM event processing timeout */ +#define NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US 1000000 + +/* The default size for a shared rdma completion queue. */ +#define DEFAULT_NVME_RDMA_CQ_SIZE 4096 + +/* + * In the special case of a stale connection we don't expose a mechanism + * for the user to retry the connection so we need to handle it internally. + */ +#define NVME_RDMA_STALE_CONN_RETRY_MAX 5 +#define NVME_RDMA_STALE_CONN_RETRY_DELAY_US 10000 + +/* + * Maximum value of transport_retry_count used by RDMA controller + */ +#define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT 7 + +/* + * Maximum value of transport_ack_timeout used by RDMA controller + */ +#define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT 31 + +/* + * Number of poller cycles to keep a pointer to destroyed qpairs + * in the poll group. + */ +#define NVME_RDMA_DESTROYED_QPAIR_EXPIRATION_CYCLES 50 + +/* + * The max length of keyed SGL data block (3 bytes) + */ +#define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1) + +#define WC_PER_QPAIR(queue_depth) (queue_depth * 2) + +enum nvme_rdma_wr_type { + RDMA_WR_TYPE_RECV, + RDMA_WR_TYPE_SEND, +}; + +struct nvme_rdma_wr { + /* Using this instead of the enum allows this struct to only occupy one byte. */ + uint8_t type; +}; + +struct spdk_nvmf_cmd { + struct spdk_nvme_cmd cmd; + struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS]; +}; + +struct spdk_nvme_rdma_hooks g_nvme_hooks = {}; + +/* Mapping from virtual address to ibv_mr pointer for a protection domain */ +struct spdk_nvme_rdma_mr_map { + struct ibv_pd *pd; + struct spdk_mem_map *map; + uint64_t ref; + LIST_ENTRY(spdk_nvme_rdma_mr_map) link; +}; + +/* STAILQ wrapper for cm events. */ +struct nvme_rdma_cm_event_entry { + struct rdma_cm_event *evt; + STAILQ_ENTRY(nvme_rdma_cm_event_entry) link; +}; + +/* NVMe RDMA transport extensions for spdk_nvme_ctrlr */ +struct nvme_rdma_ctrlr { + struct spdk_nvme_ctrlr ctrlr; + + struct ibv_pd *pd; + + uint16_t max_sge; + + struct rdma_event_channel *cm_channel; + + STAILQ_HEAD(, nvme_rdma_cm_event_entry) pending_cm_events; + + STAILQ_HEAD(, nvme_rdma_cm_event_entry) free_cm_events; + + struct nvme_rdma_cm_event_entry *cm_events; +}; + +struct nvme_rdma_destroyed_qpair { + struct nvme_rdma_qpair *destroyed_qpair_tracker; + uint32_t completed_cycles; + STAILQ_ENTRY(nvme_rdma_destroyed_qpair) link; +}; + +struct nvme_rdma_poller { + struct ibv_context *device; + struct ibv_cq *cq; + int required_num_wc; + int current_num_wc; + STAILQ_ENTRY(nvme_rdma_poller) link; +}; + +struct nvme_rdma_poll_group { + struct spdk_nvme_transport_poll_group group; + STAILQ_HEAD(, nvme_rdma_poller) pollers; + int num_pollers; + STAILQ_HEAD(, nvme_rdma_destroyed_qpair) destroyed_qpairs; +}; + +struct spdk_nvme_send_wr_list { + struct ibv_send_wr *first; + struct ibv_send_wr *last; +}; + +struct spdk_nvme_recv_wr_list { + struct ibv_recv_wr *first; + struct ibv_recv_wr *last; +}; + +/* Memory regions */ +union nvme_rdma_mr { + struct ibv_mr *mr; + uint64_t key; +}; + +/* NVMe RDMA qpair extensions for spdk_nvme_qpair */ +struct nvme_rdma_qpair { + struct spdk_nvme_qpair qpair; + + struct spdk_rdma_qp *rdma_qp; + struct rdma_cm_id *cm_id; + struct ibv_cq *cq; + + struct spdk_nvme_rdma_req *rdma_reqs; + + uint32_t max_send_sge; + + uint32_t max_recv_sge; + + uint16_t num_entries; + + bool delay_cmd_submit; + + bool poll_group_disconnect_in_progress; + + uint32_t num_completions; + + /* Parallel arrays of response buffers + response SGLs of size num_entries */ + struct ibv_sge *rsp_sgls; + struct spdk_nvme_rdma_rsp *rsps; + + struct ibv_recv_wr *rsp_recv_wrs; + + struct spdk_nvme_send_wr_list sends_to_post; + struct spdk_nvme_recv_wr_list recvs_to_post; + + /* Memory region describing all rsps for this qpair */ + union nvme_rdma_mr rsp_mr; + + /* + * Array of num_entries NVMe commands registered as RDMA message buffers. + * Indexed by rdma_req->id. + */ + struct spdk_nvmf_cmd *cmds; + + /* Memory region describing all cmds for this qpair */ + union nvme_rdma_mr cmd_mr; + + struct spdk_nvme_rdma_mr_map *mr_map; + + TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs; + TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs; + + /* Counts of outstanding send and recv objects */ + uint16_t current_num_recvs; + uint16_t current_num_sends; + + /* Placed at the end of the struct since it is not used frequently */ + struct rdma_cm_event *evt; + + /* Used by poll group to keep the qpair around until it is ready to remove it. */ + bool defer_deletion_to_pg; +}; + +enum NVME_RDMA_COMPLETION_FLAGS { + NVME_RDMA_SEND_COMPLETED = 1u << 0, + NVME_RDMA_RECV_COMPLETED = 1u << 1, +}; + +struct spdk_nvme_rdma_req { + uint16_t id; + uint16_t completion_flags: 2; + uint16_t reserved: 14; + /* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request + * during processing of RDMA_SEND. To complete the request we must know the index + * of nvme_cpl received in RDMA_RECV, so store it in this field */ + uint16_t rsp_idx; + + struct nvme_rdma_wr rdma_wr; + + struct ibv_send_wr send_wr; + + struct nvme_request *req; + + struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE]; + + TAILQ_ENTRY(spdk_nvme_rdma_req) link; +}; + +enum nvme_rdma_key_type { + NVME_RDMA_MR_RKEY, + NVME_RDMA_MR_LKEY +}; + +struct spdk_nvme_rdma_rsp { + struct spdk_nvme_cpl cpl; + struct nvme_rdma_qpair *rqpair; + uint16_t idx; + struct nvme_rdma_wr rdma_wr; +}; + +static const char *rdma_cm_event_str[] = { + "RDMA_CM_EVENT_ADDR_RESOLVED", + "RDMA_CM_EVENT_ADDR_ERROR", + "RDMA_CM_EVENT_ROUTE_RESOLVED", + "RDMA_CM_EVENT_ROUTE_ERROR", + "RDMA_CM_EVENT_CONNECT_REQUEST", + "RDMA_CM_EVENT_CONNECT_RESPONSE", + "RDMA_CM_EVENT_CONNECT_ERROR", + "RDMA_CM_EVENT_UNREACHABLE", + "RDMA_CM_EVENT_REJECTED", + "RDMA_CM_EVENT_ESTABLISHED", + "RDMA_CM_EVENT_DISCONNECTED", + "RDMA_CM_EVENT_DEVICE_REMOVAL", + "RDMA_CM_EVENT_MULTICAST_JOIN", + "RDMA_CM_EVENT_MULTICAST_ERROR", + "RDMA_CM_EVENT_ADDR_CHANGE", + "RDMA_CM_EVENT_TIMEWAIT_EXIT" +}; + +static LIST_HEAD(, spdk_nvme_rdma_mr_map) g_rdma_mr_maps = LIST_HEAD_INITIALIZER(&g_rdma_mr_maps); +static pthread_mutex_t g_rdma_mr_maps_mutex = PTHREAD_MUTEX_INITIALIZER; +struct nvme_rdma_qpair *nvme_rdma_poll_group_get_qpair_by_id(struct nvme_rdma_poll_group *group, + uint32_t qp_num); + +static inline void * +nvme_rdma_calloc(size_t nmemb, size_t size) +{ + if (!g_nvme_hooks.get_rkey) { + return calloc(nmemb, size); + } else { + return spdk_zmalloc(nmemb * size, 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); + } +} + +static inline void +nvme_rdma_free(void *buf) +{ + if (!g_nvme_hooks.get_rkey) { + free(buf); + } else { + spdk_free(buf); + } +} + +static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, + struct spdk_nvme_qpair *qpair); + +static inline struct nvme_rdma_qpair * +nvme_rdma_qpair(struct spdk_nvme_qpair *qpair) +{ + assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA); + return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair); +} + +static inline struct nvme_rdma_poll_group * +nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group) +{ + return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group)); +} + +static inline struct nvme_rdma_ctrlr * +nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr) +{ + assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA); + return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr); +} + +static struct spdk_nvme_rdma_req * +nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair) +{ + struct spdk_nvme_rdma_req *rdma_req; + + rdma_req = TAILQ_FIRST(&rqpair->free_reqs); + if (rdma_req) { + TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link); + TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link); + } + + return rdma_req; +} + +static void +nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) +{ + rdma_req->completion_flags = 0; + rdma_req->req = NULL; + TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link); +} + +static void +nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req, + struct spdk_nvme_cpl *rsp) +{ + struct nvme_request *req = rdma_req->req; + struct nvme_rdma_qpair *rqpair; + + assert(req != NULL); + + rqpair = nvme_rdma_qpair(req->qpair); + TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link); + + nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, rsp); + nvme_free_request(req); +} + +static const char * +nvme_rdma_cm_event_str_get(uint32_t event) +{ + if (event < SPDK_COUNTOF(rdma_cm_event_str)) { + return rdma_cm_event_str[event]; + } else { + return "Undefined"; + } +} + + +static int +nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair) +{ + struct rdma_cm_event *event = rqpair->evt; + struct spdk_nvmf_rdma_accept_private_data *accept_data; + int rc = 0; + + if (event) { + switch (event->event) { + case RDMA_CM_EVENT_ADDR_RESOLVED: + case RDMA_CM_EVENT_ADDR_ERROR: + case RDMA_CM_EVENT_ROUTE_RESOLVED: + case RDMA_CM_EVENT_ROUTE_ERROR: + break; + case RDMA_CM_EVENT_CONNECT_REQUEST: + break; + case RDMA_CM_EVENT_CONNECT_ERROR: + break; + case RDMA_CM_EVENT_UNREACHABLE: + case RDMA_CM_EVENT_REJECTED: + break; + case RDMA_CM_EVENT_CONNECT_RESPONSE: + rc = spdk_rdma_qp_complete_connect(rqpair->rdma_qp); + /* fall through */ + case RDMA_CM_EVENT_ESTABLISHED: + accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data; + if (accept_data == NULL) { + rc = -1; + } else { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Requested queue depth %d. Actually got queue depth %d.