summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/compute/example/opencv_convolution.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/compute/example/opencv_convolution.cpp')
-rw-r--r--src/boost/libs/compute/example/opencv_convolution.cpp265
1 files changed, 265 insertions, 0 deletions
diff --git a/src/boost/libs/compute/example/opencv_convolution.cpp b/src/boost/libs/compute/example/opencv_convolution.cpp
new file mode 100644
index 000000000..7ba534365
--- /dev/null
+++ b/src/boost/libs/compute/example/opencv_convolution.cpp
@@ -0,0 +1,265 @@
+//---------------------------------------------------------------------------//
+// Copyright (c) 2013-2014 Mageswaran.D <mageswaran1989@gmail.com>
+//
+// Distributed under the Boost Software License, Version 1.0
+// See accompanying file LICENSE_1_0.txt or copy at
+// http://www.boost.org/LICENSE_1_0.txt
+//
+// See http://boostorg.github.com/compute for more information.
+//---------------------------------------------------------------------------//
+
+#include <iostream>
+#include <string>
+
+#include <opencv2/core/core.hpp>
+#include <opencv2/highgui/highgui.hpp>
+#include <opencv2/imgproc/imgproc.hpp>
+
+#include <boost/compute/system.hpp>
+#include <boost/compute/interop/opencv/core.hpp>
+#include <boost/compute/interop/opencv/highgui.hpp>
+#include <boost/compute/utility/source.hpp>
+
+#include <boost/program_options.hpp>
+
+namespace compute = boost::compute;
+namespace po = boost::program_options;
+
+// Create convolution program
+const char source[] = BOOST_COMPUTE_STRINGIZE_SOURCE (
+ __kernel void convolution(__read_only image2d_t sourceImage,
+ __write_only image2d_t outputImage,
+ __constant float* filter,
+ int filterWidth)
+ {
+ const sampler_t sampler = CLK_NORMALIZED_COORDS_FALSE |
+ CLK_ADDRESS_CLAMP_TO_EDGE |
+ CLK_FILTER_NEAREST;
+
+ // Store each work-item's unique row and column
+ int x = get_global_id(0);
+ int y = get_global_id(1);
+
+ // Half the width of the filter is needed for indexing
+ // memory later
+ int halfWidth = (int)(filterWidth/2);
+
+ // All accesses to images return data as four-element vector
+ // (i.e., float4).
+ float4 sum = {0.0f, 0.0f, 0.0f, 0.0f};
+
+ // Iterator for the filter
+ int filterIdx = 0;
+
+ // Each work-item iterates around its local area based on the
+ // size of the filter
+ int2 coords; // Coordinates for accessing the image
+
+ // Iterate the filter rows
+ for(int i = -halfWidth; i <= halfWidth; i++)
+ {
+ coords.y = y + i;
+
+ // Iterate over the filter columns
+ for(int j = -halfWidth; j <= halfWidth; j++)
+ {
+ coords.x = x + j;
+
+ float4 pixel;
+
+ // Read a pixel from the image.
+ // Work on a channel
+ pixel = read_imagef(sourceImage, sampler, coords);
+ sum.x += pixel.x * filter[filterIdx++];
+ //sum.y += pixel.y * filter[filterIdx++];
+ //sum.z += pixel.z * filter[filterIdx++];
+ }
+ }
+
+ barrier(CLK_GLOBAL_MEM_FENCE);
+ // Copy the data to the output image if the
+ // work-item is in bounds
+ if(y < get_image_height(sourceImage) &&
+ x < get_image_width(sourceImage))
+ {
+ coords.x = x;
+ coords.y = y;
+
+ //Same channel is copied in all three channels
+ //write_imagef(outputImage, coords,
+ // (float4)(sum.x,sum.x,sum.x,1.0f));
+
+ write_imagef(outputImage, coords, sum);
+ }
+ }
+);
+
+// This example shows how to read two images or use camera
+// with OpenCV, transfer the frames to the GPU,
+// and apply a convolution written in OpenCL
+int main(int argc, char *argv[])
+{
+ ///////////////////////////////////////////////////////////////////////////
+
+ // setup the command line arguments
+ po::options_description desc;
+ desc.add_options()
+ ("help", "show available options")
+ ("camera", po::value<int>()->default_value(-1),
+ "if not default camera, specify a camera id")
+ ("image", po::value<std::string>(), "path to image file");
+
+ // Parse the command lines
+ po::variables_map vm;
+ po::store(po::parse_command_line(argc, argv, desc), vm);
+ po::notify(vm);
+
+ //check the command line arguments
+ if(vm.count("help"))
+ {
+ std::cout << desc << std::endl;
+ return 0;
+ }
+
+ ///////////////////////////////////////////////////////////////////////////
+
+ //OpenCV variables
+ cv::Mat cv_mat;
+ cv::VideoCapture cap; //OpenCV camera handle.
