summaryrefslogtreecommitdiffstats
path: root/src/zstd/lib/README.md
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-07 18:45:59 +0000
commit19fcec84d8d7d21e796c7624e521b60d28ee21ed (patch)
tree42d26aa27d1e3f7c0b8bd3fd14e7d7082f5008dc /src/zstd/lib/README.md
parentInitial commit. (diff)
downloadceph-19fcec84d8d7d21e796c7624e521b60d28ee21ed.tar.xz
ceph-19fcec84d8d7d21e796c7624e521b60d28ee21ed.zip
Adding upstream version 16.2.11+ds.upstream/16.2.11+dsupstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/zstd/lib/README.md')
-rw-r--r--src/zstd/lib/README.md179
1 files changed, 179 insertions, 0 deletions
diff --git a/src/zstd/lib/README.md b/src/zstd/lib/README.md
new file mode 100644
index 000000000..6ccffb138
--- /dev/null
+++ b/src/zstd/lib/README.md
@@ -0,0 +1,179 @@
+Zstandard library files
+================================
+
+The __lib__ directory is split into several sub-directories,
+in order to make it easier to select or exclude features.
+
+
+#### Building
+
+`Makefile` script is provided, supporting [Makefile conventions](https://www.gnu.org/prep/standards/html_node/Makefile-Conventions.html#Makefile-Conventions),
+including commands variables, staged install, directory variables and standard targets.
+- `make` : generates both static and dynamic libraries
+- `make install` : install libraries and headers in target system directories
+
+`libzstd` default scope is pretty large, including compression, decompression, dictionary builder,
+and support for decoding legacy formats >= v0.5.0.
+The scope can be reduced on demand (see paragraph _modular build_).
+
+
+#### Multithreading support
+
+Multithreading is disabled by default when building with `make`.
+Enabling multithreading requires 2 conditions :
+- set build macro `ZSTD_MULTITHREAD` (`-DZSTD_MULTITHREAD` for `gcc`)
+- for POSIX systems : compile with pthread (`-pthread` compilation flag for `gcc`)
+
+Both conditions are automatically applied when invoking `make lib-mt` target.
+
+When linking a POSIX program with a multithreaded version of `libzstd`,
+note that it's necessary to invoke the `-pthread` flag during link stage.
+
+Multithreading capabilities are exposed
+via the [advanced API defined in `lib/zstd.h`](https://github.com/facebook/zstd/blob/v1.4.3/lib/zstd.h#L351).
+
+
+#### API
+
+Zstandard's stable API is exposed within [lib/zstd.h](zstd.h).
+
+
+#### Advanced API
+
+Optional advanced features are exposed via :
+
+- `lib/common/zstd_errors.h` : translates `size_t` function results
+ into a `ZSTD_ErrorCode`, for accurate error handling.
+
+- `ZSTD_STATIC_LINKING_ONLY` : if this macro is defined _before_ including `zstd.h`,
+ it unlocks access to the experimental API,
+ exposed in the second part of `zstd.h`.
+ All definitions in the experimental APIs are unstable,
+ they may still change in the future, or even be removed.
+ As a consequence, experimental definitions shall ___never be used with dynamic library___ !
+ Only static linking is allowed.
+
+
+#### Modular build
+
+It's possible to compile only a limited set of features within `libzstd`.
+The file structure is designed to make this selection manually achievable for any build system :
+
+- Directory `lib/common` is always required, for all variants.
+
+- Compression source code lies in `lib/compress`
+
+- Decompression source code lies in `lib/decompress`
+
+- It's possible to include only `compress` or only `decompress`, they don't depend on each other.
+
+- `lib/dictBuilder` : makes it possible to generate dictionaries from a set of samples.
+ The API is exposed in `lib/dictBuilder/zdict.h`.
+ This module depends on both `lib/common` and `lib/compress` .
+
+- `lib/legacy` : makes it possible to decompress legacy zstd formats, starting from `v0.1.0`.
+ This module depends on `lib/common` and `lib/decompress`.
+ To enable this feature, define `ZSTD_LEGACY_SUPPORT` during compilation.
+ Specifying a number limits versions supported to that version onward.
+ For example, `ZSTD_LEGACY_SUPPORT=2` means : "support legacy formats >= v0.2.0".
+ Conversely, `ZSTD_LEGACY_SUPPORT=0` means "do __not__ support legacy formats".
+ By default, this build macro is set as `ZSTD_LEGACY_SUPPORT=5`.
+ Decoding supported legacy format is a transparent capability triggered within decompression functions.
+ It's also allowed to invoke legacy API directly, exposed in `lib/legacy/zstd_legacy.h`.
+ Each version does also provide its own set of advanced API.
+ For example, advanced API for version `v0.4` is exposed in `lib/legacy/zstd_v04.h` .