\n", + rqpair->num_entries, accept_data->crqsize); + rqpair->num_entries = spdk_min(rqpair->num_entries, accept_data->crqsize); + } + break; + case RDMA_CM_EVENT_DISCONNECTED: + rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE; + break; + case RDMA_CM_EVENT_DEVICE_REMOVAL: + rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; + break; + case RDMA_CM_EVENT_MULTICAST_JOIN: + case RDMA_CM_EVENT_MULTICAST_ERROR: + break; + case RDMA_CM_EVENT_ADDR_CHANGE: + rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; + break; + case RDMA_CM_EVENT_TIMEWAIT_EXIT: + break; + default: + SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event); + break; + } + rqpair->evt = NULL; + rdma_ack_cm_event(event); + } + + return rc; +} + +/* + * This function must be called under the nvme controller's lock + * because it touches global controller variables. The lock is taken + * by the generic transport code before invoking a few of the functions + * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair, + * and conditionally nvme_rdma_qpair_process_completions when it is calling + * completions on the admin qpair. When adding a new call to this function, please + * verify that it is in a situation where it falls under the lock. + */ +static int +nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr) +{ + struct nvme_rdma_cm_event_entry *entry, *tmp; + struct nvme_rdma_qpair *event_qpair; + struct rdma_cm_event *event; + struct rdma_event_channel *channel = rctrlr->cm_channel; + + STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { + event_qpair = nvme_rdma_qpair(entry->evt->id->context); + if (event_qpair->evt == NULL) { + event_qpair->evt = entry->evt; + STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); + STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); + } + } + + while (rdma_get_cm_event(channel, &event) == 0) { + event_qpair = nvme_rdma_qpair(event->id->context); + if (event_qpair->evt == NULL) { + event_qpair->evt = event; + } else { + assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr)); + entry = STAILQ_FIRST(&rctrlr->free_cm_events); + if (entry == NULL) { + rdma_ack_cm_event(event); + return -ENOMEM; + } + STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link); + entry->evt = event; + STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link); + } + } + + if (errno == EAGAIN || errno == EWOULDBLOCK) { + return 0; + } else { + return errno; + } +} + +static int +nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type, + struct rdma_cm_event *reaped_evt) +{ + int rc = -EBADMSG; + + if (expected_evt_type == reaped_evt->event) { + return 0; + } + + switch (expected_evt_type) { + case RDMA_CM_EVENT_ESTABLISHED: + /* + * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as + * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get + * the same values here. + */ + if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) { + rc = -ESTALE; + } else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) { + /* + * If we are using a qpair which is not created using rdma cm API + * then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of + * RDMA_CM_EVENT_ESTABLISHED. + */ + return 0; + } + break; + default: + break; + } + + SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n", + nvme_rdma_cm_event_str_get(expected_evt_type), + nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event, + reaped_evt->status); + return rc; +} + +static int +nvme_rdma_process_event(struct nvme_rdma_qpair *rqpair, + struct rdma_event_channel *channel, + enum rdma_cm_event_type evt) +{ + struct nvme_rdma_ctrlr *rctrlr; + uint64_t timeout_ticks; + int rc = 0, rc2; + + if (rqpair->evt != NULL) { + rc = nvme_rdma_qpair_process_cm_event(rqpair); + if (rc) { + return rc; + } + } + + timeout_ticks = (NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US * spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC + + spdk_get_ticks(); + rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); + assert(rctrlr != NULL); + + while (!rqpair->evt && spdk_get_ticks() < timeout_ticks && rc == 0) { + rc = nvme_rdma_poll_events(rctrlr); + } + + if (rc) { + return rc; + } + + if (rqpair->evt == NULL) { + return -EADDRNOTAVAIL; + } + + rc = nvme_rdma_validate_cm_event(evt, rqpair->evt); + + rc2 = nvme_rdma_qpair_process_cm_event(rqpair); + /* bad message takes precedence over the other error codes from processing the event. */ + return rc == 0 ? rc2 : rc; +} + +static int +nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair) +{ + int rc; + struct spdk_rdma_qp_init_attr attr = {}; + struct ibv_device_attr dev_attr; + struct nvme_rdma_ctrlr *rctrlr; + + rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr); + if (rc != 0) { + SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); + return -1; + } + + if (rqpair->qpair.poll_group) { + assert(!rqpair->cq); + rc = nvme_poll_group_connect_qpair(&rqpair->qpair); + if (rc) { + SPDK_ERRLOG("Unable to activate the rdmaqpair.\n"); + return -1; + } + assert(rqpair->cq); + } else { + rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0); + if (!rqpair->cq) { + SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno)); + return -1; + } + } + + rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); + if (g_nvme_hooks.get_ibv_pd) { + rctrlr->pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs); + } else { + rctrlr->pd = NULL; + } + + attr.pd = rctrlr->pd; + attr.send_cq = rqpair->cq; + attr.recv_cq = rqpair->cq; + attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */ + attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */ + attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge); + attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge); + + rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &attr); + + if (!rqpair->rdma_qp) { + return -1; + } + + /* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */ + rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge); + rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge); + rqpair->current_num_recvs = 0; + rqpair->current_num_sends = 0; + + rctrlr->pd = rqpair->rdma_qp->qp->pd; + + rqpair->cm_id->context = &rqpair->qpair; + + return 0; +} + +static inline int +nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair) +{ + struct ibv_send_wr *bad_send_wr; + int rc; + + rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr); + + if (spdk_unlikely(rc)) { + SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n", + rc, spdk_strerror(rc), bad_send_wr); + while (bad_send_wr != NULL) { + assert(rqpair->current_num_sends > 0); + rqpair->current_num_sends--; + bad_send_wr = bad_send_wr->next; + } + return rc; + } + + return 0; +} + +static inline int +nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair) +{ + struct ibv_recv_wr *bad_recv_wr; + int rc = 0; + + if (rqpair->recvs_to_post.first) { + rc = ibv_post_recv(rqpair->rdma_qp->qp, rqpair->recvs_to_post.first, &bad_recv_wr); + if (spdk_unlikely(rc)) { + SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n", + rc, spdk_strerror(rc), bad_recv_wr); + while (bad_recv_wr != NULL) { + assert(rqpair->current_num_sends > 0); + rqpair->current_num_recvs--; + bad_recv_wr = bad_recv_wr->next; + } + } + + rqpair->recvs_to_post.first = NULL; + } + return rc; +} + +/* Append the given send wr structure to the qpair's outstanding sends list. */ +/* This function accepts only a single wr. */ +static inline int +nvme_rdma_qpair_queue_send_wr(struct nvme_rdma_qpair *rqpair, struct ibv_send_wr *wr) +{ + assert(wr->next == NULL); + + assert(rqpair->current_num_sends < rqpair->num_entries); + + rqpair->current_num_sends++; + spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, wr); + + if (!rqpair->delay_cmd_submit) { + return nvme_rdma_qpair_submit_sends(rqpair); + } + + return 0; +} + +/* Append the given recv wr structure to the qpair's outstanding recvs list. */ +/* This function accepts only a single wr. */ +static inline int +nvme_rdma_qpair_queue_recv_wr(struct nvme_rdma_qpair *rqpair, struct ibv_recv_wr *wr) +{ + + assert(wr->next == NULL); + assert(rqpair->current_num_recvs < rqpair->num_entries); + + rqpair->current_num_recvs++; + if (rqpair->recvs_to_post.first == NULL) { + rqpair->recvs_to_post.first = wr; + } else { + rqpair->recvs_to_post.last->next = wr; + } + + rqpair->recvs_to_post.last = wr; + + if (!rqpair->delay_cmd_submit) { + return nvme_rdma_qpair_submit_recvs(rqpair); + } + + return 0; +} + +#define nvme_rdma_trace_ibv_sge(sg_list) \ + if (sg_list) { \ + SPDK_DEBUGLOG(SPDK_LOG_NVME, "local addr %p length 0x%x lkey 0x%x\n", \ + (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \ + } + +static int +nvme_rdma_post_recv(struct nvme_rdma_qpair *rqpair, uint16_t rsp_idx) +{ + struct ibv_recv_wr *wr; + + wr = &rqpair->rsp_recv_wrs[rsp_idx]; + wr->next = NULL; + nvme_rdma_trace_ibv_sge(wr->sg_list); + return nvme_rdma_qpair_queue_recv_wr(rqpair, wr); +} + +static int +nvme_rdma_reg_mr(struct rdma_cm_id *cm_id, union nvme_rdma_mr *mr, void *mem, size_t length) +{ + if (!g_nvme_hooks.get_rkey) { + mr->mr = rdma_reg_msgs(cm_id, mem, length); + if (mr->mr == NULL) { + SPDK_ERRLOG("Unable to register mr: %s (%d)\n", + spdk_strerror(errno), errno); + return -1; + } + } else { + mr->key = g_nvme_hooks.get_rkey(cm_id->pd, mem, length); + } + + return 0; +} + +static void +nvme_rdma_dereg_mr(union nvme_rdma_mr *mr) +{ + if (!g_nvme_hooks.get_rkey) { + if (mr->mr && rdma_dereg_mr(mr->mr)) { + SPDK_ERRLOG("Unable to de-register mr\n"); + } + } else { + if (mr->key) { + g_nvme_hooks.put_rkey(mr->key); + } + } + memset(mr, 0, sizeof(*mr)); +} + +static uint32_t +nvme_rdma_mr_get_lkey(union nvme_rdma_mr *mr) +{ + uint32_t lkey; + + if (!g_nvme_hooks.get_rkey) { + lkey = mr->mr->lkey; + } else { + lkey = *((uint64_t *) mr->key); + } + + return lkey; +} + +static void +nvme_rdma_unregister_rsps(struct nvme_rdma_qpair *rqpair) +{ + nvme_rdma_dereg_mr(&rqpair->rsp_mr); +} + +static void +nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair) +{ + nvme_rdma_free(rqpair->rsps); + rqpair->rsps = NULL; + nvme_rdma_free(rqpair->rsp_sgls); + rqpair->rsp_sgls = NULL; + nvme_rdma_free(rqpair->rsp_recv_wrs); + rqpair->rsp_recv_wrs = NULL; +} + +static int +nvme_rdma_alloc_rsps(struct nvme_rdma_qpair *rqpair) +{ + rqpair->rsps = NULL; + rqpair->rsp_recv_wrs = NULL; + + rqpair->rsp_sgls = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsp_sgls)); + if (!rqpair->rsp_sgls) { + SPDK_ERRLOG("Failed to allocate rsp_sgls\n"); + goto fail; + } + + rqpair->rsp_recv_wrs = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsp_recv_wrs)); + if (!rqpair->rsp_recv_wrs) { + SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n"); + goto fail; + } + + rqpair->rsps = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsps)); + if (!rqpair->rsps) { + SPDK_ERRLOG("can not allocate rdma rsps\n"); + goto fail; + } + + return 0; +fail: + nvme_rdma_free_rsps(rqpair); + return -ENOMEM; +} + +static int +nvme_rdma_register_rsps(struct nvme_rdma_qpair *rqpair) +{ + uint16_t i; + int rc; + uint32_t lkey; + + rc = nvme_rdma_reg_mr(rqpair->cm_id, &rqpair->rsp_mr, + rqpair->rsps, rqpair->num_entries * sizeof(*rqpair->rsps)); + + if (rc < 0) { + goto fail; + } + + lkey = nvme_rdma_mr_get_lkey(&rqpair->rsp_mr); + + for (i = 0; i < rqpair->num_entries; i++) { + struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i]; + struct spdk_nvme_rdma_rsp *rsp = &rqpair->rsps[i]; + + rsp->rqpair = rqpair; + rsp->rdma_wr.type = RDMA_WR_TYPE_RECV; + rsp->idx = i; + rsp_sgl->addr = (uint64_t)&rqpair->rsps[i]; + rsp_sgl->length = sizeof(struct spdk_nvme_cpl); + rsp_sgl->lkey = lkey; + + rqpair->rsp_recv_wrs[i].wr_id = (uint64_t)&rsp->rdma_wr; + rqpair->rsp_recv_wrs[i].next = NULL; + rqpair->rsp_recv_wrs[i].sg_list = rsp_sgl; + rqpair->rsp_recv_wrs[i].num_sge = 1; + + rc = nvme_rdma_post_recv(rqpair, i); + if (rc) { + goto fail; + } + } + + rc = nvme_rdma_qpair_submit_recvs(rqpair); + if (rc) { + goto fail; + } + + return 0; + +fail: + nvme_rdma_unregister_rsps(rqpair); + return rc; +} + +static void +nvme_rdma_unregister_reqs(struct nvme_rdma_qpair *rqpair) +{ + nvme_rdma_dereg_mr(&rqpair->cmd_mr); +} + +static void +nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair) +{ + if (!rqpair->rdma_reqs) { + return; + } + + nvme_rdma_free(rqpair->cmds); + rqpair->cmds = NULL; + + nvme_rdma_free(rqpair->rdma_reqs); + rqpair->rdma_reqs = NULL; +} + +static int +nvme_rdma_alloc_reqs(struct nvme_rdma_qpair *rqpair) +{ + uint16_t i; + + rqpair->rdma_reqs = nvme_rdma_calloc(rqpair->num_entries, sizeof(struct spdk_nvme_rdma_req)); + if (rqpair->rdma_reqs == NULL) { + SPDK_ERRLOG("Failed to allocate rdma_reqs\n"); + goto fail; + } + + rqpair->cmds = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->cmds)); + if (!rqpair->cmds) { + SPDK_ERRLOG("Failed to allocate RDMA cmds\n"); + goto fail; + } + + + TAILQ_INIT(&rqpair->free_reqs); + TAILQ_INIT(&rqpair->outstanding_reqs); + for (i = 0; i < rqpair->num_entries; i++) { + struct spdk_nvme_rdma_req *rdma_req; + struct spdk_nvmf_cmd *cmd; + + rdma_req = &rqpair->rdma_reqs[i]; + rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND; + cmd = &rqpair->cmds[i]; + + rdma_req->id = i; + + /* The first RDMA sgl element will always point + * at this data structure. Depending on whether + * an NVMe-oF SGL is required, the length of + * this element may change. */ + rdma_req->send_sgl[0].addr = (uint64_t)cmd; + rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr; + rdma_req->send_wr.next = NULL; + rdma_req->send_wr.opcode = IBV_WR_SEND; + rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED; + rdma_req->send_wr.sg_list = rdma_req->send_sgl; + rdma_req->send_wr.imm_data = 0; + + TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link); + } + + return 0; +fail: + nvme_rdma_free_reqs(rqpair); + return -ENOMEM; +} + +static int +nvme_rdma_register_reqs(struct nvme_rdma_qpair *rqpair) +{ + int i; + int rc; + uint32_t lkey; + + rc = nvme_rdma_reg_mr(rqpair->cm_id, &rqpair->cmd_mr, + rqpair->cmds, rqpair->num_entries * sizeof(*rqpair->cmds)); + + if (rc < 0) { + goto fail; + } + + lkey = nvme_rdma_mr_get_lkey(&rqpair->cmd_mr); + + for (i = 0; i < rqpair->num_entries; i++) { + rqpair->rdma_reqs[i].send_sgl[0].lkey = lkey; + } + + return 0; + +fail: + nvme_rdma_unregister_reqs(rqpair); + return -ENOMEM; +} + +static int +nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair, + struct sockaddr *src_addr, + struct sockaddr *dst_addr, + struct rdma_event_channel *cm_channel) +{ + int ret; + + ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr, + NVME_RDMA_TIME_OUT_IN_MS); + if (ret) { + SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno); + return ret; + } + + ret = nvme_rdma_process_event(rqpair, cm_channel, RDMA_CM_EVENT_ADDR_RESOLVED); + if (ret) { + SPDK_ERRLOG("RDMA address resolution error\n"); + return -1; + } + + if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) { +#ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT + uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout; + ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID, + RDMA_OPTION_ID_ACK_TIMEOUT, + &timeout, sizeof(timeout)); + if (ret) { + SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret); + } +#else + SPDK_DEBUGLOG(SPDK_LOG_NVME, "transport_ack_timeout is not supported\n"); +#endif + } + + + ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS); + if (ret) { + SPDK_ERRLOG("rdma_resolve_route\n"); + return ret; + } + + ret = nvme_rdma_process_event(rqpair, cm_channel, RDMA_CM_EVENT_ROUTE_RESOLVED); + if (ret) { + SPDK_ERRLOG("RDMA route resolution error\n"); + return -1; + } + + return 0; +} + +static int +nvme_rdma_connect(struct nvme_rdma_qpair *rqpair) +{ + struct rdma_conn_param param = {}; + struct spdk_nvmf_rdma_request_private_data request_data = {}; + struct ibv_device_attr attr; + int ret; + struct spdk_nvme_ctrlr *ctrlr; + struct nvme_rdma_ctrlr *rctrlr; + + ret = ibv_query_device(rqpair->cm_id->verbs, &attr); + if (ret != 0) { + SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); + return ret; + } + + param.responder_resources = spdk_min(rqpair->num_entries, attr.max_qp_rd_atom); + + ctrlr = rqpair->qpair.ctrlr; + if (!ctrlr) { + return -1; + } + rctrlr = nvme_rdma_ctrlr(ctrlr); + assert(rctrlr != NULL); + + request_data.qid = rqpair->qpair.id; + request_data.hrqsize = rqpair->num_entries; + request_data.hsqsize = rqpair->num_entries - 1; + request_data.cntlid = ctrlr->cntlid; + + param.private_data = &request_data; + param.private_data_len = sizeof(request_data); + param.retry_count = ctrlr->opts.transport_retry_count; + param.rnr_retry_count = 7; + + /* Fields below are ignored by rdma cm if qpair has been + * created using rdma cm API. */ + param.srq = 0; + param.qp_num = rqpair->rdma_qp->qp->qp_num; + + ret = rdma_connect(rqpair->cm_id, ¶m); + if (ret) { + SPDK_ERRLOG("nvme rdma connect error\n"); + return ret; + } + + ret = nvme_rdma_process_event(rqpair, rctrlr->cm_channel, RDMA_CM_EVENT_ESTABLISHED); + if (ret == -ESTALE) { + SPDK_NOTICELOG("Received a stale connection notice during connection.\n"); + return -EAGAIN; + } else if (ret) { + SPDK_ERRLOG("RDMA connect error %d\n", ret); + return ret; + } else { + return 0; + } +} + +static int +nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service) +{ + struct addrinfo *res; + struct addrinfo hints; + int ret; + + memset(&hints, 0, sizeof(hints)); + hints.ai_family = family; + hints.ai_socktype = SOCK_STREAM; + hints.ai_protocol = 0; + + ret = getaddrinfo(addr, service, &hints, &res); + if (ret) { + SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret); + return ret; + } + + if (res->ai_addrlen > sizeof(*sa)) { + SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen); + ret = EINVAL; + } else { + memcpy(sa, res->ai_addr, res->ai_addrlen); + } + + freeaddrinfo(res); + return ret; +} + +static int +nvme_rdma_mr_map_notify(void *cb_ctx, struct spdk_mem_map *map, + enum spdk_mem_map_notify_action action, + void *vaddr, size_t size) +{ + struct ibv_pd *pd = cb_ctx; + struct ibv_mr *mr; + int rc; + + switch (action) { + case SPDK_MEM_MAP_NOTIFY_REGISTER: + if (!g_nvme_hooks.get_rkey) { + mr = ibv_reg_mr(pd, vaddr, size, + IBV_ACCESS_LOCAL_WRITE | + IBV_ACCESS_REMOTE_READ | + IBV_ACCESS_REMOTE_WRITE); + if (mr == NULL) { + SPDK_ERRLOG("ibv_reg_mr() failed\n"); + return -EFAULT; + } else { + rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr); + } + } else { + rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, + g_nvme_hooks.get_rkey(pd, vaddr, size)); + } + break; + case SPDK_MEM_MAP_NOTIFY_UNREGISTER: + if (!g_nvme_hooks.get_rkey) { + mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL); + if (mr) { + ibv_dereg_mr(mr); + } + } + rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size); + break; + default: + SPDK_UNREACHABLE(); + } + + return