summaryrefslogtreecommitdiffstats
path: root/src/boost/libs/math/example/bernoulli_example.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'src/boost/libs/math/example/bernoulli_example.cpp')
-rw-r--r--src/boost/libs/math/example/bernoulli_example.cpp207
1 files changed, 207 insertions, 0 deletions
diff --git a/src/boost/libs/math/example/bernoulli_example.cpp b/src/boost/libs/math/example/bernoulli_example.cpp
new file mode 100644
index 000000000..5a2c58969
--- /dev/null
+++ b/src/boost/libs/math/example/bernoulli_example.cpp
@@ -0,0 +1,207 @@
+// Copyright Paul A. Bristow 2013.
+// Copyright Nakhar Agrawal 2013.
+// Copyright John Maddock 2013.
+// Copyright Christopher Kormanyos 2013.
+
+// Use, modification and distribution are subject to the
+// Boost Software License, Version 1.0. (See accompanying file
+// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
+
+#pragma warning (disable : 4100) // unreferenced formal parameter.
+#pragma warning (disable : 4127) // conditional expression is constant.
+
+//#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
+
+#include <boost/multiprecision/cpp_dec_float.hpp>
+#include <boost/math/special_functions/bernoulli.hpp>
+
+#include <iostream>
+
+/* First 50 from 2 to 100 inclusive: */
+/* TABLE[N[BernoulliB[n], 200], {n,2,100,2}] */
+
+//SC_(0.1666666666666666666666666666666666666666),
+//SC_(-0.0333333333333333333333333333333333333333),
+//SC_(0.0238095238095238095238095238095238095238),
+//SC_(-0.0333333333333333333333333333333333333333),
+//SC_(0.0757575757575757575757575757575757575757),
+//SC_(-0.2531135531135531135531135531135531135531),
+//SC_(1.1666666666666666666666666666666666666666),
+//SC_(-7.0921568627450980392156862745098039215686),
+//SC_(54.9711779448621553884711779448621553884711),
+
+int main()
+{
+ //[bernoulli_example_1
+
+/*`A simple example computes the value of B[sub 4] where the return type is `double`,
+note that the argument to bernoulli_b2n is ['2] not ['4] since it computes B[sub 2N].
+
+
+*/
+ try
+ { // It is always wise to use try'n'catch blocks around Boost.Math functions
+ // so that any informative error messages can be displayed in the catch block.
+ std::cout
+ << std::setprecision(std::numeric_limits<double>::digits10)
+ << boost::math::bernoulli_b2n<double>(2) << std::endl;
+
+/*`So B[sub 4] == -1/30 == -0.0333333333333333
+
+If we use Boost.Multiprecision and its 50 decimal digit floating-point type `cpp_dec_float_50`,
+we can calculate the value of much larger numbers like B[sub 200]
+and also obtain much higher precision.
+*/
+
+ std::cout
+ << std::setprecision(std::numeric_limits<boost::multiprecision::cpp_dec_float_50>::digits10)
+ << boost::math::bernoulli_b2n<boost::multiprecision::cpp_dec_float_50>(100) << std::endl;
+
+//] //[/bernoulli_example_1]
+
+//[bernoulli_example_2
+/*`We can compute and save all the float-precision Bernoulli numbers from one call.
+*/
+ std::vector<float> bn; // Space for 32-bit `float` precision Bernoulli numbers.
+
+ // Start with Bernoulli number 0.
+ boost::math::bernoulli_b2n<float>(0, 32, std::back_inserter(bn)); // Fill vector with even Bernoulli numbers.
+
+ for(size_t i = 0; i < bn.size(); i++)
+ { // Show vector of even Bernoulli numbers, showing all significant decimal digits.
+ std::cout << std::setprecision(std::numeric_limits<float>::digits10)
+ << i*2 << ' '
+ << bn[i]
+ << std::endl;
+ }
+//] //[/bernoulli_example_2]
+
+ }
+ catch(const std::exception& ex)
+ {
+ std::cout << "Thrown Exception caught: " << ex.what() << std::endl;
+ }
+
+
+//[bernoulli_example_3
+/*`Of course, for any floating-point type, there is a maximum Bernoulli number that can be computed
+ before it overflows the exponent.