+
+ //Filter Variables
+ float filter[9] = {
+ -1.0, 0.0, 1.0,
+ -2.0, 0.0, 2.0,
+ -1.0, 0.0, 1.0,
+ };
+
+ // The convolution filter is 3x3
+ int filterWidth = 3;
+
+ //OpenCL variables
+ // Get default device and setup context
+ compute::device gpu = compute::system::default_device();
+ compute::context context(gpu);
+ compute::command_queue queue(context, gpu);
+ compute::buffer dev_filter(context, sizeof(filter),
+ compute::memory_object::read_only |
+ compute::memory_object::copy_host_ptr,
+ filter);
+
+ compute::program filter_program =
+ compute::program::create_with_source(source, context);
+
+ try
+ {
+ filter_program.build();
+ }
+ catch(compute::opencl_error e)
+ {
+ std::cout<<"Build Error: "<<std::endl
+ <<filter_program.build_log();
+ return -1;
+ }
+
+ // create fliter kernel and set arguments
+ compute::kernel filter_kernel(filter_program, "convolution");
+
+ ///////////////////////////////////////////////////////////////////////////
+
+ //check for image paths
+ if(vm.count("image"))
+ {
+ // Read image with OpenCV
+ cv_mat = cv::imread(vm["image"].as<std::string>(),
+ CV_LOAD_IMAGE_COLOR);
+ if(!cv_mat.data){
+ std::cerr << "Failed to load image" << std::endl;
+ return -1;
+ }
+ }
+ else //by default use camera
+ {
+ //open camera
+ cap.open(vm["camera"].as<int>());
+ // read first frame
+ cap >> cv_mat;
+ if(!cv_mat.data){
+ std::cerr << "failed to capture frame" << std::endl;
+ return -1;
+ }
+ }
+
+ // Convert image to BGRA (OpenCL requires 16-byte aligned data)
+ cv::cvtColor(cv_mat, cv_mat, CV_BGR2BGRA);
+
+ // Transfer image/frame data to gpu
+ compute::image2d dev_input_image =
+ compute::opencv_create_image2d_with_mat(
+ cv_mat, compute::image2d::read_write, queue
+ );
+
+ // Create output image
+ // Be sure what will be your ouput image/frame size
+ compute::image2d dev_output_image(
+ context,
+ dev_input_image.width(),
+ dev_input_image.height(),
+ dev_input_image.format(),
+ compute::image2d::write_only
+ );
+
+ filter_kernel.set_arg(0, dev_input_image);
+ filter_kernel.set_arg(1, dev_output_image);
+ filter_kernel.set_arg(2, dev_filter);
+ filter_kernel.set_arg(3, filterWidth);
+
+ // run flip kernel
+ size_t origin[2] = { 0, 0 };
+ size_t region[2] = { dev_input_image.width(),
+ dev_input_image.height() };
+
+ ///////////////////////////////////////////////////////////////////////////
+
+ queue.enqueue_nd_range_kernel(filter_kernel, 2, origin, region, 0);
+
+ //check for image paths
+ if(vm.count("image"))
+ {
+ // show host image
+ cv::imshow("Original Image", cv_mat);
+
+ // show gpu image
+ compute::opencv_imshow("Convoluted Image", dev_output_image, queue);
+
+ // wait and return
+ cv::waitKey(0);
+ }
+ else
+ {
+ char key = '\0';
+ while(key != 27) //check for escape key
+ {
+ cap >> cv_mat;
+
+ // Convert image to BGRA (OpenCL requires 16-byte aligned data)
+ cv::cvtColor(cv_mat, cv_mat, CV_BGR2BGRA);
+
+ // Update the device image memory with current frame data
+ compute::opencv_copy_mat_to_image(cv_mat,
+ dev_input_image,queue);
+
+ // Run the kernel on the device
+ queue.enqueue_nd_range_kernel(filter_kernel, 2, origin, region, 0);
+
+ // Show host image
+ cv::imshow("Camera Frame", cv_mat);
+
+ // Show GPU image
+ compute::opencv_imshow("Convoluted Frame", dev_output_image, queue);
+
+ // wait
+ key = cv::waitKey(10);
+ }
+ }
+ return 0;
+}