rc; +} + +static int +nvme_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2) +{ + /* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */ + return addr_1 == addr_2; +} + +static int +nvme_rdma_register_mem(struct nvme_rdma_qpair *rqpair) +{ + struct ibv_pd *pd = rqpair->rdma_qp->qp->pd; + struct spdk_nvme_rdma_mr_map *mr_map; + const struct spdk_mem_map_ops nvme_rdma_map_ops = { + .notify_cb = nvme_rdma_mr_map_notify, + .are_contiguous = nvme_rdma_check_contiguous_entries + }; + + pthread_mutex_lock(&g_rdma_mr_maps_mutex); + + /* Look up existing mem map registration for this pd */ + LIST_FOREACH(mr_map, &g_rdma_mr_maps, link) { + if (mr_map->pd == pd) { + mr_map->ref++; + rqpair->mr_map = mr_map; + pthread_mutex_unlock(&g_rdma_mr_maps_mutex); + return 0; + } + } + + mr_map = nvme_rdma_calloc(1, sizeof(*mr_map)); + if (mr_map == NULL) { + SPDK_ERRLOG("Failed to allocate mr_map\n"); + pthread_mutex_unlock(&g_rdma_mr_maps_mutex); + return -1; + } + + mr_map->ref = 1; + mr_map->pd = pd; + mr_map->map = spdk_mem_map_alloc((uint64_t)NULL, &nvme_rdma_map_ops, pd); + if (mr_map->map == NULL) { + SPDK_ERRLOG("spdk_mem_map_alloc() failed\n"); + nvme_rdma_free(mr_map); + + pthread_mutex_unlock(&g_rdma_mr_maps_mutex); + return -1; + } + + rqpair->mr_map = mr_map; + LIST_INSERT_HEAD(&g_rdma_mr_maps, mr_map, link); + + pthread_mutex_unlock(&g_rdma_mr_maps_mutex); + + return 0; +} + +static void +nvme_rdma_unregister_mem(struct nvme_rdma_qpair *rqpair) +{ + struct spdk_nvme_rdma_mr_map *mr_map; + + mr_map = rqpair->mr_map; + rqpair->mr_map = NULL; + + if (mr_map == NULL) { + return; + } + + pthread_mutex_lock(&g_rdma_mr_maps_mutex); + + assert(mr_map->ref > 0); + mr_map->ref--; + if (mr_map->ref == 0) { + LIST_REMOVE(mr_map, link); + spdk_mem_map_free(&mr_map->map); + nvme_rdma_free(mr_map); + } + + pthread_mutex_unlock(&g_rdma_mr_maps_mutex); +} + +static int +_nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) +{ + struct sockaddr_storage dst_addr; + struct sockaddr_storage src_addr; + bool src_addr_specified; + int rc; + struct nvme_rdma_ctrlr *rctrlr; + struct nvme_rdma_qpair *rqpair; + int family; + + rqpair = nvme_rdma_qpair(qpair); + rctrlr = nvme_rdma_ctrlr(ctrlr); + assert(rctrlr != NULL); + + switch (ctrlr->trid.adrfam) { + case SPDK_NVMF_ADRFAM_IPV4: + family = AF_INET; + break; + case SPDK_NVMF_ADRFAM_IPV6: + family = AF_INET6; + break; + default: + SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam); + return -1; + } + + SPDK_DEBUGLOG(SPDK_LOG_NVME, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family); + + memset(&dst_addr, 0, sizeof(dst_addr)); + + SPDK_DEBUGLOG(SPDK_LOG_NVME, "trsvcid is %s\n", ctrlr->trid.trsvcid); + rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid); + if (rc != 0) { + SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n"); + return -1; + } + + if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) { + memset(&src_addr, 0, sizeof(src_addr)); + rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid); + if (rc != 0) { + SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n"); + return -1; + } + src_addr_specified = true; + } else { + src_addr_specified = false; + } + + rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP); + if (rc < 0) { + SPDK_ERRLOG("rdma_create_id() failed\n"); + return -1; + } + + rc = nvme_rdma_resolve_addr(rqpair, + src_addr_specified ? (struct sockaddr *)&src_addr : NULL, + (struct sockaddr *)&dst_addr, rctrlr->cm_channel); + if (rc < 0) { + SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n"); + return -1; + } + + rc = nvme_rdma_qpair_init(rqpair); + if (rc < 0) { + SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n"); + return -1; + } + + rc = nvme_rdma_connect(rqpair); + if (rc != 0) { + SPDK_ERRLOG("Unable to connect the rqpair\n"); + return rc; + } + + rc = nvme_rdma_register_reqs(rqpair); + SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc); + if (rc) { + SPDK_ERRLOG("Unable to register rqpair RDMA requests\n"); + return -1; + } + SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA requests registered\n"); + + rc = nvme_rdma_register_rsps(rqpair); + SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc); + if (rc < 0) { + SPDK_ERRLOG("Unable to register rqpair RDMA responses\n"); + return -1; + } + SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA responses registered\n"); + + rc = nvme_rdma_register_mem(rqpair); + if (rc < 0) { + SPDK_ERRLOG("Unable to register memory for RDMA\n"); + return -1; + } + + rc = nvme_fabric_qpair_connect(&rqpair->qpair, rqpair->num_entries); + if (rc < 0) { + rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN; + SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n"); + return -1; + } + + return 0; +} + +static int +nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) +{ + int rc; + int retry_count = 0; + + rc = _nvme_rdma_ctrlr_connect_qpair(ctrlr, qpair); + + /* + * -EAGAIN represents the special case where the target side still thought it was connected. + * Most NICs will fail the first connection attempt, and the NICs will clean up whatever + * state they need to. After that, subsequent connection attempts will succeed. + */ + if (rc == -EAGAIN) { + SPDK_NOTICELOG("Detected stale connection on Target side for qpid: %d\n", qpair->id); + do { + nvme_delay(NVME_RDMA_STALE_CONN_RETRY_DELAY_US); + nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair); + rc = _nvme_rdma_ctrlr_connect_qpair(ctrlr, qpair); + retry_count++; + } while (rc == -EAGAIN && retry_count < NVME_RDMA_STALE_CONN_RETRY_MAX); + } + + return rc; +} + +/* + * Build SGL describing empty payload. + */ +static int +nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req) +{ + struct nvme_request *req = rdma_req->req; + + req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; + + /* The first element of this SGL is pointing at an + * spdk_nvmf_cmd object. For this particular command, + * we only need the first 64 bytes corresponding to + * the NVMe command. */ + rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); + + /* The RDMA SGL needs one element describing the NVMe command. */ + rdma_req->send_wr.num_sge = 1; + + req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; + req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; + req->cmd.dptr.sgl1.keyed.length = 0; + req->cmd.dptr.sgl1.keyed.key = 0; + req->cmd.dptr.sgl1.address = 0; + + return 0; +} + +static inline bool +nvme_rdma_get_key(struct spdk_mem_map *map, void *payload, uint64_t size, + enum nvme_rdma_key_type key_type, uint32_t *key) +{ + struct ibv_mr *mr; + uint64_t real_size = size; + uint32_t _key = 0; + + if (!g_nvme_hooks.get_rkey) { + mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)payload, &real_size); + + if (spdk_unlikely(!mr)) { + SPDK_ERRLOG("No translation for ptr %p, size %lu\n", payload, size); + return false; + } + switch (key_type) { + case NVME_RDMA_MR_RKEY: + _key = mr->rkey; + break; + case NVME_RDMA_MR_LKEY: + _key = mr->lkey; + break; + default: + SPDK_ERRLOG("Invalid key type %d\n", key_type); + assert(0); + return false; + } + } else { + _key = spdk_mem_map_translate(map, (uint64_t)payload, &real_size); + } + + if (spdk_unlikely(real_size < size)) { + SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n"); + return false; + } + + *key = _key; + return true; +} + +/* + * Build inline SGL describing contiguous payload buffer. + */ +static int +nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair, + struct spdk_nvme_rdma_req *rdma_req) +{ + struct nvme_request *req = rdma_req->req; + uint32_t lkey = 0; + void *payload; + + payload = req->payload.contig_or_cb_arg + req->payload_offset; + assert(req->payload_size != 0); + assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); + + if (spdk_unlikely(!nvme_rdma_get_key(rqpair->mr_map->map, payload, req->payload_size, + NVME_RDMA_MR_LKEY, &lkey))) { + return -1; + } + + rdma_req->send_sgl[1].lkey = lkey; + + /* The first element of this SGL is pointing at an + * spdk_nvmf_cmd object. For this particular command, + * we only need the first 64 bytes corresponding to + * the NVMe command. */ + rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); + + rdma_req->send_sgl[1].addr = (uint64_t)payload; + rdma_req->send_sgl[1].length = (uint32_t)req->payload_size; + + /* The RDMA SGL contains two elements. The first describes + * the NVMe command and the second describes the data + * payload. */ + rdma_req->send_wr.num_sge = 2; + + req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; + req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; + req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; + req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size; + /* Inline only supported for icdoff == 0 currently. This function will + * not get called for controllers with other values. */ + req->cmd.dptr.sgl1.address = (uint64_t)0; + + return 0; +} + +/* + * Build SGL describing contiguous payload buffer. + */ +static int +nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair, + struct spdk_nvme_rdma_req *rdma_req) +{ + struct nvme_request *req = rdma_req->req; + void *payload = req->payload.contig_or_cb_arg + req->payload_offset; + uint32_t rkey = 0; + + assert(req->payload_size != 0); + assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG); + + if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) { + SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n", + req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH); + return -1; + } + + if (spdk_unlikely(!nvme_rdma_get_key(rqpair->mr_map->map, payload, req->payload_size, + NVME_RDMA_MR_RKEY, &rkey))) { + return -1; + } + + req->cmd.dptr.sgl1.keyed.key = rkey; + + /* The first element of this SGL is pointing at an + * spdk_nvmf_cmd object. For this particular command, + * we only need the first 64 bytes corresponding to + * the NVMe command. */ + rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); + + /* The RDMA SGL needs one element describing the NVMe command. */ + rdma_req->send_wr.num_sge = 1; + + req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; + req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; + req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; + req->cmd.dptr.sgl1.keyed.length = req->payload_size; + req->cmd.dptr.sgl1.address = (uint64_t)payload; + + return 0; +} + +/* + * Build SGL describing scattered payload buffer. + */ +static int +nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair, + struct spdk_nvme_rdma_req *rdma_req) +{ + struct nvme_request *req = rdma_req->req; + struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id]; + void *virt_addr; + uint32_t remaining_size; + uint32_t sge_length; + int rc, max_num_sgl, num_sgl_desc; + uint32_t rkey = 0; + + assert(req->payload_size != 0); + assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); + assert(req->payload.reset_sgl_fn != NULL); + assert(req->payload.next_sge_fn != NULL); + req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); + + max_num_sgl = req->qpair->ctrlr->max_sges; + + remaining_size = req->payload_size; + num_sgl_desc = 0; + do { + rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &sge_length); + if (rc) { + return -1; + } + + sge_length = spdk_min(remaining_size, sge_length); + + if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) { + SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n", + sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH); + return -1; + } + + if (spdk_unlikely(!nvme_rdma_get_key(rqpair->mr_map->map, virt_addr, sge_length, + NVME_RDMA_MR_RKEY, &rkey))) { + return -1; + } + + cmd->sgl[num_sgl_desc].keyed.key = rkey; + cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK; + cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS; + cmd->sgl[num_sgl_desc].keyed.length = sge_length; + cmd->sgl[num_sgl_desc].address = (uint64_t)virt_addr; + + remaining_size -= sge_length; + num_sgl_desc++; + } while (remaining_size > 0 && num_sgl_desc < max_num_sgl); + + + /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */ + if (remaining_size > 0) { + return -1; + } + + req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; + + /* The RDMA SGL needs one element describing some portion + * of the spdk_nvmf_cmd structure. */ + rdma_req->send_wr.num_sge = 1; + + /* + * If only one SGL descriptor is required, it can be embedded directly in the command + * as a data block descriptor. + */ + if (num_sgl_desc == 1) { + /* The first element of this SGL is pointing at an + * spdk_nvmf_cmd object. For this particular command, + * we only need the first 64 bytes corresponding to + * the NVMe command. */ + rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); + + req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type; + req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype; + req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length; + req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key; + req->cmd.dptr.sgl1.address = cmd->sgl[0].address; + } else { + /* + * Otherwise, The SGL descriptor embedded in the command must point to the list of + * SGL descriptors used to describe the operation. In that case it is a last segment descriptor. + */ + rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + sizeof(struct + spdk_nvme_sgl_descriptor) * num_sgl_desc; + + req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT; + req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; + req->cmd.dptr.sgl1.unkeyed.length = num_sgl_desc * sizeof(struct spdk_nvme_sgl_descriptor); + req->cmd.dptr.sgl1.address = (uint64_t)0; + } + + return 0; +} + +/* + * Build inline SGL describing sgl payload buffer. + */ +static int +nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair, + struct spdk_nvme_rdma_req *rdma_req) +{ + struct nvme_request *req = rdma_req->req; + uint32_t lkey = 0; + uint32_t length; + void *virt_addr; + int rc; + + assert(req->payload_size != 0); + assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL); + assert(req->payload.reset_sgl_fn != NULL); + assert(req->payload.next_sge_fn != NULL); + req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset); + + rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length); + if (rc) { + return -1; + } + + if (length < req->payload_size) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Inline SGL request split so sending separately.\n"); + return nvme_rdma_build_sgl_request(rqpair, rdma_req); + } + + if (length > req->payload_size) { + length = req->payload_size; + } + + if (spdk_unlikely(!nvme_rdma_get_key(rqpair->mr_map->map, virt_addr, length, + NVME_RDMA_MR_LKEY, &lkey))) { + return -1; + } + + rdma_req->send_sgl[1].addr = (uint64_t)virt_addr; + rdma_req->send_sgl[1].length = length; + rdma_req->send_sgl[1].lkey = lkey; + + rdma_req->send_wr.num_sge = 2; + + /* The first element of this SGL is pointing at an + * spdk_nvmf_cmd object. For this particular command, + * we only need the first 64 bytes corresponding to + * the NVMe command. */ + rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd); + + req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG; + req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK; + req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET; + req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size; + /* Inline only supported for icdoff == 0 currently. This function will + * not get called for controllers with other values. */ + req->cmd.dptr.sgl1.address = (uint64_t)0; + + return 0; +} + +static int +nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req, + struct spdk_nvme_rdma_req *rdma_req) +{ + struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr; + enum nvme_payload_type payload_type; + bool icd_supported; + int rc; + + assert(rdma_req->req == NULL); + rdma_req->req = req; + req->cmd.cid = rdma_req->id; + payload_type = nvme_payload_type(&req->payload); + /* + * Check if icdoff is non zero, to avoid interop conflicts with + * targets with non-zero icdoff. Both SPDK and the Linux kernel + * targets use icdoff = 0. For targets with non-zero icdoff, we + * will currently just not use inline data for now. + */ + icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER + && req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0; + + if (req->payload_size == 0) { + rc = nvme_rdma_build_null_request(rdma_req); + } else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) { + if (icd_supported) { + rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req); + } else { + rc = nvme_rdma_build_contig_request(rqpair, rdma_req); + } + } else if (payload_type == NVME_PAYLOAD_TYPE_SGL) { + if (icd_supported) { + rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req); + } else { + rc = nvme_rdma_build_sgl_request(rqpair, rdma_req); + } + } else { + rc = -1; + } + + if (rc) { + rdma_req->req = NULL; + return rc; + } + + memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd)); + return 0; +} + +static struct spdk_nvme_qpair * +nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr, + uint16_t qid, uint32_t qsize, + enum spdk_nvme_qprio qprio, + uint32_t num_requests, + bool delay_cmd_submit) +{ + struct nvme_rdma_qpair *rqpair; + struct spdk_nvme_qpair *qpair; + int rc; + + rqpair = nvme_rdma_calloc(1, sizeof(struct nvme_rdma_qpair)); + if (!rqpair) { + SPDK_ERRLOG("failed to get create rqpair\n"); + return NULL; + } + + rqpair->num_entries = qsize; + rqpair->delay_cmd_submit = delay_cmd_submit; + qpair = &rqpair->qpair; + rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests); + if (rc != 0) { + return NULL; + } + + rc = nvme_rdma_alloc_reqs(rqpair); + SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc); + if (rc) { + SPDK_ERRLOG("Unable to allocate rqpair RDMA requests\n"); + nvme_rdma_free(rqpair); + return NULL; + } + SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA requests allocated\n"); + + rc = nvme_rdma_alloc_rsps(rqpair); + SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc); + if (rc < 0) { + SPDK_ERRLOG("Unable to allocate rqpair RDMA responses\n"); + nvme_rdma_free_reqs(rqpair); + nvme_rdma_free(rqpair); + return NULL; + } + SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA responses allocated\n"); + + return qpair; +} + +static void +nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) +{ + struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); + struct nvme_rdma_ctrlr *rctrlr = NULL; + struct nvme_rdma_cm_event_entry *entry, *tmp; + + nvme_rdma_unregister_mem(rqpair); + nvme_rdma_unregister_reqs(rqpair); + nvme_rdma_unregister_rsps(rqpair); + + if (rqpair->evt) { + rdma_ack_cm_event(rqpair->evt); + rqpair->evt = NULL; + } + + /* + * This works because we have the controller lock both in + * this function and in the function where we add new events. + */ + if (qpair->ctrlr != NULL) { + rctrlr = nvme_rdma_ctrlr(qpair->ctrlr); + STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) { + if (nvme_rdma_qpair(entry->evt->id->context) == rqpair) { + STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link); + rdma_ack_cm_event(entry->evt); + STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link); + } + } + } + + if (rqpair->cm_id) { + if (rqpair->rdma_qp) { + spdk_rdma_qp_disconnect(rqpair->rdma_qp); + if (rctrlr != NULL) { + if (nvme_rdma_process_event(rqpair, rctrlr->cm_channel, RDMA_CM_EVENT_DISCONNECTED)) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Target did not respond to qpair disconnect.