+
+- While invoking `make libzstd`, it's possible to define build macros
+ `ZSTD_LIB_COMPRESSION, ZSTD_LIB_DECOMPRESSION`, `ZSTD_LIB_DICTBUILDER`,
+ and `ZSTD_LIB_DEPRECATED` as `0` to forgo compilation of the
+ corresponding features. This will also disable compilation of all
+ dependencies (eg. `ZSTD_LIB_COMPRESSION=0` will also disable
+ dictBuilder).
+
+- There are a number of options that can help minimize the binary size of
+ `libzstd`.
+
+ The first step is to select the components needed (using the above-described
+ `ZSTD_LIB_COMPRESSION` etc.).
+
+ The next step is to set `ZSTD_LIB_MINIFY` to `1` when invoking `make`. This
+ disables various optional components and changes the compilation flags to
+ prioritize space-saving.
+
+ Detailed options: Zstandard's code and build environment is set up by default
+ to optimize above all else for performance. In pursuit of this goal, Zstandard
+ makes significant trade-offs in code size. For example, Zstandard often has
+ more than one implementation of a particular component, with each
+ implementation optimized for different scenarios. For example, the Huffman
+ decoder has complementary implementations that decode the stream one symbol at
+ a time or two symbols at a time. Zstd normally includes both (and dispatches
+ between them at runtime), but by defining `HUF_FORCE_DECOMPRESS_X1` or
+ `HUF_FORCE_DECOMPRESS_X2`, you can force the use of one or the other, avoiding
+ compilation of the other. Similarly, `ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT`
+ and `ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG` force the compilation and use of
+ only one or the other of two decompression implementations. The smallest
+ binary is achieved by using `HUF_FORCE_DECOMPRESS_X1` and
+ `ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT` (implied by `ZSTD_LIB_MINIFY`).
+
+ For squeezing the last ounce of size out, you can also define
+ `ZSTD_NO_INLINE`, which disables inlining, and `ZSTD_STRIP_ERROR_STRINGS`,
+ which removes the error messages that are otherwise returned by
+ `ZSTD_getErrorName` (implied by `ZSTD_LIB_MINIFY`).
+
+ Finally, when integrating into your application, make sure you're doing link-
+ time optimation and unused symbol garbage collection (via some combination of,
+ e.g., `-flto`, `-ffat-lto-objects`, `-fuse-linker-plugin`,
+ `-ffunction-sections`, `-fdata-sections`, `-fmerge-all-constants`,
+ `-Wl,--gc-sections`, `-Wl,-z,norelro`, and an archiver that understands
+ the compiler's intermediate representation, e.g., `AR=gcc-ar`). Consult your
+ compiler's documentation.
+
+- While invoking `make libzstd`, the build macro `ZSTD_LEGACY_MULTITHREADED_API=1`
+ will expose the deprecated `ZSTDMT` API exposed by `zstdmt_compress.h` in
+ the shared library, which is now hidden by default.
+
+- The build macro `DYNAMIC_BMI2` can be set to 1 or 0 in order to generate binaries
+ which can detect at runtime the presence of BMI2 instructions, and use them only if present.
+ These instructions contribute to better performance, notably on the decoder side.
+ By default, this feature is automatically enabled on detecting
+ the right instruction set (x64) and compiler (clang or gcc >= 5).
+ It's obviously disabled for different cpus,
+ or when BMI2 instruction set is _required_ by the compiler command line
+ (in this case, only the BMI2 code path is generated).
+ Setting this macro will either force to generate the BMI2 dispatcher (1)
+ or prevent it (0). It overrides automatic detection.
+
+
+#### Windows : using MinGW+MSYS to create DLL
+
+DLL can be created using MinGW+MSYS with the `make libzstd` command.
+This command creates `dll\libzstd.dll` and the import library `dll\libzstd.lib`.
+The import library is only required with Visual C++.
+The header file `zstd.h` and the dynamic library `dll\libzstd.dll` are required to
+compile a project using gcc/MinGW.
+The dynamic library has to be added to linking options.
+It means that if a project that uses ZSTD consists of a single `test-dll.c`
+file it should be linked with `dll\libzstd.dll`. For example:
+```
+ gcc $(CFLAGS) -Iinclude/ test-dll.c -o test-dll dll\libzstd.dll
+```
+The compiled executable will require ZSTD DLL which is available at `dll\libzstd.dll`.
+
+
+#### Deprecated API
+
+Obsolete API on their way out are stored in directory `lib/deprecated`.
+At this stage, it contains older streaming prototypes, in `lib/deprecated/zbuff.h`.
+These prototypes will be removed in some future version.
+Consider migrating code towards supported streaming API exposed in `zstd.h`.
+
+
+#### Miscellaneous
+
+The other files are not source code. There are :
+
+ - `BUCK` : support for `buck` build system (https://buckbuild.com/)
+ - `Makefile` : `make` script to build and install zstd library (static and dynamic)
+ - `README.md` : this file
+ - `dll/` : resources directory for Windows compilation
+ - `libzstd.pc.in` : script for `pkg-config` (used in `make install`)