+ By default policy, if we try to compute too high a Bernoulli number, an exception will be thrown.
+*/
+ try
+ {
+ std::cout
+ << std::setprecision(std::numeric_limits<float>::digits10)
+ << "Bernoulli number " << 33 * 2 <<std::endl;
+
+ std::cout << boost::math::bernoulli_b2n<float>(33) << std::endl;
+ }
+ catch (std::exception ex)
+ {
+ std::cout << "Thrown Exception caught: " << ex.what() << std::endl;
+ }
+
+/*`
+and we will get a helpful error message (provided try'n'catch blocks are used).
+*/
+
+//] //[/bernoulli_example_3]
+
+//[bernoulli_example_4
+/*For example:
+*/
+ std::cout << "boost::math::max_bernoulli_b2n<float>::value = " << boost::math::max_bernoulli_b2n<float>::value << std::endl;
+ std::cout << "Maximum Bernoulli number using float is " << boost::math::bernoulli_b2n<float>( boost::math::max_bernoulli_b2n<float>::value) << std::endl;
+ std::cout << "boost::math::max_bernoulli_b2n<double>::value = " << boost::math::max_bernoulli_b2n<double>::value << std::endl;
+ std::cout << "Maximum Bernoulli number using double is " << boost::math::bernoulli_b2n<double>( boost::math::max_bernoulli_b2n<double>::value) << std::endl;
+ //] //[/bernoulli_example_4]
+
+//[tangent_example_1
+
+/*`We can compute and save a few Tangent numbers.
+*/
+ std::vector<float> tn; // Space for some `float` precision Tangent numbers.
+
+ // Start with Bernoulli number 0.
+ boost::math::tangent_t2n<float>(1, 6, std::back_inserter(tn)); // Fill vector with even Tangent numbers.
+
+ for(size_t i = 0; i < tn.size(); i++)
+ { // Show vector of even Tangent numbers, showing all significant decimal digits.
+ std::cout << std::setprecision(std::numeric_limits<float>::digits10)
+ << " "
+ << tn[i];
+ }
+ std::cout << std::endl;
+
+//] [/tangent_example_1]
+
+// 1, 2, 16, 272, 7936, 353792, 22368256, 1903757312
+
+
+
+} // int main()
+
+/*
+
+//[bernoulli_output_1
+ -3.6470772645191354362138308865549944904868234686191e+215
+//] //[/bernoulli_output_1]
+
+//[bernoulli_output_2
+
+ 0 1
+ 2 0.166667
+ 4 -0.0333333
+ 6 0.0238095
+ 8 -0.0333333
+ 10 0.0757576
+ 12 -0.253114
+ 14 1.16667
+ 16 -7.09216
+ 18 54.9712
+ 20 -529.124
+ 22 6192.12
+ 24 -86580.3
+ 26 1.42552e+006
+ 28 -2.72982e+007
+ 30 6.01581e+008
+ 32 -1.51163e+010
+ 34 4.29615e+011
+ 36 -1.37117e+013
+ 38 4.88332e+014
+ 40 -1.92966e+016
+ 42 8.41693e+017
+ 44 -4.03381e+019
+ 46 2.11507e+021
+ 48 -1.20866e+023
+ 50 7.50087e+024
+ 52 -5.03878e+026
+ 54 3.65288e+028
+ 56 -2.84988e+030
+ 58 2.38654e+032
+ 60 -2.14e+034
+ 62 2.0501e+036
+//] //[/bernoulli_output_2]
+
+//[bernoulli_output_3
+ Bernoulli number 66
+ Thrown Exception caught: Error in function boost::math::bernoulli_b2n<float>(n):
+ Overflow evaluating function at 33
+//] //[/bernoulli_output_3]
+//[bernoulli_output_4
+ boost::math::max_bernoulli_b2n<float>::value = 32
+ Maximum Bernoulli number using float is -2.0938e+038
+ boost::math::max_bernoulli_b2n<double>::value = 129
+ Maximum Bernoulli number using double is 1.33528e+306
+//] //[/bernoulli_output_4]
+
+
+//[tangent_output_1
+ 1 2 16 272 7936 353792
+//] [/tangent_output_1]
+
+
+
+*/
+
+