\n"); + } + } + spdk_rdma_qp_destroy(rqpair->rdma_qp); + rqpair->rdma_qp = NULL; + } + + rdma_destroy_id(rqpair->cm_id); + rqpair->cm_id = NULL; + } + + if (rqpair->cq) { + ibv_destroy_cq(rqpair->cq); + rqpair->cq = NULL; + } +} + +static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr); + +static int +nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) +{ + struct nvme_rdma_qpair *rqpair; + + rqpair = nvme_rdma_qpair(qpair); + nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair); + if (rqpair->defer_deletion_to_pg) { + nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING); + return 0; + } + + nvme_rdma_qpair_abort_reqs(qpair, 1); + nvme_qpair_deinit(qpair); + + nvme_rdma_free_reqs(rqpair); + nvme_rdma_free_rsps(rqpair); + nvme_rdma_free(rqpair); + + return 0; +} + +static struct spdk_nvme_qpair * +nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid, + const struct spdk_nvme_io_qpair_opts *opts) +{ + return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio, + opts->io_queue_requests, + opts->delay_cmd_submit); +} + +static int +nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) +{ + /* do nothing here */ + return 0; +} + +static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr); + +static struct spdk_nvme_ctrlr *nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid, + const struct spdk_nvme_ctrlr_opts *opts, + void *devhandle) +{ + struct nvme_rdma_ctrlr *rctrlr; + union spdk_nvme_cap_register cap; + union spdk_nvme_vs_register vs; + struct ibv_context **contexts; + struct ibv_device_attr dev_attr; + int i, flag, rc; + + rctrlr = nvme_rdma_calloc(1, sizeof(struct nvme_rdma_ctrlr)); + if (rctrlr == NULL) { + SPDK_ERRLOG("could not allocate ctrlr\n"); + return NULL; + } + + rctrlr->ctrlr.opts = *opts; + rctrlr->ctrlr.trid = *trid; + + if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) { + SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n", + NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT); + rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT; + } + + if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) { + SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n", + NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT); + rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT; + } + + contexts = rdma_get_devices(NULL); + if (contexts == NULL) { + SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); + nvme_rdma_free(rctrlr); + return NULL; + } + + i = 0; + rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS; + + while (contexts[i] != NULL) { + rc = ibv_query_device(contexts[i], &dev_attr); + if (rc < 0) { + SPDK_ERRLOG("Failed to query RDMA device attributes.\n"); + rdma_free_devices(contexts); + nvme_rdma_free(rctrlr); + return NULL; + } + rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge); + i++; + } + + rdma_free_devices(contexts); + + rc = nvme_ctrlr_construct(&rctrlr->ctrlr); + if (rc != 0) { + nvme_rdma_free(rctrlr); + return NULL; + } + + STAILQ_INIT(&rctrlr->pending_cm_events); + STAILQ_INIT(&rctrlr->free_cm_events); + rctrlr->cm_events = nvme_rdma_calloc(NVME_RDMA_NUM_CM_EVENTS, sizeof(*rctrlr->cm_events)); + if (rctrlr->cm_events == NULL) { + SPDK_ERRLOG("unable to allocat buffers to hold CM events.\n"); + goto destruct_ctrlr; + } + + for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) { + STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link); + } + + rctrlr->cm_channel = rdma_create_event_channel(); + if (rctrlr->cm_channel == NULL) { + SPDK_ERRLOG("rdma_create_event_channel() failed\n"); + goto destruct_ctrlr; + } + + flag = fcntl(rctrlr->cm_channel->fd, F_GETFL); + if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) { + SPDK_ERRLOG("Cannot set event channel to non blocking\n"); + goto destruct_ctrlr; + } + + rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0, + rctrlr->ctrlr.opts.admin_queue_size, 0, + rctrlr->ctrlr.opts.admin_queue_size, false); + if (!rctrlr->ctrlr.adminq) { + SPDK_ERRLOG("failed to create admin qpair\n"); + goto destruct_ctrlr; + } + + rc = nvme_transport_ctrlr_connect_qpair(&rctrlr->ctrlr, rctrlr->ctrlr.adminq); + if (rc < 0) { + SPDK_ERRLOG("failed to connect admin qpair\n"); + goto destruct_ctrlr; + } + + if (nvme_ctrlr_get_cap(&rctrlr->ctrlr, &cap)) { + SPDK_ERRLOG("get_cap() failed\n"); + goto destruct_ctrlr; + } + + if (nvme_ctrlr_get_vs(&rctrlr->ctrlr, &vs)) { + SPDK_ERRLOG("get_vs() failed\n"); + goto destruct_ctrlr; + } + + if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) { + SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n"); + goto destruct_ctrlr; + } + + nvme_ctrlr_init_cap(&rctrlr->ctrlr, &cap, &vs); + + SPDK_DEBUGLOG(SPDK_LOG_NVME, "successfully initialized the nvmf ctrlr\n"); + return &rctrlr->ctrlr; + +destruct_ctrlr: + nvme_ctrlr_destruct(&rctrlr->ctrlr); + return NULL; +} + +static int +nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) +{ + struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); + struct nvme_rdma_cm_event_entry *entry; + + if (ctrlr->adminq) { + nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq); + } + + STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) { + rdma_ack_cm_event(entry->evt); + } + + STAILQ_INIT(&rctrlr->free_cm_events); + STAILQ_INIT(&rctrlr->pending_cm_events); + nvme_rdma_free(rctrlr->cm_events); + + if (rctrlr->cm_channel) { + rdma_destroy_event_channel(rctrlr->cm_channel); + rctrlr->cm_channel = NULL; + } + + nvme_ctrlr_destruct_finish(ctrlr); + + nvme_rdma_free(rctrlr); + + return 0; +} + +static int +nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair, + struct nvme_request *req) +{ + struct nvme_rdma_qpair *rqpair; + struct spdk_nvme_rdma_req *rdma_req; + struct ibv_send_wr *wr; + + rqpair = nvme_rdma_qpair(qpair); + assert(rqpair != NULL); + assert(req != NULL); + + rdma_req = nvme_rdma_req_get(rqpair); + if (!rdma_req) { + /* Inform the upper layer to try again later. */ + return -EAGAIN; + } + + if (nvme_rdma_req_init(rqpair, req, rdma_req)) { + SPDK_ERRLOG("nvme_rdma_req_init() failed\n"); + TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link); + nvme_rdma_req_put(rqpair, rdma_req); + return -1; + } + + wr = &rdma_req->send_wr; + wr->next = NULL; + nvme_rdma_trace_ibv_sge(wr->sg_list); + return nvme_rdma_qpair_queue_send_wr(rqpair, wr); +} + +static int +nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair) +{ + /* Currently, doing nothing here */ + return 0; +} + +static void +nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr) +{ + struct spdk_nvme_rdma_req *rdma_req, *tmp; + struct spdk_nvme_cpl cpl; + struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); + + cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; + cpl.status.sct = SPDK_NVME_SCT_GENERIC; + cpl.status.dnr = dnr; + + /* + * We cannot abort requests at the RDMA layer without + * unregistering them. If we do, we can still get error + * free completions on the shared completion queue. + */ + if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING && + nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) { + nvme_ctrlr_disconnect_qpair(qpair); + } + + TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { + nvme_rdma_req_complete(rdma_req, &cpl); + nvme_rdma_req_put(rqpair, rdma_req); + } +} + +static void +nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair) +{ + uint64_t t02; + struct spdk_nvme_rdma_req *rdma_req, *tmp; + struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); + struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; + struct spdk_nvme_ctrlr_process *active_proc; + + /* Don't check timeouts during controller initialization. */ + if (ctrlr->state != NVME_CTRLR_STATE_READY) { + return; + } + + if (nvme_qpair_is_admin_queue(qpair)) { + active_proc = nvme_ctrlr_get_current_process(ctrlr); + } else { + active_proc = qpair->active_proc; + } + + /* Only check timeouts if the current process has a timeout callback. */ + if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) { + return; + } + + t02 = spdk_get_ticks(); + TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { + assert(rdma_req->req != NULL); + + if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) { + /* + * The requests are in order, so as soon as one has not timed out, + * stop iterating. + */ + break; + } + } +} + +static inline int +nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req) +{ + nvme_rdma_req_complete(rdma_req, &rqpair->rsps[rdma_req->rsp_idx].cpl); + nvme_rdma_req_put(rqpair, rdma_req); + return nvme_rdma_post_recv(rqpair, rdma_req->rsp_idx); +} + +#define MAX_COMPLETIONS_PER_POLL 128 + +static void +nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason) +{ + if (failure_reason == IBV_WC_RETRY_EXC_ERR) { + qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE; + } else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) { + qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN; + } + + nvme_ctrlr_disconnect_qpair(qpair); +} + +static void +nvme_rdma_conditional_fail_qpair(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poll_group *group) +{ + struct nvme_rdma_destroyed_qpair *qpair_tracker; + + assert(rqpair); + if (group) { + STAILQ_FOREACH(qpair_tracker, &group->destroyed_qpairs, link) { + if (qpair_tracker->destroyed_qpair_tracker == rqpair) { + return; + } + } + } + nvme_rdma_fail_qpair(&rqpair->qpair, 0); +} + +static int +nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size, + struct nvme_rdma_poll_group *group, + struct nvme_rdma_qpair *rdma_qpair) +{ + struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL]; + struct nvme_rdma_qpair *rqpair; + struct spdk_nvme_rdma_req *rdma_req; + struct spdk_nvme_rdma_rsp *rdma_rsp; + struct nvme_rdma_wr *rdma_wr; + uint32_t reaped = 0; + int completion_rc = 0; + int rc, i; + + rc = ibv_poll_cq(cq, batch_size, wc); + if (rc < 0) { + SPDK_ERRLOG("Error polling CQ! (%d): %s\n", + errno, spdk_strerror(errno)); + return -ECANCELED; + } else if (rc == 0) { + return 0; + } + + for (i = 0; i < rc; i++) { + rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id; + switch (rdma_wr->type) { + case RDMA_WR_TYPE_RECV: + rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr); + rqpair = rdma_rsp->rqpair; + assert(rqpair->current_num_recvs > 0); + rqpair->current_num_recvs--; + + if (wc[i].status) { + SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n", + rqpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status)); + nvme_rdma_conditional_fail_qpair(rqpair, group); + completion_rc = -ENXIO; + continue; + } + + SPDK_DEBUGLOG(SPDK_LOG_NVME, "CQ recv completion\n"); + + if (wc[i].byte_len < sizeof(struct spdk_nvme_cpl)) { + SPDK_ERRLOG("recv length %u less than expected response size\n", wc[i].byte_len); + nvme_rdma_conditional_fail_qpair(rqpair, group); + completion_rc = -ENXIO; + continue; + } + rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid]; + rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED; + rdma_req->rsp_idx = rdma_rsp->idx; + + if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) != 0) { + if (spdk_unlikely(nvme_rdma_request_ready(rqpair, rdma_req))) { + SPDK_ERRLOG("Unable to re-post rx descriptor\n"); + nvme_rdma_conditional_fail_qpair(rqpair, group); + completion_rc = -ENXIO; + continue; + } + reaped++; + rqpair->num_completions++; + } + break; + + case RDMA_WR_TYPE_SEND: + rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr); + + /* If we are flushing I/O */ + if (wc[i].status) { + rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL; + if (!rqpair) { + rqpair = rdma_qpair != NULL ? rdma_qpair : nvme_rdma_poll_group_get_qpair_by_id(group, + wc[i].qp_num); + } + assert(rqpair); + assert(rqpair->current_num_sends > 0); + rqpair->current_num_sends--; + nvme_rdma_conditional_fail_qpair(rqpair, group); + SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n", + rqpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status)); + completion_rc = -ENXIO; + continue; + } + + rqpair = nvme_rdma_qpair(rdma_req->req->qpair); + rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED; + rqpair->current_num_sends--; + + if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) != 0) { + if (spdk_unlikely(nvme_rdma_request_ready(rqpair, rdma_req))) { + SPDK_ERRLOG("Unable to re-post rx descriptor\n"); + nvme_rdma_conditional_fail_qpair(rqpair, group); + completion_rc = -ENXIO; + continue; + } + reaped++; + rqpair->num_completions++; + } + break; + + default: + SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type); + return -ECANCELED; + } + } + + if (completion_rc) { + return completion_rc; + } + + return reaped; +} + +static void +dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx) +{ + +} + +static int +nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair, + uint32_t max_completions) +{ + struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); + int rc = 0, batch_size; + struct ibv_cq *cq; + struct nvme_rdma_ctrlr *rctrlr; + + /* + * This is used during the connection phase. It's possible that we are still reaping error completions + * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq + * is shared. + */ + if (qpair->poll_group != NULL) { + return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions, + dummy_disconnected_qpair_cb); + } + + if (max_completions == 0) { + max_completions = rqpair->num_entries; + } else { + max_completions = spdk_min(max_completions, rqpair->num_entries); + } + + if (nvme_qpair_is_admin_queue(&rqpair->qpair)) { + rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr); + nvme_rdma_poll_events(rctrlr); + } + nvme_rdma_qpair_process_cm_event(rqpair); + + if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) { + nvme_rdma_fail_qpair(qpair, 0); + return -ENXIO; + } + + cq = rqpair->cq; + + rqpair->num_completions = 0; + do { + batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL); + rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair); + + if (rc == 0) { + break; + /* Handle the case where we fail to poll the cq. */ + } else if (rc == -ECANCELED) { + nvme_rdma_fail_qpair(qpair, 0); + return -ENXIO; + } else if (rc == -ENXIO) { + return rc; + } + } while (rqpair->num_completions < max_completions); + + if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) || + nvme_rdma_qpair_submit_recvs(rqpair))) { + nvme_rdma_fail_qpair(qpair, 0); + return -ENXIO; + } + + if (spdk_unlikely(rqpair->qpair.ctrlr->timeout_enabled)) { + nvme_rdma_qpair_check_timeout(qpair); + } + + return rqpair->num_completions; +} + +static uint32_t +nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr) +{ + /* max_mr_size by ibv_query_device indicates the largest value that we can + * set for a registered memory region. It is independent from the actual + * I/O size and is very likely to be larger than 2 MiB which is the + * granularity we currently register memory regions. Hence return + * UINT32_MAX here and let the generic layer use the controller data to + * moderate this value. + */ + return UINT32_MAX; +} + +static uint16_t +nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr) +{ + struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr); + + return rctrlr->max_sge; +} + +static int +nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair, + int (*iter_fn)(struct nvme_request *req, void *arg), + void *arg) +{ + struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); + struct spdk_nvme_rdma_req *rdma_req, *tmp; + int rc; + + assert(iter_fn != NULL); + + TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { + assert(rdma_req->req != NULL); + + rc = iter_fn(rdma_req->req, arg); + if (rc != 0) { + return rc; + } + } + + return 0; +} + +static void +nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair) +{ + struct spdk_nvme_rdma_req *rdma_req, *tmp; + struct spdk_nvme_cpl cpl; + struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); + + cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; + cpl.status.sct = SPDK_NVME_SCT_GENERIC; + + TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) { + assert(rdma_req->req != NULL); + + if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) { + continue; + } + + nvme_rdma_req_complete(rdma_req, &cpl); + nvme_rdma_req_put(rqpair, rdma_req); + } +} + +static int +nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx) +{ + struct nvme_rdma_poller *poller; + + poller = calloc(1, sizeof(*poller)); + if (poller == NULL) { + SPDK_ERRLOG("Unable to allocate poller.\n"); + return -ENOMEM; + } + + poller->device = ctx; + poller->cq = ibv_create_cq(poller->device, DEFAULT_NVME_RDMA_CQ_SIZE, group, NULL, 0); + + if (poller->cq == NULL) { + free(poller); + return -EINVAL; + } + + STAILQ_INSERT_HEAD(&group->pollers, poller, link); + group->num_pollers++; + poller->current_num_wc = DEFAULT_NVME_RDMA_CQ_SIZE; + poller->required_num_wc = 0; + return 0; +} + +static void +nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group) +{ + struct nvme_rdma_poller *poller, *tmp_poller; + + STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) { + if (poller->cq) { + ibv_destroy_cq(poller->cq); + } + STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link); + free(poller); + } +} + +static struct spdk_nvme_transport_poll_group * +nvme_rdma_poll_group_create(void) +{ + struct nvme_rdma_poll_group *group; + struct ibv_context **contexts; + int i = 0; + + group = calloc(1, sizeof(*group)); + if (group == NULL) { + SPDK_ERRLOG("Unable to allocate poll group.\n"); + return NULL; + } + + STAILQ_INIT(&group->pollers); + + contexts = rdma_get_devices(NULL); + if (contexts == NULL) { + SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno); + free(group); + return NULL; + } + + while (contexts[i] != NULL) { + if (nvme_rdma_poller_create(group, contexts[i])) { + nvme_rdma_poll_group_free_pollers(group); + free(group); + rdma_free_devices(contexts); + return NULL; + } + i++; + } + + rdma_free_devices(contexts); + STAILQ_INIT(&group->destroyed_qpairs); + return &group->group; +} + +struct nvme_rdma_qpair * +nvme_rdma_poll_group_get_qpair_by_id(struct nvme_rdma_poll_group *group, uint32_t qp_num) +{ + struct spdk_nvme_qpair *qpair; + struct nvme_rdma_destroyed_qpair *rqpair_tracker; + struct nvme_rdma_qpair *rqpair; + + STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) { + rqpair = nvme_rdma_qpair(qpair); + if (rqpair->rdma_qp->qp->qp_num == qp_num) { + return rqpair; + } + } + + STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) { + rqpair = nvme_rdma_qpair(qpair); + if (rqpair->rdma_qp->qp->qp_num == qp_num) { + return rqpair; + } + } + + STAILQ_FOREACH(rqpair_tracker, &group->destroyed_qpairs, link) { + rqpair = rqpair_tracker->destroyed_qpair_tracker; + if (rqpair->rdma_qp->qp->qp_num == qp_num) { + return rqpair; + } + } + + return NULL; +} + +static int +nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller) +{ + int current_num_wc, required_num_wc; + + required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries); + current_num_wc = poller->current_num_wc; + if (current_num_wc < required_num_wc) { + current_num_wc = spdk_max(current_num_wc * 2, required_num_wc); + } + + if (poller->current_num_wc != current_num_wc) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc, + current_num_wc); + if (ibv_resize_cq(poller->cq, current_num_wc)) { + SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno)); + return -1; + } + + poller->current_num_wc = current_num_wc; + } + + poller->required_num_wc = required_num_wc; + return 0; +} + +static int +nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair) +{ + struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); + struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group); + struct nvme_rdma_poller *poller; + + assert(rqpair->cq == NULL); + + STAILQ_FOREACH(poller, &group->pollers, link) { + if (poller->device == rqpair->cm_id->verbs) { + if (nvme_rdma_resize_cq(rqpair, poller)) { + return -EPROTO; + } + rqpair->cq = poller->cq; + break; + } + } + + if (rqpair->cq == NULL) { + SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group); + return -EINVAL; + } + + return 0; +} + +static int +nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair) +{ + struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair); + struct nvme_rdma_poll_group *group; + struct nvme_rdma_destroyed_qpair *destroyed_qpair; + enum nvme_qpair_state state; + + if (rqpair->poll_group_disconnect_in_progress) { + return -EINPROGRESS; + } + + rqpair->poll_group_disconnect_in_progress = true; + state = nvme_qpair_get_state(qpair); + group = nvme_rdma_poll_group(qpair->poll_group); + rqpair->cq = NULL; + + /* + * We want to guard against an endless recursive loop while making + * sure the qpair is disconnected before we disconnect it from the qpair. + */ + if (state > NVME_QPAIR_DISCONNECTING && state != NVME_QPAIR_DESTROYING) { + nvme_ctrlr_disconnect_qpair(qpair); + } + + /* + * If this fails, the system is in serious trouble, + * just let the qpair get cleaned up immediately. + */ + destroyed_qpair = calloc(1, sizeof(*destroyed_qpair)); + if (destroyed_qpair == NULL) { + return 0; + } + + destroyed_qpair->destroyed_qpair_tracker = rqpair; + destroyed_qpair->completed_cycles = 0; + STAILQ_INSERT_TAIL(&group->destroyed_qpairs, destroyed_qpair, link); + + rqpair->defer_deletion_to_pg = true; + + rqpair->poll_group_disconnect_in_progress = false; + return 0; +} + +static int +nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup, + struct spdk_nvme_qpair *qpair) +{ + return 0; +} + +static int +nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup, + struct spdk_nvme_qpair *qpair) +{ + if (qpair->poll_group_tailq_head == &tgroup->connected_qpairs) { + return nvme_poll_group_disconnect_qpair(qpair); + } + + return 0; +} + +static void +nvme_rdma_poll_group_delete_qpair(struct nvme_rdma_poll_group *group, + struct nvme_rdma_destroyed_qpair *qpair_tracker) +{ + struct nvme_rdma_qpair *rqpair = qpair_tracker->destroyed_qpair_tracker; + + rqpair->defer_deletion_to_pg = false; + if (nvme_qpair_get_state(&rqpair->qpair) == NVME_QPAIR_DESTROYING) { + nvme_rdma_ctrlr_delete_io_qpair(rqpair->qpair.ctrlr, &rqpair->qpair); + } + STAILQ_REMOVE(&group->destroyed_qpairs, qpair_tracker, nvme_rdma_destroyed_qpair, link); + free(qpair_tracker); +} + +static int64_t +nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup, + uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb) +{ + struct spdk_nvme_qpair *qpair, *tmp_qpair; + struct nvme_rdma_destroyed_qpair *qpair_tracker, *tmp_qpair_tracker; + struct nvme_rdma_qpair *rqpair; + struct nvme_rdma_poll_group *group; + struct nvme_rdma_poller *poller; + int num_qpairs = 0, batch_size, rc; + int64_t total_completions = 0; + uint64_t completions_allowed = 0; + uint64_t completions_per_poller = 0; + uint64_t poller_completions = 0; + + + if (completions_per_qpair == 0) { + completions_per_qpair = MAX_COMPLETIONS_PER_POLL; + } + + group = nvme_rdma_poll_group(tgroup); + STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) { + disconnected_qpair_cb(qpair, tgroup->group->ctx); + } + + STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) { + rqpair = nvme_rdma_qpair(qpair); + rqpair->num_completions = 0; + nvme_rdma_qpair_process_cm_event(rqpair); + + if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) { + nvme_rdma_fail_qpair(qpair, 0); + disconnected_qpair_cb(qpair, tgroup->group->ctx); + continue; + } + num_qpairs++; + } + + completions_allowed = completions_per_qpair * num_qpairs; + completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1); + + STAILQ_FOREACH(poller, &group->pollers, link) { + poller_completions = 0; + do { + batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL); + rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, group, NULL); + if (rc <= 0) { + if (rc == -ECANCELED) { + return -EIO; + } + break; + } + + poller_completions += rc; + } while (poller_completions < completions_per_poller); + total_completions += poller_completions; + } + + STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) { + rqpair = nvme_rdma_qpair(qpair); + if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) { + nvme_rdma_qpair_check_timeout(qpair); + } + + nvme_rdma_qpair_submit_sends(rqpair); + nvme_rdma_qpair_submit_recvs(rqpair); + nvme_qpair_resubmit_requests(&rqpair->qpair, rqpair->num_completions); + } + + /* + * Once a qpair is disconnected, we can still get flushed completions for those disconnected qpairs. + * For most pieces of hardware, those requests will complete immediately. However, there are certain + * cases where flushed requests will linger. Default is to destroy qpair after all completions are freed, + * but have a fallback for other cases where we don't get all of our completions back. + */ + STAILQ_FOREACH_SAFE(qpair_tracker, &group->destroyed_qpairs, link, tmp_qpair_tracker) { + qpair_tracker->completed_cycles++; + rqpair = qpair_tracker->destroyed_qpair_tracker; + if ((rqpair->current_num_sends == 0 && rqpair->current_num_recvs == 0) || + qpair_tracker->completed_cycles > NVME_RDMA_DESTROYED_QPAIR_EXPIRATION_CYCLES) { + nvme_rdma_poll_group_delete_qpair(group, qpair_tracker); + } + } + + return total_completions; +} + +static int +nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup) +{ + struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup); + struct nvme_rdma_destroyed_qpair *qpair_tracker, *tmp_qpair_tracker; + struct nvme_rdma_qpair *rqpair; + + if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) { + return -EBUSY; + } + + STAILQ_FOREACH_SAFE(qpair_tracker, &group->destroyed_qpairs, link, tmp_qpair_tracker) { + rqpair = qpair_tracker->destroyed_qpair_tracker; + if (nvme_qpair_get_state(&rqpair->qpair) == NVME_QPAIR_DESTROYING) { + rqpair->defer_deletion_to_pg = false; + nvme_rdma_ctrlr_delete_io_qpair(rqpair->qpair.ctrlr, &rqpair->qpair); + } + + STAILQ_REMOVE(&group->destroyed_qpairs, qpair_tracker, nvme_rdma_destroyed_qpair, link); + free(qpair_tracker); + } + + nvme_rdma_poll_group_free_pollers(group); + free(group); + + return 0; +} + +void +spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks) +{ + g_nvme_hooks = *hooks; +} + +const struct spdk_nvme_transport_ops rdma_ops = { + .name = "RDMA", + .type = SPDK_NVME_TRANSPORT_RDMA, + .ctrlr_construct = nvme_rdma_ctrlr_construct, + .ctrlr_scan = nvme_fabric_ctrlr_scan, + .ctrlr_destruct = nvme_rdma_ctrlr_destruct, + .ctrlr_enable = nvme_rdma_ctrlr_enable, + + .ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4, + .ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8, + .ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4, + .ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8, + + .ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size, + .ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges, + + .ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair, + .ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair, + .ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair, + .ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair, + + .qpair_abort_reqs = nvme_rdma_qpair_abort_reqs, + .qpair_reset = nvme_rdma_qpair_reset, + .qpair_submit_request = nvme_rdma_qpair_submit_request, + .qpair_process_completions = nvme_rdma_qpair_process_completions, + .qpair_iterate_requests = nvme_rdma_qpair_iterate_requests, + .admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers, + + .poll_group_create = nvme_rdma_poll_group_create, + .poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair, + .poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair, + .poll_group_add = nvme_rdma_poll_group_add, + .poll_group_remove = nvme_rdma_poll_group_remove, + .poll_group_process_completions = nvme_rdma_poll_group_process_completions, + .poll_group_destroy = nvme_rdma_poll_group_destroy, + +}; + +SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops); |